Global 1Mbps Peer-Assisted Streaming: Fine-Grain
Measurement of a Configurable Platform

Joe W. Jiang*, S.-H. Gary Chan’, Mung Chiang*, Jennifer Rexford*, D. Tony Ren’, Bin Wei*
*Dept. of Computer Science, and *Dept. of Electrical Engineering, Princeton University
"Dept. of Computer Science & Engineering, Hong Kong University of Science and Technology
fAT&T Labs Research, NJ
{wenjiej, chiangm, jrex} @princeton.edu, {gchan,tonyren}@cse.ust.hk, bw @research.att.com

Abstract—High resolution video is defining a new age of peer-
assisted video streaming over the public Internet. Streaming
over 1Mbps videos in a scalable and global manner presents
a challenging milestone. In this work, we examine the feasibility
of 1Mbps streaming through a global measurement study. In
contrast to previous measurement studies that crawl commercial
applications, we conduct fine-grain, controlled experiments on a
configurable platform. We developed and deployed FastMesh-
SIM, a novel peer-assisted streaming system that leverages
proxies, scalable streaming trees and IP multicast to achieve
1Mbps streaming at a global scale.

With the configurability-enabled design, we are allowed to
conduct controlled experiments by varying design decisions under
a wide range of operating conditions, and measuring in-depth,
fine-grain metrics at a per-hop, per-segment level. We collected
hundreds of hours of streaming traces that broadcast live TV
channels to more than 120 peers and 30 proxies, with a global
geographic footprint over 8 different countries. Data analysis
demonstrates how a set of design decisions collectively overcome
the 1Mbps barrier. The various operational issues we uncovered
provide insights to service providers that want to deploy a
commercial system at a larger scale and a higher streaming
rate. By comparing theory and practice, we also confirm theory-
inspired architectural decisions, and show that our system indeed
achieves throughputs close to theoretical upper-bound calculated
under many ideal assumptions.

I. INTRODUCTION

Most existing commercial peer-assisted streaming sys-
tems [1] deliver a streaming rate at a few hundreds of kbps,
which does not meet the growing demand for high resolution
videos. A decent viewing experience on today’s home TV or
iPad screen usually requires a sustained streaming rate on the
order of Mbps. While 1Mbps streaming is happening today, it
often relies on the pervasive deployment of expensive infras-
tructure such as content distribution networks (CDNSs), or is
offered to a limited number of premium users only. Providing
high-quality, reliable service to a large user population at a
reasonable cost is the lifeblood to today’s service operators.

It is commonly believed that the conventional P2P approach
does not sustain a high streaming rate due to insufficient
bandwidth resources. A number of architectural choices were
proposed to improve the system performance and scalability,

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

including the use of proxies or helper nodes [2], packing multi-
ple trees [3], and IP-multicast integration [4], etc. Other design
decisions, ranging from the segment size, and the scheduling
policy, to parallel TCP connections, also have a great impact
on the performance and reliability. In order to examine whether
these ideas collectively push the envelope to above 1Mbps
under realistic Internet conditions, and which decisions are the
key factors that affect the performance, we need a systematic
and quantitative understanding of these design choices. This
study is driven by the following requirements:

o A highly instrumented and configurable platform
o Fine-grain and detailed measurement data
« Reproducible results that do not rely on proprietary
commercial applications
« Underlying network support such as IP-multicast capabil-
1ty
« Dedicated resources in each peer that isolate performance
disruption
This paper is about the deployment, experiment, measurement,
and data analysis over an operational system satisfying all of
the above needs. The deployed FastMesh-SIM, is a novel push-
based P2P streaming system that consists of multiple trees—
as suggested by recent theoretical studies on P2P streaming
capacity [3, 5, 6]—to offer high-quality streaming at a global
scale, in contrast to other studies that primarily focus on pull-
based systems. The two recurring themes of this paper are:
(1) engineer IMbps peer-assisted streaming, and (2) learn
from fine-grain measurement through controlled experiments.
Through statistical studies of the data, we also have the
opportunity to uncover many practical issues in operating a
global streaming service.

A. Enabling Fine-Grain Measurement of a Configurable Plat-
form

Identifying the obstacles to 1Mbps streaming requires new
methodologies to obtain a finer-grained understanding of the
system bottlenecks. New metrics need to be introduced to
measure and identify the effectiveness for every design de-
cision we make. In addition, a distributed system providing
a global-scale, resource-demanding service is more sensitive
to the behavior of underlying communication network and
customers, and noise can unintentionally amplify or diminish

the importance of certain design parameters. Measurement in a
controlled environment allows us to focus on one set of factors
in each experiment while controlling for other elements that
may affect the system performance.

Previous measurement studies usually consist of “black
box” characterizations of proprietary, commercial P2P stream-
ing services [7, 8,9, 10, 11, 12]. Complementary to prior work,
we focus on the following approach: controlled experiments
on a configurable P2P streaming system that is designed,
implemented, and deployed by the same team that carried out
the measurement study. This enables us to collect fine-grained
measurements, e.g., a rich set of per-segment per-hop times-
tamp information, under a wide range of design choices, while
running experiments over the public Internet. Our goal, then,
is to gain qualitative and quantitative understandings of how
major design decisions and environmental conditions affect the
streaming performance, i.e., rate, delay, and reliability.

B. Experience with Realizing Global 1Mbps Streaming

The in-depth measurement study is conducted on our hybrid
proxy-P2P streaming system, FastMesh-SIM [13, 14], which
broadcasts live TV channels at a 1Mbps quality, with a large
geographic footprint over 8 countries in 5 continents. We
analyzed more than 200 hours of streaming logs from over
20 experimental trials, including more than 120 peers and 30
proxies. The rich dataset collected from our tightly controlled
experiments in a highly instrumented system offers a unique
perspective into many design choices proposed separately. In
particular, we summary our main insights as follows:

Capability of proxy nodes. We revisit the common wisdom
that the pure P2P approach does not sustain a high streaming
rate due to insufficient peer bandwidth. Many studies proposed
the use of proxies or hybrid CDN-P2P for cost-effective
streaming. We carefully quantify the capacity of proxy nodes
needed to meet the 1Mbps requirement, and demonstrate that
a small population of “super” nodes (e.g., campus LAN users)
is competent for the proxy functionality, in contrast to other
work that suggest dedicated servers with a high bandwidth.

Scalability of a two-tier architecture. Scalability is the key
requirement for any service provider who wishes to provide
consistent and reliable high-rate streaming. The proposed two-
tier architecture that separates the design space into groups
of peers clustered by geographic proximity—a carefully opti-
mized proxy mesh (FastMesh) at the core, and simple resilient
trees (SIM) at the peripheral with layer-3 multicast support—
is a promising approach to attain a high streaming rate among
a reasonably large population of users. The 120 peers in
our experiment, are supported by only 5 proxies located at
two campuses, with each proxy serving tens of peers. A
straightforward back-of-the-envelop calculation extends the
system scale to close to a thousand peers with our current
proxy network size.

Complexity of tree construction. A number of recent
literatures [3, 5, 6, 15] studied how to achieve the P2P
streaming capacity, i.e., the maximum streaming rate that can
be supported given a set of peers. Most solutions propose

sophisticated tree packing algorithms that require a large
number of trees. In this work we show that a simple mesh
construction that involves a limited number of trees work well
in practice, and as demonstrated in our experiment achieves
over 85% of the streaming rate upper-bound.

Optimizability of streaming delay. The user-perceived
streaming delay and jitters are also important performance
metrics that service providers care about. We characterize
various delay components, and show that the wide-area (prop-
agation) delay is dominated by other components such as
transmission and protocol delays that are affected by many
design choices like the scheduling policy and segment size.
We quantify how to carefully tune these parameters to improve
the delay bound.

Reliability under varying network conditions. Through a
highly instrumented traffic monitor, we are able to identify
and traceback the performance degradation that happens at a
particular hop and segment. This gives us a unique opportunity
to improve the system reliability by dissecting the performance
bottleneck, e.g., edge vs. core of the network, which would be
difficult without a fine-grain measurement.

Our work has the obvious limitation that some of the
quantitative results may depend on specific design and im-
plementation choices in our system, or the details of our
current deployment. However, experimenting with an oper-
ational, integrated system with ample geographic diversity
provides valuable experiences to operators who wish to deploy
similar services and revisit many design choices that were
proposed previously as a joint solution. The rest of the paper
is organized as follows. Section II gives an overview of the
design and implementation of the FashMesh-SIM system.
Section III presents the fine-grained measurement methodol-
ogy and the design parameters we vary in the experiments.
Sections IV to VI, the core sections, present the analysis of
the measurement data and our answers to the questions raised
above. Section VII discusses the theory-practice similarities
and discrepancies illuminated by this study, and the lessons
we learned through the interaction between the development
engineers and measurement researchers. We further discuss
related work in Section VIII, and conclude in Section IX.

II. DESIGN OF FASTMESH-SIM

We briefly review our design choices in FastMesh-SIM
aimed at improving the performance metrics of streaming
rate (i.e., throughput), delay, and scalability. FastMesh-SIM
constructs application-level multicast trees. As illustrate in
Figure 1(a), it consists of two push-based protocols: (i)
FastMesh that constructs a streaming backbone among an
upper tier of more stable proxies with low delay, and (ii)
SIM (Scalable Island Multicast) by which a lower tier of
end-user peers self-organize into one or multiple trees, lever-
aging local IP multicast support wherever possible. While
FastMesh and SIM have been separately reported in prior
publications [13, 14], this paper reports the first deployment of
an integrated streaming service of FastMesh-SIM and the first
in-depth global measurement study of the system. The system
design consists of the following key concepts:

Kiﬁ' Streaming Source
' FastMesh (proxy servers/helpers)

il J
6 6 SIM (peer)
(@ (b)

DATA group (Multicast Island)

Fig. 1. System designs of FashMesh-SIM: (a) a proxy-based peer-assisted
two-tier architecture; (b) combining IP-multicast with overlay tree streaming
in SIM.

Push-based stream delivery. FastMesh-SIM is a pure push-
based system that constructs one or more application-level
multicast trees. The video is divided into multiple sub-streams,
each of which is delivered by a tree. The tree structure is
maintained at every peer in a distributed manner. As segments
in a substream arrive, parent nodes immediately push the data
to their children.

Low-delay proxy mesh. Each video substream is sent through
the proxies before reaching the lower tier of peers. The proxies
are stable and bandwidth-rich machines, such as dedicated
infrastructure nodes contributed by the content provider. The
proxies run the fully distributed protocol FastMesh [14], which
builds multiple high-bandwidth low-delay spanning trees. The
protocol is adaptive such that the delay is constantly optimized
given any change of server availability. As the number of prox-
ies may change over time, FastMesh continues to perform local
network measurements and adaptations in order to construct
trees that minimize the worst-case delay in delivering data
from the servers, subject to constraints on upload capacity.

Scalable local streaming trees. A swarm of peers close to a
proxy server run the lightweight SIM [13] protocol to construct
low-delay trees with minimal overhead. As a new peer joins
the system, it contacts a rendezvous point (RP) that returns
its local proxy, which in turn gives a random list of existing
peers rooted at the proxy to bootstrap the process. The peer
selects a set of nodes as its parents, taking both RTT and
bandwidth into consideration. The tree formation is distributed
and adaptive, as the underlying network conditions and node
availability change over time.

IP-multicast integration. A unique feature of SIM is to inte-
grate IP-multicast with application-layer multicast to improve
bandwidth efficiency. Although IP multicast is not globally
available on today’s Internet, many local area networks are
multicast-capable. SIM capitalizes on local support for IP
multicast by embedding these “multicast islands” into the
overlay streaming trees, as illustrated in Figure 1(b). Peers
within a multicast island receive data using IP multicast,
and communicate with the outsiders through border nodes on

streaming trees. SIM has a distributed mechanism to decide
which multicast nodes are in an island so as to eliminate
duplications, thus improving the efficiency of bandwidth usage
in a local network.

Reactive error recovery. FastMesh is able to adapt to
server churns by re-optimizing the mesh. SIM implements a
more sophisticated error-recovery mechanism to respond to
temporary or unexpected packet or stream losses [16]. Through
backup parents and distributed tree re-formation, SIM achieves
fast error recovery, even under frequent peer churns.

III. MEASUREMENT METRICS AND METHODOLOGY

Conducting experiments with the FastMesh-SIM system
enables both visibility (through fine-grained instrumentation of
the software) and control (by configuring many tunable design
parameters).

A. Visibility: Fine-Grained Metrics Instrumentation

’peer_id \ seg_id | gen_t | rcvd_t | send_t

Fig. 2. Format of segment delay timestamps

Traditional measurement studies in P2P streaming often
employ a large-scale user pool generating real traffic on the
Internet. However, due to the large user population and peer
churns, they often rely on random or statistical sampling,
which provides a view that is partial or coarse-grain. As an
alternative approach, we use a relatively smaller set of peers
over diverse geographic locations, which allows us to perform
an in-depth examination of every peer and every segment
throughout all experiments, while not losing the geographic
properties of large systems. We install a built-in monitor for
each peer that is able to observe packet-level activities.

Our monitor generates a record for every segment it re-
ceives. A segment record contains several timestamps about
the segment’s lifetime, as shown in Figure 2. The fields
of peer_id and seg_id specify which peer and which
segment this record belongs to. gen_t specifies when the
segment is generated at the source. rcvd_t records when
the segment is received at the local peer. send_t records
when the segment is scheduled to be sent (and to which peer).
A peer’s local clock is synchronized by the NTP servers to
ensure the validity of the timestamp. Together with the data
payload, the record is sent to the next hop peer and used to
infer more delay information. By collecting the records from
all peers, we can reconstruct the lifetime for every segment in
the network.

Besides the segment delay log, our monitor also records a
peer’s local information periodically, e.g., every 10 seconds.
Figure 3 lists the most important quantities we recorded. The
measured and inferred quantities, in general, can be grouped
into the following five categories:

Node:. The peer’s ID, IP address, port number, and the time
that the record is generated.

Topology:. The peer’s parent list PL, child list CL, the longest
path from the source PATH and its depth DP. DEG records

the incoming degree and outgoing degree. All the information
helps track how the overlay topology changes during churns
and failovers.

Bandwidth:. The peer’s upload/download data bytes UD/DD
transmitted during a monitoring interval, e.g., 10 seconds.
We can further differentiate various data sources, i.e., overlay
unicast DDU, IP-multicast DDM or recovery server DDR. UT/DT
is the total upload/download traffic, including data payload
and control messages. UB/DB are the average peer upload and
download bandwidth derived by dividing the data bytes by the
length of a monitoring interval.

Buffer:. A snapshot of the current playback buffer. F'S is the
first (earliest) segment. LS is the last (latest) segment. PH is
the current segment fed into the player. CI is the continuity
index, defined as one minus the segment loss rate, i.e., the
number of holes divided by the buffer length.

Delay:. With the segment delay records, we can measure
or infer a set of delay components: playback delay PB,
transmission delay TX, propagation delay PR and scheduling
delay SC. The precise definition of these delay quantities are
given below. All collected quantities are averaged over the one
monitoring period, e.g., 10 seconds by default.

Definition 1. Playback (or end-to-end) delay PB is the time
elapsed from a segment’s generation at the source, to its
complete receipt (including error recovery) at the local peer,
1.e.,

PB=rcvd t—agen_t

Definition 2. Transmission delay TX is the total elapsed time
from when a segment is scheduled to be sent, to the completion
of this transmission, over all hops the segment traverses, i.e.,

TX = Z ICVd—tChild(i) — send_tparem(l-) —RTT,
hop i
Definition 3. Scheduling (or protocol) delay SC is the total
waiting time before a received segment is scheduled to be sent,
over all hops the segment traverses, i.e.,

SC= Z send_tparem(i) — rcvd_tparem(i)
hop i

We can immediately validate the following relationship for
the above defined playback, propagation, transmission and
scheduling delay, and this is how we infer SC from (PB,
PR,TX) measurements. Since rcvd_tgouce = gen_t, we
have

PB=PR+ TX+ SC.

With this information above, we can reconstruct the lifespan
of every segment.

B. Control: Configurable Streaming Platform

In this measurement study, we study design space by
intentionally turning on/off some features and tuning system
parameters. We present a taxonomy of the “control knobs”:

Experimenting with architectural choices.

o Layer-3 support: IP-multicast can be enabled or disabled.
We let a fraction of peers to be IP-multicast capable,

[Metrics [[Measured quantities [Inferred quantities |
Node ID, IP, PORT, TIME —
Topology PL, CL DP, PATH, DEG
Bandwidth || UD, DD (U/M/R), UT, DT UB, DB
Buffer FS, LS, PH CI
Delay PB, TX, PR SC

Fig. 3. Fine-grained measurement quantities.

either on the same local network, or across different
networks.

e Proxy functionality: A proxy node can play two roles:
proxy server and proxy helper, and their difference will
be explained later. This knob controls the achievable
streaming rate given a certain number of proxies.

Varying degrees of design freedom.

e Farallel connections: We allow a peer to set up multiple
TCP connections for data transmission. Enabling multiple
TCP connections may overcome the TCP throughput
limitation over one single long-haul connection.

o Segment size: Segment size is the smallest replication unit
used in a P2P system. It determines how quickly a peer
can disseminate the data it receives. The segment size
knob controls the tradeoff between the transmission delay
and the protocol overhead.

Synthesizing streaming environment.

e Peer churns: We synthesize churns by letting peer behav-
iors follow our pre-programmed script. We consider two
types of dynamics, peer churns and server churns. Tuning
the knob to allow different churn rates affects the system
dynamics and reliability.

o Streaming workload: We tune the video rate such that the
system operates under different workloads, over the wide
range of 100kbps to 4Mbps. This allows us to explore
the limit of streaming capacity over the Internet.

e Node access: Nodes, which can be proxies or peers, are
selected from different ISPs or locations (e.g., continents).
Peers are campus users or residential home users. Nodes
can be dedicated machines with excellent network access,
or virtual machines from resource-shared platforms.

These knobs together allow us to perform a set of controlled
experiments and study the design tradeoffs, by decoupling a
large number of factors.

C. Deployment

Asia 2 ‘ Asia
» ™ N Europe
} { Atantic
i Ocean

Africa

.
L =
Ocean Austr: '

Amarica
Indian
Ocean

Fig. 4. Global deployment of proxy nodes.

GEOGRAPHIC LOCATIONS AND NODE ACCESS PROPERTIES OF PROXY

TABLE 1

SERVERS AND PEERS USED IN OUR EXPERIMENTS.

[Nodes [Proxies [Peers
Total # 42 ~120
Type Dedicated PlanetLab | Dedicated | Residential
Location Princeton 12
HK 7 Princeton
Caltech 3 US 6 30 HK
Uruguay 3 Japan 2 HKUST 20
Korea 3 70
Australia 3
UK 3
Bandwidth 10Mbps shared 10Mbps varied
IP-multicast na na enabled na

In our trials, we deploy 34 standard commodity laptops
and desktop machines with dedicated bandwidth as proxies,
located on 7 collaborator sites on different continents. In one
trial, we also select a few PlanetLab nodes to allow us to
compare the performance of two types of nodes: those with
dedicated and those with shared resources. All of them serve
as proxy servers (or helpers) in our experiments, and run the
FastMesh protocol. We also employ 100 desktop machines
on the campus network from two collaborators: Hong Kong
(China) and Princeton (US). These machines serve as peers
and run the SIM protocol. They are connected to the Internet
via campus LAN, and with IP-multicast enabled. We also
invite 20 residential broadband/DSL home users from Hong
Kong to participate in these experiments.

The geographic locations of the proxies and peers are shown
in Figure 4, and node statistics are given in Table 1. Although
we do not employ a large number of peers in our experiments,
having around 50 peers in a local swarm, e.g., close to the
same proxy server, represents a reasonable size of a practical
scenario. A higher-level mesh network with tens of proxies
also provides a good starting point to study proxy deployments
and steaming performance at a global scale.

The data analyzed in this work are collected in more than
20 experiment trials conducted during Dec 2009 - Sep 2010
that broadcast live TV channels (with the streaming source in
Hong Kong), which in total contribute a set of traces of more
than 200 hours.

IV. ACHIEVING 1MBPS STREAMING RATE

In the following three sections, we analyze the data collected
from the experiment trials and draw lessons on building a
global 1Mbps P2P streaming platform. We first investigate
how to achieve 1Mbps streaming rate by collectively applying
a set of techniques. For entertainment-grade user experience,
delay and reliability are important metrics. We further inves-
tigate the user playback delay and discuss how to minimize
delay by differentiating various delay components in the next
two sections. We also study the system reliability under
churning behaviors and varying network conditions.

A. Capability as Proxy Nodes

We first show the capability of the FastMesh protocol to
achieve 1Mbps streaming rate among a set of geographically
diverse proxy nodes. We select 15 nodes to function as proxies,

10 of which are dedicated servers from our collaborators
and 5 from PlanetLab. We also employ PlanetLab nodes
in order to contrast resource-dedicated and resource-shared
environments. The geographic coverage is shown in Figure 4,
which represents a typical distribution of proxies with diverse
RTTs in the wide area.

Figure 5 shows the correlation between a node’s streaming
capability and its geographic location. Figures 5 (a)-(c) show
the mean and variance of the received data rate, uploaded
data rate and RTT distribution of proxy nodes during a one-
hour trial, with nodes grouped by their ISPs and indexed in
an increasing order of received data rates ‘. Seven out of
fifteen nodes achieve a persistent 1Mbps streaming rate. Other
nodes suffer from rate fluctuations and some even receive
less than 80% of the required bit-rate. We also measure
the RTTs between a node and its most distant parent, as
well as the source (placed in Hong Kong). Comparing these
figures leads to the observation that the streaming rate has
a strong correlation with a node’s physical location, e.g., the
streaming rate degrades sharply as RTTs exceed 100ms. As the
throughput of long-haul TCP connections are greatly affected
by RTTs, the wide-area distance turns out as an important
factor in achieving a high streaming rate. In particular, the
cross-continent connections are severely impaired. As we will
show later, the use of parallel connections and helper nodes is
able to rectify such a problem.

It is interesting to note that nodes with the poorest per-
formance are from PlanetLab—all of them achieve less than
800kbps rate on average. Bandwidth cap and sharing CPU
cycles with other applications understandably put the sustained
1Mbps video streaming at a risk. The FastMesh protocol
should avoid using these unstable proxies to deliver video
streams to others. Figure 5 (b) shows that most uploading
workload is assigned to “good” proxies, so the bandwidth from
resource scarce nodes can be reserved to support their local
peers.

1

B. Reliable Tree-based Streaming

We next study the influence of residential peers with slower
and less reliable Internet access in the global 1Mbps streaming
experiment. A swarm of peers in each location get the com-
plete set of substreams from one or two nearby proxy servers,
and forward the stream within themselves by constructing an
application layer multicast tree. In this trial, we deploy three
proxy servers in Hong Kong and let a mixture of 30 campus
users and 20 residential broadband/DSL users join the stream-
ing channel. We perform two sets of experiments, one with
500kbps streaming rate and the other with 1Mbps streaming
rate, each lasting 45 minutes. The results are presented in
Figure 6.

In the 500kbps experiment, both campus and residential
users achieve a very steady streaming rate, which demonstrates
the robustness of the constructed streaming tree. However,
they make significantly distinct contributions to the system in
terms of their uploading capability. Most campus users serve

I'Two of the thirteen ISPs contain two proxy nodes, and hence there are in
total 15 nodes

1500 10

_ 3000 —@— Source

[4 z Parent

o — [

g z | 2 2R

E 1000 & 2000 - 10 I/

© [£ [h

i = =

2 « E

= kel o 1

g 500 g 1000 10

[} o

b= =)

%)
0 : : 0o 10° A
0 5 10 15 0 10 15 0 5 10 15

ISP #

ISP #

(a) (b) (c
Fig. 5. FastMesh achieves 1Mbps streaming among a mixture of dedicated servers and PlanetLab nodes at a global scale. Proxy servers are categorized by
their locations, ordered with increasing received streaming rate: (a) streaming rate, (b) data uploading rate, (c) proxy RTT distribution. Resource dedication

and RTT bias are important factors that affect the streaming performance.

500Kbps Streaming Rate 1Mbps Streaming Rate

/’/ 1 prmmEEEEEEEET ~ =
/ 0 et
S o -
/’ : 08 a /
0.6
0.4 / 3
== Campus DL . == Campus DL
- Campus UL 0.2 H - Campus UL
= Residential DL o = Residential DL
| = = = Residential UL . ," = = = Residential UL
00 1000 2000 3000 OO 1000 2000 3000

Data Rate (Kbps) Data Rate (Kbps)

Fig. 6. Achieving 1Mbps streaming by constructing a SIM tree among a
mixture of campus and residential users. Campus and residential users show
distinct distributions of upload and download data rates.

as internal nodes on the tree due to their stable connectivity on
both uplink and downlink. Residential DSL users usually have
poor uplink capacity and become leaf nodes as the system
stabilizes. A few residential users with sufficient resources
can achieve up to 2Mbps uplink capacity and therefore play
an important role in an environment when few campus users
are present. As we increase the streaming rate to 1Mbps, the
performance of campus users is less impaired, because campus
users are able to absorb the workload gracefully among
themselves. The performance degradation is expected since
there are only three proxy servers which are desktops. This
problem would be alleviated as more servers are deployed,
though we have already seen encouraging cost-savings by
having 3 standard desktop servers support over 50 peers.

C. Offloading Workload with Proxy Helpers

The FastMesh protocol allows a proxy to play two roles:
proxy server and proxy helper. A proxy server has to receive
the complete set of video substreams so it appears as a local
server to peers that run the SIM protocol. However, the diverse
locations at a global scale and the temporary bandwidth short-
age often make it difficult to support a demanding workload
by themselves, as demonstrated in Figure 5. A proxy helper,
which only requires a partial set of all substreams, provides
path diversity to serve the proxy servers by forwarding video
substreams, while only consuming a limited amount of re-
sources. This improves the streaming rate through bandwidth

1 1 P
"’ e
i
0.8 0.8 H
H
3
0.6 0.6 '
:
0.4 oaf &
R '
0.2 =e=No proxy 02 HE [=e=No proxy
= Proxy server ! = Proxy server
o ‘ y - - Proxy helper o 3 == Proxy helper
0 500 1000 1500 2000 107" 10° 10’ 10°

Playback Rate (Kbps)
(@)

Playback Delay (Second)
()

Fig. 7. Using proxies significantly increases the streaming capacity: (a)
received stream rate, (b) playback delay. With proxy helpers, the streaming
rate is more stable and large playback delays are greatly mitigated.

aggregation. Peers only receive video streams from their local
proxy servers, but do not talk to proxy helpers directly.

We compare the use of proxy servers and proxy helpers,
and results are shown in Figure 7. We deploy proxies with
a location distribution as shown in Figure 4. We conduct
two sets of experiments: the first one involves proxy servers
only, and the second one involves a 50-50 mixture of proxy
servers and proxy helpers. We also compare with the approach
without using any proxies, e.g., via the direct SIM tree.
All experiments last 30 minutes. Apparently, the achievable
streaming rate without using proxies is up to 300kbps only,
while using proxies greatly improve the streaming rate to
1Mbps. However, employing a higher streaming rate may
suffer from larger playback delays because the throughput
becomes more sensitive to various network conditions, as we
will show in details later. On the other hand, proxy helpers
outperform proxy servers, as the achieved streaming rate is
more stable and the playback delay is of several orders of
magnitude lower. While we demonstrate that employing both
proxy servers and proxy helpers presents a promising solution,
calculating an optimal mixture between the two in practice
remains an open research problem [5].

D. Improving Scalability with IP Multicast

The measurement data demonstrates that IP-multicast can
be seamlessly integrated into overlay streaming trees, even

[&]
o
o
=]

2000]

Y n ! ! Y n .
1500 2000 2500 3000 3500 4000 4500 5000
Segment Sequence #

1000

End-to—end Delay (ms)

n !
500 1000

500 1000 1500 2000 2500 3000 3500 4000 4500

Segment Sequence #

5000

Fig. 8. Embedding IP-multicast into overlay trees: integrating two data planes when one or another starves.

under peer churns. We deploy churning peers in a campus
network where IP-multicast support is enabled by network
administrators. We intentionally configure some peers to be
IP-multicast capable, while turning off others. Because IP-
multicast relies on UDP which does not offer retransmission
mechanism, we need to recover the lost IP-multicast data from
other sources. The SIM protocol allows a peer to recover data
from its overlay parent once the IP-multicasted data is lost.
As such, a peer’s performance does not rely on one single
data plane, and is more robust against highly varying network
conditions. In Figure 8, we show segment-wise delays, and
the data source in an experiment with 70 peers from campus
nodes. Clearly, the overlay data can immediately bridge the
gap due to IP-multicast packet loss. The impact of [P-multicast
loss is mitigated so the segment delay is rarely affected. In
fact, we are able to keep the system overhead very low, as
the amount of overlay data is insignificant compared to the
IP-multicast data.

We next examine the benefit of IP-multicast in terms of
streaming rate, segment playback lag, buffer continuity index,
and uplink usage. We conduct two experiments, one with IP-
multicast capable peers, and the other without. We deploy
the same set of nodes and allow peer churns with the same
parameters. We compare their performances in Figure 9.

While both approaches achieve an average streaming rate
around 1Mbps, IP-multicast helps to reduce the rate fluctua-
tion, confirming the intuition that IP-multicast is less sensi-
tive to peer churns. Delay reduction by IP-multicast is very
significant. Compared to the overlay multicast, delays of IP-
multicast are greatly reduced in two ways: lower protocol
overhead (e.g., tree reformation, system overhead on segment
store-and-forward) and lower bandwidth requirements from
the more efficient multicast tree topology. The second factor is
especially important, when a higher streaming rate is required.

[P-multicast also improves the buffer continuity index, ex-
cept for a very small number of cases in which the buffer
continuity is low, e.g., below 0.5, due to the unreliable UDP
transmission. The saving of peer uplink bandwidth by IP-
multicast is also significant. With IP-multicast, 90% of the
time, a majority of peers do not need to upload any data, while
in the other case, more than 30% of the time, i.e., without IP-
multicast support, some peers contribute more than 1Mbps of
their uplink bandwidth. The amount of bandwidth saving is
attained when there are peer churns. Other experiments show
that such benefit is even more significant when peers are stable.

M Asia
1.6/ [US West
[_JUS East

Streaming Rate (Mbps)
N

1 2 4 8 16 32
of TCP connections

Fig. 10. Experimenting Mbps streaming with multiple TCP connections:
finding the optimal number of parallel connections.

E. Aggregating Throughput by Parallel TCP Connections

To achieve 1Mbps stream by one single TCP connection
over a long haul connection is challenging. This is due
to TCP’s throughput that is inversely proportional to RTT,
making trans-continent connections capped by a rate limit
which is usually lower than the 1Mbps requirement. One
way to increase end-to-end throughput is to employ multiple
simultaneous TCP connections. In the next experiment, we
allow proxies to use parallel TCP connections to communicate
with each other. Figure 10 shows the received streaming
rate as we increase the number of parallel connections. We
select three locations to demonstrate the benefit. Increasing
the number of connections from one to two almost doubles
the streaming rate, but the marginal benefit diminishes as
more connections are used. An interesting observation is that
the maximum achievable streaming rate is around 1.6Mbps
for all locations. Because such a phenomenon is universal all
locations, the bottleneck is likely to be the local ISP (HKUST)
gateway where a rate limit is applied. This study suggests that
parallel TCP connections is often an effective way to achieve
high throughput between two proxies, but this approach may
be limited due to ISPs’ policies.

FE. Scalability of FastMesh-SIM

In our experiment, we successfully provide 1Mbps stream-
ing to around 100 peers running SIM, with around 20 proxies
running FastMesh. It is important to note that the 100 peers,
from two campuses and residential users, are supported by 5
proxy nodes. Other proxies, deployed purely for the purpose of
studying FastMesh, do not serve these peers directly. A simple
back-of-the-envelope calculation projects the system scale to
a few hundred peers. In addition, the participating proxies, are
normal desktops with stable Internet access such as broadband

1 R T 1 PATIC T B 10 1 =
v H = w/0 IP-mcast e
' ‘== w/ IP-mcast i
0.8 0.8 ' = 0.8
] 10
b
0.6 0.6 . 0.6
]l
’
0.4 0.4 S 0.4
'
H
0.2 0.2 ! 0.2
=== w/0 IP-mcast < e /0 |P—mcast === /0 IP-mcast
‘_y‘ == w/ IP-mcast o a? | = =W/ |IP-mcast ‘== w/|P-mcast
0 05 1 2 3 4 5] % 2 *
0 1000 2000 3000 10 10 10 10 10 10 0 0.5 1 10 10 10

Stream Rate (Kbps) Playback Delay (ms)

Fig. 9. IP-multicast improves system reliability, scalability and efficiency.

East Asia US East

©
©

&
3

@~
o~
o

w
w

Playback Lag (Second)
S

Playback Lag (Second)
EN

N

I

|
N
11/»‘ MJ‘W d\‘ “w‘w

0

N

| |
L
“,JL}l ‘WJ“‘ u "wi‘!“ M’
6000 7000

Segment Seq #
Fig. 11. Tracing segment-level delays and root cause analysis of delay jitters.

R ———

5000 6000 7000 8000
Segment Seq #

5000 8000

or campus LAN users (e.g., “super” nodes in the peer-to-peer
VoIP), and can be selected based on measurements and history.
As such, the two-tier architecture allows the system size to
grow proportionally with the number of proxies in FastMesh,
which is a promising step towards the goal of scalable 1Mbps
peer-assisted streaming.

V. OPTIMIZING USER PLAYBACK DELAY
A. Identifying the Root Cause of Delay Jitters

We first analyze the end-to-end delay jitters. We establish
the benchmark performance without enabling the IP-multicast
feature and without peer churns. The segment-wise delay log
is presented in Figure 11. We show the result of two peers
that are representative of two types of delay jitters, one from
East Asia (Korea) that is closer to the server, and the other
from US East (Princeton). The East Asia node shows lower
mean playback delay and jitters. While occasional hiccups are
observed, both nodes are able to achieve an average playback
delay of around 500ms. Since playback delay measures the
lifespan of a segment from its birth to its consumption,
500ms is indeed a challenging delay bound in live streaming.
Figure 11 shows that the US East node suffers more from delay
jitters, which is due to the longer trans-continent connection
that packets traverse. The next question would be how to
identify delay bottlenecks.

B. Differentiating Fine-Grained Delay Components

To minimize delay, a question that naturally arises is which
components of the end-to-end delay are the dominant ones.
This allows us to identify bottlenecks in the first place.

Continuity Index Data Upload Rate (Kbps)

The peer’s playback delay (PB) is decomposed hop by hop,
where each hop consists of segment transmission delay (TX),
propagation delay (PR), and scheduling delay (SC). To analyze
these delay components, we focus on two proxy servers,
one located in East Asia (Korea) and the other in US East
(Princeton).

Figure 12 explains the share of different delay components.
In this experiment, an end-to-end path that a segment traverses
consists of several hops: the hop from the source to proxy
servers on the same network, and trans-continental hops be-
tween proxy servers. We do not introduce peer churns yet,
therefore the additional protocol incurred latency is negli-
gible. In Figure 12, we show the CDFs of different delay
components. The end-to-end delay, propagation delay, and
transmission delay are measured, while the scheduling delay
is derived by subtracting the other two components from the
total end-to-end delay.

For both locations, propagation delay is not constant be-
cause different segments may travel along different paths
constructed by the FastMesh protocol. For the East Asia
node, propagation, transmission, and scheduling delay have
approximately an equal share, i.e., 1/3 of the total delay. The
US East node shows a larger delay variance than the East
Asia node, because the throughput of a longer connection
is less stable. In live streaming, we do not skip segments
unless a significant lag behind the live playback point is
detected. The playback delay is accumulated when a segment
arrives late due to the temporary starvation for bandwidth.
Therefore, to optimize the user delay, the two bottlenecks
should be targeted at: (i) a low-delay mesh constructed using
the propagation delay, (ii) a bandwidth-sufficient mesh that
supports the streaming rate.

The relative magnitude of different delay components also
depends on population size, as the total transmission and
scheduling delay depends on the scale of our experiments,
while the propagation delay does not. We normalize the delay
components with respect to our population size, e.g., the
tree size in our experiments, and show the projected delay
in Table II. As the population size grows, the transmission
and scheduling delays tend to increase, which suggests that
eliminating protocol overhead should be given a high priority.

East Asia US East
1 - . —r 1 — : 5
H ' a8
0.8 i { 4 o8t : 1
H 3)
0.6] 1 osf 3 1
. * i rl
04 : * PBf o0a4r 5 F - PB
: ~-PR H s ==PR
[| I H T | I‘ il ‘_TX 0 | - ‘/H I H —TX
10 0’ 10° 10 10° 10° 10
Delay (ms) Delay (ms)

Fig. 12. Decomposing end-to-end playback delay (PB) components: transmission delay (TX), propagation delay (PR), and scheduling delay (SC).

TABLE II
NORMALIZED DELAY COMPONENTS OF AN 8-HOP PEER.

[Delay Components (ms) | Mean [Percentage | Std |
Transmission (TX) 99 x 7 22.6% 92x 7
Propagation (PR) 101 3.3% 11x 7
Scheduling (SC) 325 x 7 74.1% 1216x 7

[Playback (PB) [3069 [100%] — |

315 ‘

&2 —@— Stream Pull

z Stream Push

o 10 8
a

©

=

¢ s 7
L

<

S 0 4

w "o 2 4 6 8 10

SIM Tree Depth
Fig. 13. Push vs pull stream delivery: pull delay grows linearly
depth.

with tree

C. Stream delivery: push vs pull

As push-based stream delivery is one of our major design
decisions, we next quantify how much we can reduce delay
compared to a pull-based stream delivery, which is adopted
by most commercial applications. We implement a protocol
similar to BitTorrent in which peers exchange segment bitmap
information and request segments sequentially (compared to
video-on-demand which applies a broader set of segment
selection policies). We compare a simple pull-based stream
delivery, and set a conservative bound on the handshake
interval to be one second.

Figure 13 shows the average end-to-end delay of peers that
run the SIM protocol from a local campus LAN (Hong Kong).
Conventional wisdom is that more tree hops results in higher
delay, which is verified by the pull curve, since the protocol
(handshake) delay grows proportionally to the tree depth. The
data quantifies the intuition that push can significantly reduce
delay, where the curve corresponding to “push” is flatter due
to the fact that the protocol overhead is no longer the major
delay bottleneck as the peer population grows. However, it
should be noted that pull-based systems have other potential
advantages: better reliability and resource utilization.

D. Exploring the Segment Size Tradeoff

There are various system parameters that one can optimize
in any P2P streaming protocol. Here we show the example of
optimizing one commonly used parameter, e.g., segment (or

1 1 T
7KB i Ry
‘‘‘‘‘ 14KB P oo
08| —70kB 4 o 2
= = = 140KB L' s
3 s
06 ¢ vt
]
fa A
a N
0.4 g (N
4 :
: : - 7KB
0.2 B g e == 14KB
' 70KB
bt Ll = = = 140KB
2 3 0
10 10 10° 10° 10* 10°

Stream Rate (Kbps) Playback Delay (ms)
Fig. 14. Experimenting with segment sizes: transmission time vs control
overhead tradeoff.

so-called chunk) size. Segment size is the minimum exchange
unit in peer-to-peer streaming, an important parameter that
is employed in both push-based and pull-based systems. A
smaller segment size usually reduces per segment transmission
time, but at the expense of higher system scheduling overhead.
To quantify the best tradeoff, we run experiments that vary
the segment size, while keeping other settings fixed. Again
we compare two metrics, streaming rate and segment delay,
and present the results in Figure 14.

While all trials achieve a mean streaming rate around
1Mbps, the variance increases monotonically as the segment
size decreases. A smaller segment size introduces more con-
trol traffic and scheduling overhead, reducing the bandwidth
efficiency. The system is potentially more unstable, as shown
by those small rates under the setting of small segments. On
the flip side, the segment delay is higher for larger segment
size as intuition suggests. The median of the delay grows
almost linearly with the segment size (although not readily
seen from the CDF), which is due to the fact that transmission
delay becomes the dominant component as the segment size
grows. However, as the segment size decreases, other delay
components, e.g., scheduling delay, become more significant.
Surprisingly, having a large segment size such as 140KB
reduces worst delays, e.g., greater than 10s, suggesting that a
large segment size is more insensitive to bandwidth variations,
though large segment size also increases the average delay.
This is also an evidence that scheduling segment retransmis-
sion may involve a large system overhead.

VI. IMPROVING STREAMING RELIABILITY

Maintaining a reliable P2P streaming service is challenging,
especially under a high bandwidth demand. There are many

0.8

0.6

0.4

0.2

.- =11 Arrival Rate
=== Departure Rate
0 0
15 20 25 30 35 40 0 2 4 6 8

Peer Population # of Peers per Minute
Fig. 15. Introducing heavy node churns to examine system reliability: CDF
of system population and peer arrival/departure rates.

factors that can impair the system reliability, among which
peer churns and bandwidth fluctuation are the foremost rea-
sons.

A. Disruption of Playback Delay Due to Peer Churns

To understand how churns can affect the system stability
and the streaming performance, we let nodes to dynamically
leave and rejoin the system. We do not intend to model the
churning behavior of real users; instead, we inject a heavy
churn so that it presents a substantial challenge to sustain a
smooth streaming experience. For simplicity, we let each node
go online and offline repeatedly, and the mean sojourn time
for both active and inactive periods is 3 minutes. For example,
Figure 15 shows the CDF of arrival rates and departure rates
that we employ in a light-churn experiment, and the CDF of
system population in a trial of one hour long. On average,
there are 3 new arrivals and 3 departures in one minute. In a
system with 50 peers, this emulates a strong churning behavior,
where both the frequency and percentage of churns are much
higher than a normal scenario. Each peer departure incurs tree
reconstruction if the peer is an internal node, and each peer
arrival may involve several rounds of parent searching until
the performance stabilizes.

Figure 16 shows the segment-wise playback delay of a
peer in the system under heavy churns and light churns,
respectively. In both Figures 16(a) and 16(b), the left curve
shows the indicator function of the event that one of the peer’s
upstream parents has changed, and the right one shows the
playback delay of every segment in the same trial. Apparently,
the two events, i.e., the parent change and large delay, are
highly correlated. Although churns do not penalize the average
streaming rate severely, they can greatly impair the stream
smoothness by significantly delaying a few segments. In the
worst case, a segment may arrive tens of seconds after its
live playback point, e.g., when the segment is generated at the
source. The playback delay quickly goes back to normal as
the tree stabilizes and the required throughput is sustained. In
Figure 16, there are delay spikes when no topology change
occurs, which suggests that the bandwidth fluctuation caused
by other factors (e.g., cross traffic, packet loss) accounts for
the performance degradation.

B. Server Churns vs. Peer Churns

We employ the same set of nodes and run two experiments,
one with churning servers and the other with churning peers.
Results are shown in Figure 17. In both cases, the streaming
rate exhibits a large variance compared to no-churning experi-
ments. Expectedly peers get stuck when their upstream servers
or peers fail, but the protocol can quickly adapt and resume
transmission. The suboptimal but adaptive tree protocol is
quite robust, despite frequent parent changes. On the other
hand, server churns have a more significant impact on the
playback delay. This is due to the fact that proxy servers are
much fewer than peers, and peers suffer from data starvation
when all of their local proxies die. In addition, the FastMesh
protocol is not optimized for churns, and the performance
penalty under churns is a price we pay for more sophisticated
bandwidth aggregation and delay optimization.

C. What Kind of Trees are More Robust

Conventional wisdom suggests that large tree fanout (shal-
low tree) may be, on average, less robust than small tree fanout
(deep tree). Large fanout implies higher error correlation
among children. The insight we gain from our experiments is
indeed a deeper tree is more robust. With proxies and proper
error control, a peer’s failure does not necessarily trigger the
error recovery of all its descendants. The peer’s child detects
error more quickly than its grandchildren, since the loss of
the TCP connection is detected faster than application-layer
timeouts.

VII. COMPARING THEORY AND PRACTICE

There has been a number of papers developing sophisticated
algorithms to compute the highest achievable P2P streaming
rate, under ideal assumptions such as “no peer churn” and
“uplink bandwidth is the only bottleneck” (e.g., [5, 3, 17]).
We show that these upper bounds in theory is not much higher
than 1Mbps for the system we measured. This provides another
confirmation that achieving 1Mbps is indeed challenging but
still feasible, considering that this measurement study was
carried out in a highly stressed environment.

A. Two-Level Architecture

Tree 1 Tree 2

Fig. 18. The two-level hierarchical architecture proposed in [5] that constructs
full mesh among proxies in the top level and shallow trees in the bottom level.

Many theoretical works [5, 18] proposed a hierarchical ar-
chitecture in peer-assisted streaming that promotes a separation

Parent Change
o
2
layback Lag (Second)
= N W b
o O© o

=)

LIl |

Parent Change
o
(4]

530

@

< 20

S0 \ N
g LU]

5%00 6000 7000 8000 9000 10000 11000 o 5%00 6000 7000 8000 9000 10000 11000
Segment Sequence # Segment Sequence #

(a) heavy churns

&
10000 & oo 8000 9000
Segment Sequence #

7%00 8000 9000
Segment Sequence #

10000

(b) light churns

Fig. 16. Performance degradation under peer churns, and demonstration of system recovery from node failovers.

== Server Churns

‘ ‘ L Peer Churns

1000 1500 2000 2500 3000
Stream Rate (Kbps)

Il
0 500

1 :

e S m
-

0.5¢ &]
r
imimim et == Server Churns
et ‘ == Pger Churns
10' 10? 10° 10* 10°

Playback Delay (ms)

Fig. 17. Comparison of performance under churning peers and proxies: better reliability achieved under peer churns. This motivates an architectural separation

of peers and proxies to strike a balance between simplicity and optimality.

of the design space into groups of peers clustered by geo-
graphic proximity, as illustrated in Figure 18. Across clusters,
super peers, e.g., proxies or peers with high uplink capacities,
form a dense core and communicate with one another. Inside
each cluster, peers are organized into shallow streaming trees
rooted at super peers. The two-level architecture is scalable
and of low complexity, and ensures high bit-rate streaming is
sustainable over a wide geographic coverage.

Table III compares and contrasts theoretical suggestions and
the practical design in FastMesh-SIM. While FastMesh-SIM
and P2P streaming capacity work were independently carried
out, it turns out that FastMesh-SIM captures these architectural
insights from the theory work and confirms them with a global-
scale deployment and measurement. Later in this section, we
show the similarity of streaming tree constructions, as well
as proximity of theoretical performance bounds and what is
achieved in practice.

B. Similarity of Streaming Tree Construction Methods in The-
ory and Practice

We later show that FastMesh-SIM achieves a very large
fraction of the streaming rate upper-bound. To first provide
an intuition why it works well in practice, we compare the
resulting streaming trees constructed in FastMesh protocol
and one of our recent studies in P2P streaming capacity
under node degree bounds [5]. Following step-by-step the
algorithm in FastMesh and Bubble algorithm, i.e., the multi-
tree construction algorithm in [5], we calculate individual
substream rate, i.e., the bit-rate supported on each streaming
tree, under the same peer capacities measured from the dataset
shown in the Appendix of the full paper [20]. Results are
illustrated in Figure 19.

Bubble algorithm is executed under a degree bound of 4
(that approximates logN for scalability). Bubble algorithm
produces a total of 12 streaming trees, with corresponding
substream rates ranging from Skbps to 430kbps. In contrast,

Substream Rate
500 . . ! :

ElBubble Alg.
[OFastMesh |

—_
o
o

Streaming Rate (Kbps)

1 2 3 4 5 6 7 8 9 10 11 12
Substreams

Fig. 19. Comparison of streaming multi-tree construction in FastMesh and
Bubble algorithm [5] that achieves optimal streaming capacity under node
degree bounds.

FastMesh protocol explicitly tries to construct 5 streaming
trees and each substream delivers 200kbps bit-rate (which
is a tunable parameter in our protocol given the total target
streaming rate is 1Mbps). The similarity between the multi-tree
constructed by theory and FastMesh-SIM is obvious: they both
capture the set of major streaming trees that can support high
bit-rates. Although the FastMesh protocol uses low-complexity
heuristics, it is able to find “good” trees out of an exponential
number of possibilities. FashMesh does lose substream rates
in the long tail that contribute to streaming rate optimality,
but comes with lower implementation complexity and better
system reliability.

C. FastMesh-SIM achieves close-to-optimal streaming rate

We use simplified versions of the state-of-the-art algorithms
to derive an upper bound on streaming rate through back-of-
the-envelope calculation, presented in the Appendix of [20].
Such a simplification further loosens the ideal bounds, and the
resulting upper bounds are even more optimistic. The input
parameters to the upper bound calculation is the set of peer

TABLE III
COMPARISON OF THEORETICAL PROPOSAL AND FASTMESH-SIM

Theory

[FastMesh-SIM |

Inter-Cluster

Cluster heads form rate-optimal mesh

Proxies form mesh with rate-delay tradeoff

Intra-Cluster

MutualCast [19]: multiple one or two-hop trees

Shallow trees with IP-multicast support

Node Deg. Bound Yes (# of neighbors)

Yes (# of substreams)

Rate Optimality

Inter-cluster: 1/2-approximation; Intra-cluster: optimal

Achieve close-to-optimal performance

Algorithm Centralized

Distributed

TABLE IV
THEORY-PRACTICE GAP IN P2P STREAMING CAPACITY: A SURPRISINGLY
LARGE FRACTION OF THEORY UPPER-BOUND IS ATTAINABLE BY
FASTMESH-SIM, CONFIRMING THE ACCURACY OF THEORETICAL
MODELS.

[Rate (kbps) | Theory upper bound [Practice average |

Unrestricted 1123 929
Degree bounded 1062 [3]
With helper 1201 [5] 1021

uplink capacities measured in the trace, and the upper bound is
computed using the 95-percentile of those across all the peers.
Results are given in Table IV. The resulting upper bound on
streaming capacity is 1.201Mbps while in practice we achieved
1.021Mbps on average. This is a surprisingly large fraction,
over 85%, of the upper bound generated by following many
idealistic assumptions in theory.

VIII. RELATED WORK

The widespread deployment of P2P streaming systems
has motivated many types of work on the understanding of
challenges of streaming video content over the public Internet.

Architecture of peer-assisted live streaming:. Similar to
our work, some systems [21, 22] implement a hybrid approach
by leveraging the best of server infrastructures (e.g., CDNs)
and peers. The benefits of utilizing peer resources to distribute
contents are studied in [23]. Another deployment [2] of hybrid
P2P-CDN system also confirms such a design choice. Other
work [24] also studied the feasibility of building a peer-
assisted high-quality VoD system. Most of these works are
either trace-based simulations leveraging data collected from
CDNs and BitTorrent, or deployed in a smaller region under
the conventional low-quality streaming, and thus, lack the
validation as a global 1Mbps streaming by an operational
system.

Measurements of commercial P2P streaming systems:.
A number of measurement works studied commercial P2P
streaming applications [7, 8, 11, 25, 26], characterizing the
performance in a large user population, and revealing the
challenges faced by today’s operational systems. These works
passively sniff, or actively crawl the online users to collect
and infer various system performance metrics. With simi-
lar goals, [12, 27, 28, 29], leverage data contributed from
service providers, inspect current system design, reveal the
viewing behaviors of real users, and characterize large-scale
topological dynamics. This approach, complementary to this
paper’s, is highly valuable in providing a better understanding

of how popular applications, and real users, behave in large
commercial deployments.

A smaller scale and less mature version of our implemen-
tation involving only Hong Kong and Princeton peers was
tested and reported in a short paper [30]. We experiment with
lower streaming rates of only 300kbps, as is typical in most
of today’s commercial systems. These earlier experiments
lacked most of the key features examined, metrics measured,
and lessons learned in the experiments that achieved the
substantially higher streaming rate in the current paper.

IX. CONCLUSION

In the tradeoff space between high visibility/control, and a
high degree of realism, this paper presents a complementary
angle to existing approaches. We design controlled experi-
ments with target research questions in mind, and analyze
fine-grain measurement data collected from the highly con-
figurable FastMesh-SIM platform. With a global footprint
over 8 counties, our experiments demonstrate that 1Mbps
streaming over the global Internet is indeed an attainable goal,
and, as indicated by the back-of-the-envelope calculation of
theoretical upper bound benchmarks, it is not an easy one
to achieve. The collective use of design choices, ranging
from architectural decisions, to parameter selection, provides
quantitative understanding on how high bit-rate streaming can
be achieved, and useful lessons to building a global 1Mbps
streaming service.

X. ACKNOWLEDGMENTS

We are grateful for colleagues around the world who helped
host and maintain the nodes of our experiments in their coun-
tries, including Lachlan Andrew in Australia, Kin Leung in
UK, Steven Low in USA, Fernando Paganini in Uruguay, and
Yung Yi in Korea. This work was in part supported by AFOSR
MURI grant FA9550-09-1-0643. This work was supported, in
part, by the General Research Fund from the Research Grant
Council of the Hong Kong Special Administrative Region,
China (611209).

REFERENCES

[1] “PPLive.” http://www.pplive.com/.

[2] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and
B. Li, “Design and deployment of a hybrid CDN-P2P system for
live video streaming: experiences with livesky,” in Proc. ACM
Multimedia, 2009.

[3] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang,
“Performance bounds for peer-assisted live streaming,” in Proc.
ACM SIGMETRICS, 2008.

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(171
(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

X. Jin, K.-L. Cheng, and S.-H. Chan, “Scalable island multicast
for peer-to-peer streaming,” Journal of Advances in Multimedia
special issue on Multimedia Networking, 2007.

S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, and P. A. Chou,
“P2P streaming capacity under node degree bound,” in Proc.
International Conference on Distributed Computing Systems,
2010.

S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A. Chou,
“Peer-to-Peer streaming capacity,” in IEEE Trans. Information
Theory, 2011.

S. Ali, A. Mathur, and H. Zhang, “Measurement of commercial
peer-to-peer live video streaming,” in Proc. Workshop in Recent
Advances in Peer-to-Peer Streaming (WRAIPS), 2006.

X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A
Measurement Study of a Large-Scale P2P IPTV System,” IEEE
Transactions on Multimedia, 2007.

X. Hei, Y. Liu, and K. W. Ross, “Inferring network-wide quality
in P2P live streaming systems,” IEEE J. on Selected Areas in
Communications, vol. 25, no. 9, pp. 1640-1654, 2007.

C. Wu, B. Li, and S. Zhao, “Characterizing peer-to-peer stream-
ing flows,” IEEE J. on Selected Areas in Communications, 2007.
E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M. Meo,
“P2P-TV systems under adverse network conditions: a measure-
ment study,” in Proc. IEEE INFOCOM, 2009.

C. Wu, B. Li, and S. Zhao, “Exploring large-scale peer-to-peer
live streaming topologies,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 4, no. 3, pp. 1-23, 2008.

X. Jin, H.-S. Tang, S.-H. Chan, and K.-L. Cheng, “Deployment
issues in scalable island multicast for peer-to-peer streaming,”
IEEE Multimedia Magazine, vol. 16, pp. 72-80, January-March
20009.

D.-N. Ren, Y.-T. H. Li, and S.-H. Chan, “FastMesh: On reducing
mesh delay for peer-to-peer live streaming,” in Proc. IEEE
INFOCOM, 2008.

S. Zhang, Z. Shao, and M. Chen, “Optimal distributed P2P
streaming under node degree bounds,” in Proc. International
Conference on Network Protocols, 2010.

W.-P. Yiu, K.-F. Wong, S.-H. Chan, W.-C. Wong, Q. Zhang,
W.-W. Zhu, and Y.-Q. Zhang, “Lateral error recovery for media
streaming in application-level multicast,” in IEEE Transactions
on Multimedia special issue on Distributed Media Technologies
and Applications, 2006.

Y. Liu, “On the minimum delay peer-to-peer video streaming:
How realtime can it be?,” in ACM Multimedia, 2007.

Y. Liu, “Delay bounds of chunk-based peer-to-peer video
streaming,” IEEE/ACM Transactions on Networking, 2009.

J. Li, P. A. Chou, and C. Zhang, “Mutualcast: An efficient
mechanism for one-to-many content distribution,,” in ACM
SIGCOMM ASIA Workshop, 2005.

J. W. Jiang, S.-H. G. Chan, M. Chiang, J. Rexford, D. T. Ren,
and B. Wei, “Global 1mbps peer-assisted streaming: Fine-grain
measurement of a configurable platform.” Princeton University
Technical Report.

C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding
hybrid CDN-P2P: why limelight needs its own red swoosh,” in
NOSSDAV, 2008.

D. Xu, S. S. Kulkarni, C. Rosenberg, and H. K. Chai, “A
CDN-P2P hybrid architecture for cost-effective streaming media
distribution,” Computer Networks, vol. 44, pp. 353-382, 2004.
T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should In-
ternet service providers fear peer-assisted content distribution?,”
in Proc. Internet Measurement Conference, 2005.

S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena,
and P. R. Rodriguez, “Is high-quality VOD feasible using P2P
swarming?,” in Proc. World Wide Web, pp. 903-912, 2007.

T. Silverston and O. Fourmaux, “P2P IPTV measurement: A
comparison study,” CoRR, 2006.

F. Wang, J. Liu, and Y. Xiong, “Stable peers: Existence, impor-
tance, and application in peer-to-peer live video streaming,” in

Proc. IEEE INFOCOM, 2008.

M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain,
“Watching television over an IP network,” in Proc. Internet
Measurement Conference, 2008.

Y. Huang, T. Z. FU, D.-M. Chiu, J. C. Lui, and C. Huang,
“Challenges, design and analysis of a large-scale P2P-VOD
system,” in Proc. ACM SIGCOMM, 2008.

S. Xie, B. Li, G. Keung, and X. Zhang;, “Coolstreaming: De-
sign, theory, and practice,” in IEEE Transactions on Multimedia,
2007.

J. W. Jiang, S.-H. Chan, M. Chiang, J. Rexford, K.-F. S. Wong,
and C.-H. P. Yuen, “Proxy-P2P streaming under the microscope:
Fine-grain measurement of a configurable platform,” in Inter-
national Conference on Computer Communication Networks
(ICCCN), 2010.

(27]

(28]

[29]

(30]

Joe Wenjie Jiang Dr. Wenjie (Joe) Jiang received
his PhD degree in Computer Science from Princeton
University in 2012. He was coadvised by Prof.
Jennifer Rexford and Prof. Mung Chiang. His thesis
title was Wide-Area Traffic Management for Cloud
Services. His research interests include content dis-
tribution and cloud services, data center traffic man-
agement, Internet routing and video streaming. He
served as Program Committee for ACM S3 2011
(collocated with MOBICOM 2011), and Co-Chair
of CCNC 2010 Student Workshop. His research re-
ceived 2005 Performance Best Student Paper Award, and 2005 Best Research
Output by Research Postgraduate Students from Chinese University of Hong
Kong. He received his MPhil degree from the Chinese University of Hong
Kong in 2005. He received his BSc degree from University of Science and
Technology of China in 2003. His personal hobbies include films, travel and
reading.

S.-H. Chan Dr. S.-H. Gary Chan (S’89-M’98-
SM’03) received MSE and PhD degrees in Electri-
cal Engineering from Stanford University (Stanford,
CA) in 1994 and 1999, respectively, with a minor in
business administration. He obtained his B.S.E. de-
gree (highest honor) in Electrical Engineering from
Princeton University (Princeton, NJ) in 1993, with
certificates in Applied and Computational Mathe-
matics, Engineering Physics, and Engineering and
Management Systems. He is currently an Associate
Professor of the Department of Computer Science
and Engineering, Director of Sino Software Research Institute, and Co-
director of Risk Management and Business Intelligence program, The Hong
Kong University of Science and Technology (HKUST), Hong Kong. His
research interest includes multimedia networking, peer-to-peer streaming and
technologies, and wireless communication networks.

Dr. Chan has been an Associate Editor of IEEE Transactions on Multimedia
(2006-11), and is a Vice-Chair of Peer-to-Peer Networking and Communi-
cations Technical Sub-Committee of IEEE Comsoc Emerging Technologies
Committee. He has been Guest Editors of IEEE Transactions on Multimedia
(2011), IEEE Signal Processing Magazine (2011), IEEE Communication
Magazine (2007), and Springer Multimedia Tools and Applications (2007).
He was the TPC chair of IEEE Consumer Communications and Networking
Conference (CCNC) 2010, Multimedia symposium in IEEE Globecom (2007
and 2006) and IEEE ICC (2007 and 2005), and Workshop on Advances in
Peer-to-Peer Multimedia Streaming in ACM Multimedia Conference (2005).

Dr. Chan is the recipient of Google Mobile 2014 award in 2010 and 2011,
and is a member of honor societies Tau Beta Pi, Sigma Xi and Phi Beta
Kappa. He has been a Visiting Professor/Adjunct Researcher in Microsoft
Research Asia (2000-11), Research Collaborator at Princeton University (09),
Visiting Associate Professor at Stanford University (2008 - 09), Director
of Computer Engineering Program at the HKUST (2006 - 2008), Visiting
Assistant Professor in Networking at University of California at Davis (1998
- 1999), and Research Intern at the NEC Research Institute, Princeton, NJ
(1992 - 1993). He was a William and Leila Fellow at Stanford University
(1993-94). At Princeton, he was the 1993 recipient of the Charles Ira Young
Memorial Tablet and Medal and the POEM Newport Award of Excellence.

Mung Chiang Mung Chiang (S’00, M’03, SM’08,
F’12) is a Professor of Electrical Engineering at
Princeton University, and an affiliated faculty in Ap-
plied and Computational Mathematics, and in Com-
puter Science. He received his B.S. (Hons.), M.S.,
and Ph.D. degrees from Stanford University in 1999,
2000, and 2003, respectively, and was an Assistant
Professor 2003-2008 and an Associate Professor
2008-2011 at Princeton University. His research on
networking received the 2012 IEEE Kiyo Tomiyasu
Award, a 2008 U.S. Presidential Early Career Award
for Scientists and Engineers, several young investigator awards, and a few
paper awards including the 2012 IEEE INFOCOM Best Paper Award. His
inventions resulted in a few technology transfers to commercial adoption,
and he received a 2007 Technology Review TR35 Award and founded the
Princeton EDGE Lab in 2009. He served as an IEEE Communications Society
Distinguished Lecturer in 2012-2013, and wrote an undergraduate textbook:
“Networked Life: 20 Questions and Answers.”

Jennifer Rexford Jennifer Rexford is a Professor in
the Computer Science department at Princeton Uni-
versity. From 1996-2004, she was a member of the
Network Management and Performance department
at AT&T Labs—Research. Jennifer is co-author of
the book “Web Protocols and Practice” (Addison-
Wesley, May 2001). She served as the chair of
ACM SIGCOMM from 2003 to 2007. Jennifer
received her BSE degree in electrical engineering
from Princeton University in 1991, and her MSE
and PhD degrees in computer science and electrical
engineering from the University of Michigan in 1993 and 1996, respectively.
She was the 2004 winner of ACM’s Grace Murray Hopper Award for
outstanding young computer professional.

D. Tony Ren REN, Dongni is currently a Ph.D.
candidate at the Department of Computer Science
and Engineering in the Hong Kong University of
Science and Technology (HKUST), supervised by
Prof. Gary Chan. He also received his BEng in
Computer Science (Information Engineering) from
HKSUT in 2007, and his MPhil in Computer Science
from HKUST in 2009. His research interest includes
live streaming technologies, multimedia networking,
overlay and peer-to-peer networks.

Bin Wei Dr. BIN WEI is a research staff member at
AT&T Labs - Research. His contributions to mul-
timedia communications focus on the middleware
which provides multimedia services for various user
devices ranging from display walls to handheld de-
vices by building prototype systems. He also works
on improving communication performance and user
experience with mobile devices. He has many publi-
cations in major international technical conferences
and journals. He holds a Ph.D. in Computer Science
from Princeton University.

