Proxy-P2P Streaming Under the Microscope:
Fine-Grain Measurement of a Configurable Platform

Wenijie Jiand, S.-H. Gary Chan Mung Chiang, Jennifer Rexfor K.-F. Simon Wong, C.-H. Philip Yueri
TDepartment of Computer Scienc®epartment of Electrical Engineering, Princeton Univgrsi
*Department of Computer Science and Engineering, Hong Komigeisity of Science and Technology
{wenijiej, jrex, chiangm@princeton.edu{gchan, cssmw, chyué@cse.ust.hk

Abstract—Although peer-to-peer (P2P) streaming can effi- origins of delay and jitter, and performance disruptionsin
ciently deliver live video content to large user populatios, realistic wide-area deployment.
existing applications often suffer from limited video qualty, Acquiring a deeper understanding of live P2P streaming

periodic hiccups, and high delays. To overcome some of the t is chall - f | First th
limitations of today’s unstructured (mesh-based) designsve have systems IS challenging, Tor several reasons. Firsi, heze a

developed and deployed FastMesh-SIM, a novel P2P streamingMany performance metrics of interest, including delayerjt
system that leverages proxies, push-mechanism and IP mutist throughput, and loss. Some of these, such as delay and jitter

to achieve lower playback delay and better stream continuit are less understood than throughput. We need to understand
Having control over a real P2P streaming system also gives us both the individual components of these metriesg(the

a rare opportunity to conduct controlled experiments wherewe breakd f end-t d delav into t ission del
vary major design parameters €.g., push vs. pull delivery, IP reakdown ot end-to-end delay Into transmission deflayppro

multicast support, streaming rate, and video segment siza)nder ~@gation delay, queueing delay, and protocol incurred delay
a range of operating conditions €.g., dynamics of peer churn, and the underlying system bottlenecks that limit the achiev

and different network configurations), while collecting deailed, able performance. Second, many architectural choices have
fine-granular measurements €.g., the various components of end- a significant impact on system performance and scalability,

to-end delay). Analysis of the measurement data, consistinof . ludi h Il deli the si f vid ¢
seven trials of streaming several live TV channels for moreftan 'NCIUCING push vs. pull aelivery, the size of video segments

100 hours to 140 peers, sheds light on how design decisionghe use of proxies to assist in streaming, and the use of IP
and the operating environment affect important performance multicast. Third, performance also depends on the conmdtio
metrics. Our experiments show that a push-based, proxy-P2P the system experiences, such as the dynamics of peer churn
system can achieve low delay and good video quality, though 5,4 the pehavior of the underlying communication network.
network bottlenecks on long-haul connections can sometirse o L th is t . tified understandi fh
cause disruptions in a global deployment. Theory-practicegaps u_r goa,_ en, '§ _O gain a qu_an imead unders an Ing ot how
observed from the data are also discussed. Large-scale, g Major design decisions and environmental conditions &ffec
experiments are now being carried out. important performance metrics in the system.

Previous measurement studies have consisted mainly of

“black box” characterizations of commercial P2P streaming
Unstructured (or mesh-based) peer-to-peer (P2P) syste@swices 131, [4], [7], [8]. These kinds of studies are imatle

where peers asynchronously swap segments of the video, f&providing a better understanding of how popular appli-
substantially reduce server bandwidth and system cost [d}tions, and real users, behave in large commercial deploy-
though often at the cost of high latency and periodic hignents. However, black-box monitoring of a proprietary eyst
cups [2]-{4]. An attractive alternative for efficient, loatency ngerstandably does not enable experiments that dissect th
video streaming is to explicitly organize the peers into &ferformance metrics and quantify how they depend on specific
application-level multicast tree, and use proxies andvego gesign decisions or environmental conditions. Similaj®-
protocols to enhance streaming quality. Still, many im@eit [12] inspect data contributed from service providers, jfetse
questions remain about how to most effectively design akgstem design and implementation may not even be allowed to

operate a tree-based P2P streaming system. In this papgryplicly revealed, let alone be freely changed by rebessc
we perform an in-depth measurement study of a proxymile serving a customer population.

P2P network, FastMesh-SIM [5], [6], which broadcasts live other work have relied on high-level models that can be
TV channels and is deployed in Hong Kong and Princetogya|yated via analysis and simulation [13]-[19]. Whileaclg

Through controlled experiments on our heavily mstrumdntermportam for advancing our understanding, these kinds of
system, we provide a unique viewpoint into issues such as thgdels or tools typically do not capture realistic network

This work was supported, in part, by the General Researchd From cross traffic or lower-level system Issues In each pe&l’a(

the Research Grant Council of the Hong Kong Special Admatise |/O overheads, interactions with TCP, and ISP rate limit).
Region, China (611209), and the Hong Kong Innovation Tefdgyo Fund Complementary to the above approaches, this paper presents
(ITS/013/08). We would also like to thank the team of engiseand . h deoff b isibility/coh
developers, in particular Mr. Joe Tsoi and Mr. Tony Ren atkkdJST for a new point on the tradeofi-curve between visibility/contr

their contributions to the work. and realism (as illustrated in Figure 1): controlled exper-

|. INTRODUCTION

visibilty fcontrol backbone among an upper tier of highly-stable proxies, &nd (

theory + evaluation SIM (Scalable Island Multicast) by which a lower tier of end-
g | simuiation user peers self-organize into one or multiple push-basesr
leveraging local IP multicast support wherever possiblilgv
FastMesh and SIM have been separately reported in prior
publications [5], [6], this paper reports the first deployme

of an integrated service and an in-depth measurement study.

Fastifesh-SIM
.— Our system consists of the following building blocks:

Push-based stream deliveryFastMesh-SIM is inherently a
push-based system that constructs one or multiple apiplicat
level multicast trees. The video is divided into multiplebsu
streams, each of which is delivered by one tree. The tree
structure is explicitly maintained at every peer. As segisien
arrive, parent nodes immediately start sending the dataeio t

iments on a configurable P2P streaming system that Hadldren in push-based “hot potato” fashion.

been designed, implemented, and deployed t,)y the same tef_"ﬂ\]ﬂv-delay backbone meshThe video content is divided into
that camed ou_t the measurement study. This enables us_rﬁﬁltiple substreams (or bundles) that are each sent thrihegh
collect fine-grained measurements under a range of des|gi ies pefore reaching the lower tier of peers. The proxies
settings, while running controlled experiments underiséal are stable and bandwidth-rich machines, such as dedicated

wide-area conditions over the public Internet . We COII‘J}Cte?nfrastructure nodes contributed by the content providiae
and analyzed more than 100 hours of streaming logs fr xies run the fully distributed protocol FastMesh, which

seven experimental trials, involving 140 peers at Hong Ko ilds multiple low-delay spanning trees. The protocol is

University of Science and Technology (HKUST), China, angyantive such that the delay is constantly optimized given a
Princeton University in NJ, USA. Analysis of the data a"OWEhange of server availability.

us to identify performance bottlenecks, pros and cons of

architectural choices, good settings for tunable parammeied Scalable local streaming treeLocal peers run the lightweight
suitable models and assumptions for future analytical woB{M protocol to construct low-delay trees with minimal over

on P2P streaming. In particular, our evaluation explores thead. As a new peer joins the system, it contacts a Rendezvous
following questions: Point (RP) that returns its local proxy, which in turn gives a

« What are the dominant components of delay and whindom list of existing peers to bootstrap the process. gtro
aspects of the system design are primarily responsible‘SUCCGSSiVe local probing of these nodes and their neighbors

« What causes “hiccups” in the video playback and hoifi€ peer selects an optimal node as its parent, taking both
can we prevent these disruptions due to delay jitter? RTT and bandwidth into consideration. The tree formation is

« What are the tradeoffs in push vs. pull based delivery, afiéstributed and adapt, as the underlying network condstion
can we benefit from the best aspects of each approach?d node availability change over time.

» How can network-layer support for IP multicast IMPIOVEp_multicast integration. A unique feature of SIM is its

system efficiency and Y'.deo quality? integration of IP-multicast with application-layer mghist to
- How d_q network conditions and peer churn affect thfla'nprove bandwidth efficiency. Although IP multicast is not
scalability and performance of the system? lobally available on today’s Internet, many local area- net
« How does a local error, such as a lost packet, pmpaga%rks are multicast-capable. SIM capitalizes on local supp
o affect the rest of the P2P system? for IP multicast by embedding these “multicast islandsbint
The rest of the paper is organized as follows. Section ll9Jivghe overlay streaming tree. Peers within a multicast island
an overview of the FashMesh-SIM system. Section Ill preseffeceive data using IP multicast, and communicate with the
the measurement methodology and the design factors we vg{isiders through border nodes via the overlay connections

in the experiments. Section IV presents the data analysis agy\ allows an arbitrary fraction of IP-multicast capableles

discusses the theory-practice gaps illuminated by thidystuof handwidth usage in a local network.
and Section VI concludes.

realism

Fig. 1. lllustration of the tradeoffs between programmgb#nd visibility on
the one hand and realism on the other hand attained by diffegproaches.

Reactive error recovery. FastMesh is able to adapt to mild
Il. DESIGN AND DEPLOYMENT OF FASTMESH-SIM server churns by re-optimizing the mesh construction. SIM
In this section, we briefly review our design choices irmplements a more sophisticated error-recovery mechatasm
FastMesh-SIM that improve the end-to-end delay, streamspond to temporary or unexpected packet or stream losses.
quality, and system scalability. FastMesh-SIM construcithrough backup parents and distributed tree re-formaBtivi,
application-level multicast trees. The system consistsvof minimizes the latency incurred by the error recovery, even
main protocols: (i) FastMesh that constructs a streamingder frequent peer churns.

TABLE |
I1l. M EASUREMENTMETRICS AND METHODOLOGY MULTI-FACTOREDEXPERIMENT TRIALS
Conducting experiments with FastMesh-SIM system ep-

S . Trial | Parameter Configuration |
ables an unusual degree of both visibility (through finergrd I
9 y(9 o 1 Baseline: pushed stream delivery, IP-multicast disahiedpeer

instrumentation of_the software) and control (by progranmgni chums, 150Kbps stream, segment size of 25 packets (1.4KE)
many tunable design parameters).

Pulled stream delivery
Synthesized peer churns
IP-multicast capable peers

2
I) . . 3
A. Visibility: Fine-Grained Instrumentation 4
5 Varying segment size 1- 700 IP MTU
6
IC7

Traditional measurement studies in P2P live streaminguofte
resort to a large-scale user pool that generates real tr
in Internet-like environment. However, due to a large user
population and peer churns, they often rely on random or
statistical sampling, which is partial and coarse granular Streaming rate:We tune the video rate such that the system

As an alternative approach, we carefully choose a relgtivadperates under different workloads. This allows us to explo
smaller set of peers but distributed diversely over the ipubthe fundamental limit of streaming capacity over the public
Internet. We perform an in-depth segment examination of theternet and the system overhead under higher workload.

system and analyze the performance metrics for the enggq ohmspeer churns in our experiment are synthesized to

user population. In our measurement, each peer generatgg|a,; 5 poisson arrival and exponential sojourn time.
record for every segment it receives, which includes a list

of metrics that reflect a peer’s current status. All reconds aR€Covery:Proxy servers also serve as data backup plane to
sent to a log server periodically. With these informatiore, wf€€d peers during transient data loss. The bandwidth reserv
can reconstruct the lifespan of every segment, allowingous {on for error recovery is a configurable parameter.

IP-multicast capable and churning peers
Varying stream rate 50 - 400Kbps

efficiently characterize and diagnose the system. Segment sizeSegment size is the smallest replication unit
Topology a peer's parent/children list, which helps us tracdSed in the system. It determines how quickly a peer can
the path of data delivery and error propagation. disseminate the data it holds. Smaller segment size implies

) . lower transmission delay, but greater protocol overhead.
Bandwidth a peer’s upload/download data bytes via different

sourcesge.g, overlay tree, IP-multicast or recovery server. Geographical diversityWe tune locality of participating peers,

o o _ from same NATted peers to different firewalls, and from the
Delay. every segment is time-stamped as it is transmitted oVl .« | AN to Internet-wide locations

the P2P network. We measure various delay informagog, _
the source-to-peer latency, delay incurred on each hoprands: Experiment Setup
each component. In preparation for our experimental trials, we deployed 140

Buffer. a peers’ playback buffer state is recorded, including tR€€rs (desktops and laptops) in Hong Kong and Princeton.
latest, oldest and currently played segment, and instaotan Peers from each network are connected to the Internet via

segment loss rate. campus LAN access, which are IP-multicast capable. Each
_ _ network deploys 5 proxy servers that form a FashMesh. Local
B. Control: Configurable Streaming Platform peers that run SIM protocol join the streaming session as our

Conventional measurement studies usually leverage dakell script instructs.
sets collected from or contributed by commercial streamingWith multiple tunable control knobs, we carefully plan a set
applications. Visibility is limited since most softwaresea of trials that quantify the impact of these factors on vasiou
proprietary and many specific implementation choices amgpects of system performance. We selectively tune on dnd of
protocol details are not exposed. They also have to maintaisubset of them and design 7 trials, as shown in Table I. Trial
commercial operability and cannot experiment over therentil is designed as the baseline approach. Trial 2-7 follow the
design space with their customers. same configuration as Trial 1, but varying one or two factors
In contrast, in this measurement study, we intentionalfy turespectively. These trials are collected during July 12049,
on/off some features and tune system parameters to perfor@na each lasts around 10 hours.
set of controlled experiments. The following control knobs
allow us to easily configure the system to operate under
different settings, which reflects different design traftkeo

IV. DATA ANALYSIS

In this section, we analyze the traces we collected from the

. i) 7 experiment trials.
Architecture:Our system can be configured to operate in push

or pull mode. In pull mode, a peer sends requests to its parént Optimizing Delay Performance
for the desired segments. In push mode, a parent immediatelyWe first show the latencies in both push and pull based data
forwards the data as soon as it is received. delivery, and then investigate delay components and theesou

IP-multicast: The IP-multicast knob can be configured to p@f delay variation.
on or off. It helps analyze the delay efficiency and bandwidtand-to-end latency: push vs pull.Figure 2 shows the trend
efficiency achieved by network layer support. of increasing average end-to-end latency as the tree depth

TABLE Il

DELAY COMPONENT ANALYSIS OF A TWO-HOP PEER the protocol delay turns out to be the bottleneck. The buffer
map probing period was set 1 second in our implementation,
[Components of Delay (seq) Push (mean) | Pull(mean) | pjus the two-way handshake delay, resulting in a total maito
local transmission 0.1942 | 11.2% | 0.0454 | 0.90% delay of 3.8 seconds for two hops. As the number of hops
proxy transmission 0.9567 | 55.2% | 0.9282 | 18.6% . the fact f t | del il further donté
propagation 012911 8.60% T 01738 | 350% increases, the factor of protocol delay will further donéa
protocol 0.4332 [25.0% | 3.8268 | 77.0% the total end-to-end delay.
[total [1.7332] 100% | 4.9742] 100%]

Diagnosing delay jitter. Delay jitter is an important metric
that affects the continuity of the streaming video. It anafes

. from the delay fluctuations of different segments. Coner#l
increases. The “push” curve is generated from Trial 1, a (gproaches remove delay jitter by creating large playback

pull curve from Trial .2’ both of which disable _IP-r_nuItlcas buffer, which leads to higher latency. We next look into the
Conventional wisdom is that more hops results in highengela : . .
delay hiccups in our system, and analyzes its causes.

which is clearly shown in the “pull” curve as the delay is
proportional to the tree depth. On the other hand, the “push”

curve is flatter, which is due to the fact that, when data is Push (Trial 1)
pushed from the upstream, the one hop transmission delay ‘ e
from Hong Kong to Princeton is the main component.

=
33
T

-

——depth=4
- - depth=3f
.| = = -depth=2
s S N - R - depth=1
1955 1960 1965 1970 1975 1980
segment seq number

Average end-to-end delay
T T T

o
15

15

—<—push (Trial 1)
—S—pull (Trial 2)

end-to-end latency (sec)

.
©f
@
=}

Pull (Trial 2)
.

[N
o
T

\

bX
end-to-end latency (sec)

% 1 2 3 4 5 6 7 8 s 10 N RN Y S S Tﬁep‘hf“’
tree depth ot M \\" h . -" -- -dig:ﬂ;g
: - depth=1
1%00 1[;05 10‘10 1(;15 1[;20 10‘25 1030
Fig. 2. Average end-to-end delay: push vs pull segment seq number
Data also quantify the intuition that push can significantly Fig. 3. Segment-wise end-to-end path delay.

reduce delay. In pull mode, a child requests the segment

bitmap information from its parent before transmissionibeg Figure 3 shows the evolution of segment-wise delays for
The parent-child handshake delay in pull mode can quickbeers on the same end-to-end path, for both push and pull
accumulate as the number of hops increases. In particudar, without using IP-multicast. In both cases, a delay hiccup
set the buffer map update interval to be 1 second, whichascurs roughly once every 5 seconds. It is clear to see that
considered low in practice. As the peer population grows, tlsome hops do not contribute to delay variareg, local peer
protocol overhead incurred by pull may become the bottleneconnections. Most delay hiccups originate from the first,hop

Differentiating delay components.After showing the delay i.e., the source-proxy connections. Though FastMesh is a push-

performance, a question that naturally arises is what co}?l‘a-lsecj protocol, _proxies still pull data from the so_urce,ohxhi
ponents constitute the end-to-end delay. The source&o-p{eeSUItS in such jitters. The pull-requ_est interval is sebe
delay is accumulated hop by hop, where each hop includ]e§econd' and each segment contains _around 1.8 seconds of
the segment transmission delay, propagation delay, mbtog'deo' Rrot_ocol delay overhgad is minimized when the re!queg
delay €.g, handshaking and peer-request in pull), and delz%yne CO|nC|desdthe gh(?nl;argtmn of every segrj]r_nents,l V,Vh'Ch r:s
due to other system overhead. To differentiate the totaltend verﬁ Ig ser?_on S ﬁ’v ich is 5 sehgiments. T5 IS explans :N_y
end delay into these components, we choose a peer of de elay niccup happens rougnly every segments. [t is
2, which eases our analysis since the delay is decoupled i R{nmonly believed that delay jitter originates from fludiog

two hops where the first one traverses the Internet from Ho gndmdtfha blut fc_he protocol overhead is another important
Kong to Princeton, and the second one is on the campus. source of delay jitter.

Table Il summarizes the percentage of each component
of delay. When using push, the main delay component s
the proxy transmission delay since the throughput over theOne of the major benefits of IP-multicast is to improve the
public Internet is regulated by TCP. Long RTT results in lobandwidth efficiency in a P2P streaming system, which can be
throughput, leading to a bottleneck. This also explains wiguantified by the ratio between the total uplink usage aral tot
the push curve in Figure 2 is flat. When using pull, the proxgownlink usage. For pure P2P streaming, this metric should
transmission delay component becomes less significant, dedclose to one, since every downloaded byte is uploaded from

Improving Bandwidth Efficiency by IP-Multicast

uplink vs downlink usage

Smaller size reduces per segment transmission time at the
expense of system scheduling overhead. To quantify the best
tradeoff, we run experiments that vary the segment sizedewhi
r : ‘ 1 keeping other parameter settings fixed. Figure 5 shows the
U-SQ 1 delays for the same peer under different segment sizes. A
general observation is that delay grows quasi-linearh wie

2 —w/o IP-multicast (Trial 1),
15 —w/ IP-multicast (Trial 4)

ratio

i i i i i i i i
200 500 600 700 800 900 1000 1100 1200 1300

time (minutes) segment size. This is due to the fact that the proxy trangomiss
delay is the bottleneck, which is proportional to segmerng.si
Fig. 4. Streaming with IP-multicast reduces uplink cost. So one possible strategy is use as small a segment size as

possible. However, as the segment size decreases, otlagr del
components, such as protocol-induced delay and processing
another peer. When the metric is above one, it indicates SOH@ay, become more Signiﬁcant_ This exp|ains Why the curve
data is retransmitted due to packet loss. is not strictly linear, and the slope is less steep for smalle
IP-multicast improves the bandwidth efficiency by savingegment sizes. We did not explore the lower-bound of the
the uplink resourcei.e., the multicast source only needs tasegment size, though one that is smaller than the MTal,

send one copy of the data to the multicast tree, rather thamKB, is obviously inefficient due to packet header ovethea
multiple unicasts between a parent and its children. Howeve

the benefit is limited by two factors. First, some networkgeha P- Mitigating Peer Churns by Error Recovery
not enabled IP multicast. In our experiments, most peers inTo understand how peer churns can affect the system
Princeton campus network do not have IP-multicast suppastability and the streaming performance, we introduce & hig
These peers receive data from the overlay tree insteadn8gcaate of peer churns in Trial 3. We focus on the time series of
IP multicast relies on UDP which cannot recover packeine particular peer’s performance, which is represemtaiiv
losses automatically. Hence, the error recovery mechaigsnthe whole user population. Figure 6(a) shows the topoldgica
triggered to re-fetch the lost data via the overlay tree @pgin. changes reflected on this peer’s tree depth. The user ipitial
Figure 4 plots the uplink vs downlink ratio of normaljoins the system with a depth of 5, and later decreases to
peers, when IP-multicast is disabled and enabied, Trial 4 and 2, respectively, due to departures of its parents. Such
1 and Trial 4 respectively. This metric varies over time dudynamics have severe adverse impact on the peer’s delay,
to new peer arrivals and packet losses. In Trial 1, the metridich is illustrated in Figure 6(b). When the peer loses its
is slightly less than 1 due to the fact that the informatioparent, it suffers from temporary stream loss and needsdo fin
of newly arriving peers is not up to date. It converges ta new parent, which might incur a very high delay. Eventually
one, as predicted by theory, when the system populatithre peer’s depth becomes 2, meaning that it cannot find aestabl
stabilizes. In Trial 4, this ratio decreases, as more ancriidr parent and connects to a proxy server. Observe that the delay
multicast capable peers join the system. It eventuallyeagls continues to grow even if its topology stabilizes, whichkeo
a ratio of 30%,i.e., saving 70% of the uplink capacities. Thiscounter-intuitive but later becomes clear as we zoom in¢o th
demonstrates that integrating IP-multicast into P2P siiieg, proxy server.
though not globally available, has potential to improve the Figure 6(c) shows the fanout degrees of two proxy servers
bandwidth utilization. deployed in this trial, which fluctuates quite heavily anch ca
reach as high as 9. This shows that peer churns are so severe
that quite a number of peers cannot find stable parents and
eventually have to resort to the proxy server for data regove
. Impact of different segment sizes Increasing proxy workload results in an increase of of the
e i peer delay. The peer shown in Figure 6(a)(b) is the child
of proxy 1, and its delay shows high correlation with the
proxy’s fanout. This experiment demonstrates that highr pee
churns can be quite detrimental to stable viewing perfolgaan
causing consistent stream losses and large delays. Degloyi
more proxy servers, or building a more stable tree based on
the history can potentially mitigate this problem.

C. Tradeoff of Segment Sizes

10

10"

delay

10° |
V. UNCOVERING GAPS BETWEEN THEORY AND PRACTICE
Most theoretical studies of P2P streaming make simplifying
assumptions about the underlying system. The results from
105 o e o our measurement study allow us to revisit these assumptions
segment size (KB) confirming some while placing qualifiers on others:

Where is the bandwidth bottleneck?s commonly believed
Fig. 5. Trial 5: impact of segment size on end-to-end delay. that a peer’s upload capacity is the bottleneck since mast ac

(a) Change of tree topology
6 T T T T

:

tree depth

N
T
I

i i i i
1400 1600 1800 2000 2200

time (sec)

0 . .
800 1000 1200
(b) End-to—end delay during peer churns
150 T T T T

501

delay (sec)

i i i
1400 1600 1800

time (sec)

0 i
800 1000 1200

(c) Error recovery server during peer churns

is detected faster than the usual application-layer tirteeou

VI. CONCLUSION

Compared to several other more mature areas of study in
networking, proxy-P2P streaming is still in need of more
empirical data collected from deployed systems. On theetrad
off curve between high visibility and control on the one
hand, and a high degree of realism on the other, this paper
presents a valuable complement to existing approaches: fine
grain measurement data collected from the highly config-
urable FastMesh-SIM platform. Controlled experimentsaver
designed with target research questions in mind, and trials
were carried out over Hong Kong and Princeton. Analysis of
the data shed light on architectural decisions (such as push
vs. pull and use of IP multicast), parameter selection (such
as segment size and tree depth), and the impact of system

10

—proxy 1
- - -proxy 2

fanout

(1]
(2]

. . . .
1400 1600 1800 2000 2200
time (sec) [3]

0 i i
800 1000 1200

Fig. 6. System robustness and performance during peer £hurn [4]

cess technologies have very asymmetric uplink and downlin[ﬁ]
bandwidth. The caveat is that long Internet connections may
suffer from low throughput, due to high RTT, existence ofl®!
firewalls, and ISP policing. These factors may start to daten

the upload capacity bottleneck, especially for geogragllyic [7]
dispersed or relatively sparse network.

Which is the main delay componertfuch previous work [8l

assumes that transmission and propagation delay are t@?

dominant components of end-to-end latency. In an operaltion
P2P streaming application, delays induced by peer churns 1%5
protocol overhead may instead become more important factor
Why is there delay jitter®elay jitter is commonly believed to [11]
originate from bandwidth fluctuations. Yet, protocol ovesl,

especially control handshakes and requesting buffer ntaps,
become an non-negligible source of hiccups. (12
How large should node fanout in multicast trees beduild- [13]
ing a tree-based streaming system, many theoretical worksg
optimize peer delay by optimizing the tree fanout. Our data

confirm that a large fanout can significantly increase thayjel (15

due to large buffering delays at the high-degree parents. [16]

What kind of trees is more robus€bnventional wisdom is that
large tree fanout (shallow tree) may be, on average, lesstod17]
than small tree fanout (deep tree). Large fanout impliebdrig
error correlation among children. In practice, a deeper ise [18]
indeed more robust. With proxies and proper error control, a
peer’s failure does not necessarily trigger the error reppof
all its descendants. The peer’s child detects error morektyui
than its grandchildren, since the loss of the TCP connection

[19]

dynamics (such as peer churn and error recovery).

REFERENCES

“PPLive.” http://www.pplive.com/.

K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhangh&Tfeasibil-
ity of supporting large-scale live streaming applicatiamish dynamic
application end-points,” ifProc. ACM SIGCOMM 2004.

X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Meaament
Study of a Large-Scale P2P IPTV SysteniZEE Transactions on
Multimedia 2007.

S. Ali, A. Mathur, and H. Zhang, “Measurement of commalgeer-to-
peer live video streaming,” ifProceedings of the Workshop in Recent
Advances in Peer-to-Peer Streaming (WRA|RBD6.

R.-N. Ren, Y.-T. H. Li, and S.-H. Chan, “FastMesh: A lowldy high-
bandwidth mesh for peer-to-peer streamintfEE Transactions on
Multimedia An earlier version appeared in INFOCOM 2008.

X. Jin, H.-S. Tang, S.-H. Chan, and K.-L. Cheng, “Depla@mhissues in
scalable island multicast for peer-to-peer streamitigEE Multimedia
Magazine vol. 16, pp. 72-80, January-March 2009.

X. Hei, Y. Liu, and K. W. Ross, “Inferring network-wide ality in P2P
live streaming systems|EEE J. on Selected Areas in Communications
vol. 25, no. 9, pp. 1640-1654, 2007.

T. Silverston and O. Fourmaux, “P2P IPTV measurementofparison
study,” CoRR 2006.

M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Anitrj
“Watching television over an IP network,” iroc. Internet Measurement
Conferencepp. 71-84, 2008.

Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, ‘@lenges,
design and analysis of a large-scale P2P-VOD systdtngt. ACM
SIGCOMM vol. 38, no. 4, pp. 375-388, 2008.

C. Wu, B. Li, and S. Zhao, “Exploring large-scale peeipeer live
streaming topologies,’”ACM Trans. Multimedia Comput. Commun.
Appl., vol. 4, no. 3, pp. 1-23, 2008.

S. Xie, B. Li, G. Keung, and X. Zhang;, “Coolstreaminge$ign, theory,
and practice,” inEEE Transactions on Multimedi&007.

R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theoryr f@2P
streaming systems,” iRroc. IEEE INFOCOM 2007.

D. Wu, Y. Liu, and K. W. Ross, “Queuing network models fowulti-
channel live streaming systems,” itroc. IEEE INFOCOM 2009.

Y. Liu, “On the minimum delay peer-to-peer video stréagn How
realtime can it be?,” ilACM Multimedia pp. 127-136, 2007.

S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Cyjdierfor-
mance bounds for peer-assisted live streamingPrioc. ACM SIGMET-
RICS 2008.

S. Liu, S. Sengupta, M. Chiang, J. Li, and P. A. Chou, ‘ieing
streaming capacity in P2P.” Microsoft Research Tech. Repgoril
2008.

C. Feng, B. Li, and B. Li, “Understanding the performargap between
pull-based mesh streaming protocols and fundamentalslimii Proc.
IEEE INFOCOM 2009.

Y. Zhou, D. Chiu, and J. C. Lui, “A Simple Model for Analgsand
Design of P2P Streaming Algorithms,” Rroc. International Conference
on Network Protocols2007.

