
HotCocoa: Hardware Congestion
Control Abstractions

Mina
Tahmasbi Arashloo

Princeton University

Monia Ghobadi
Microsoft Research

Jennifer Rexford
Princeton University

David Walker
Princeton University

ABSTRACT
Congestion control in multi-tenant data centers is an active
area of research because of its significant impact on customer
experience, and, consequently, on revenue. Therefore, new
algorithms and protocols are expected to emerge as the Cloud
evolves. Deploying new congestion control algorithms in the
end host’s hypervisor allows frequent updates, but process-
ing packets at high rates in the hypervisor and implementing
the elements of a congestion control algorithm, such as traf-
fic shapers and timestamps, in software have well-studied
inaccuracies and CPU inefficiencies. In this paper, we argue
for implementing the entire congestion control algorithm in
programmable NICs. To do so, we identify the absence of
hardware-aware programming abstractions as the most imme-
diate challenge and solve it using a simple high-level domain
specific language called HotCocoa. HotCocoa lies at a sweet
spot between the ability to express a broad set of congestion
control algorithms and efficient hardware implementation. It
offers a set of hardware-aware COngestion COntrol Abstrac-
tions that enable operators to specify their algorithm with-
out having to worry about low-level hardware primitives. To
evaluate HotCocoa, we implement four congestion control
algorithms (Reno, DCTCP, PCC, and TIMELY) and use sim-
ulations to show that HotCocoa’s implementation of Reno per-
fectly tracks the behavior of a native implementation in C++.

1 INTRODUCTION
Today, congestion control (CC) algorithms play a central role
in a data center network’s efficiency and its tenants’ quality
of experience. Hence, a significant number of congestion
control algorithms concentrate on data center networks, which
greatly benefit from customizing their infrastructure to serve
their specific workloads and tenants [3, 4, 8, 9, 23, 29, 31, 33].
This trend is likely to continue, given the impact of network
congestion on data centers’ revenue and their rapid adoption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’17, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152457

of new and evolving technologies [12]. Thus, as Cloud com-
puting evolves and new approaches are introduced either by
humans [11, 16] or machine learning techniques [13, 32], there
is a growing need to enable programmability of CC algorithms.

Having no control over the CC algorithm inside VMs, opera-
tors may deploy their CC algorithms in the hypervisor [11, 16].
While this approach enables frequent updates to the CC
implementation, it incurs well-studied CPU inefficiencies for
doing congestion control and packet switching in software.
Implementing traffic shaping in software can add 4% to CPU
utilization [27]. Moreover, software-based rate control engines
rely on software timers to timestamp packets. These timers
are inaccurate as they drift orders of magnitude compared
to hardware timers [20, 22, 23]. Worse yet, merely switching
packets between the NIC and VMs at 10Gbps can utilize up to
45% of CPUs on a 12-core machine [16]. Thus, with 100Gbps
NICs on the horizon, implementing traffic shaping, and similar
per-packet stateful processing, at line rate in the hypervisor
requires additional CPU cores and memory that could have
otherwise been sold to tenants.

To free up CPU cycles on servers, several techniques
have been developed for offloading various networking
functions to the NIC (e.g., TCP Segmentation Offload [10]
and Generic Receive Offload [2]). More recent technologies
such as Single Root I/O Virtualization [17] enable VMs to
bypass the hypervisor and send packets directly to the NIC,
thus triggering efforts to offload VM network policies (e.g.,
tunneling, NAT, ACLs, etc.) to the NICs [15]. We take this
idea to its extreme and propose to implement the entire CC
algorithm itself in the programmable NICs [24, 26, 30], which
are becoming widely deployed [14, 21].

Programming hardware, however, requires niche expertise;
even then, it is challenging and time-consuming. The APIs
for programmable NICs (e.g., Verilog, and on occasion P4 [7])
are extremely low level, and force network operators to think
in terms of a constrained hardware pipeline rather than a high
level algorithm. Thus, it takes significant effort to correctly
develop and deploy a new CC algorithm using these APIs.

In this paper, we argue for a simple high-level domain-
specific language (DSL) for specifying congestion control
algorithms in hardware. In other words, our goal is to find a
sweet spot that is expressive enough to capture a wide range
of congestion control algorithms while being implementable
given realistic hardware constraints. Reviewing the extensive
literature on congestion control, we observe enough common
structure across different CC algorithms to enable the
definition of higher-level abstractions that give operators

control over their CC algorithms without requiring them to dig
into Verilog code or manage P4 table entries directly. More
specifically, we identify four high-level elements involved in
any congestion control solution (Figure 1):

• CC Flock: A set of packets that must be treated as a group
for congestion control purposes. A flock can be a TCP flow,
a group of packets originating from the same VM, or all
the DNS packets from the same IP address.

• Configurable Credit Manager: The CC enforcement
mechanism, e.g., a rate limiter or a sliding window, that
ensures a CC flock only sends packets when it has the right
to do so (i.e., when it has sufficient credit).

• Accrediting State Machine (ASM): The CC control
algorithm that decides how much credit to allocate to the
credit manager depending on the current state. Different
CC flocks can be controlled by different ASMs.

• Network Monitor: A module that monitors network
events, collects metrics, and triggers state changes in ASMs
accordingly.

Note that we are only abstracting the congestion control aspect
of data transport as VMs run their own transport protocol and
can deal with flow control and generating retransmissions.

Inspired by this observation, we propose HotCocoa, a set
of hardware-aware COngestion COntrol Abstractions. These
abstractions enable operators to specify each of the above
elements at a high level using a simple DSL, such that they can
be efficiently implemented in hardware. Using HotCocoa, op-
erators can define the metrics and events of interest that guide
the CC algorithm,whether those events originate at traffic
sources or destinations. They do not need to concern them-
selves with the low-level mechanisms by which information is
communicated back-and-forth between system components.

To implement HotCocoa, we propose a compilation strategy
that takes a HotCocoa program as input and generates con-
figurations for FPGA-based NIC hardware pipelines at traffic
sources and destinations. To evaluate our proposed language,
we implement four well-known CC algorithms (Reno [5],
DCTCP [3], PCC [13], TIMELY [23]) in HotCocoa [1].
Using simulations, we show that our implementation of Reno
perfectly tracks its implementation in NS2.

2 HOTCOCOA
HotCocoa enables operators to specify the four elements of
a congestion control solution at a high level of abstraction:
(i) CC flocks, (ii) credit managers, (iii) network monitors, and
(iv) ASMs. This section describes the design constraints that
drive the development of HotCocoa’s programming abstrac-
tions, (§2.1), and explains the abstractions themselves (§2.2).

2.1 Design Constraints
Design Constraint #1: Packets of a CC flock can only
drive the update of their own flock’s ASM state. ASMs are
stateful, and update their internal state based on events and
metrics collected by the network monitor. Each ASM controls

Figure 1: Programmable congestion control architecture

a single CC flock. Thus, the implementation of a HotCocoa
program on a NIC needs to keep per-flock state and update it
at line rate upon packet arrival. However, performing memory
reads and writes is expensive and spans multiple clock cycles;
therefore, it cannot be done multiple times per packet at line
rate. This is not a new problem. Studies have shown that end
hosts in today’s data centers may have up to a few million
flows, but have only a few thousand active at any time [6]. Thus,
to enable stateful processing on packets based on their flow’s
state, hardware designs for programmable NICs store active
flows and their state in a fast on-chip cache that can be accessed
with negligible overhead; furthermore, they only access the
memory on the first packet of a flow to insert it into the cache.
Therefore, these designs can achieve line rate stateful process-
ing as long as packets of a flow only access the state of their
own flow. Following a similar approach, our design ensures
that in a HotCocoa program, a packet traveling from one end
host to the other and updating user-defined metrics can only
trigger updates to the ASM of the CC flock to which it belongs.
Design Constraint #2: The ASM of a CC flock should only
rely on metrics collectable at either its source or its sinks
to make credit allocation decisions. This is because the ASM
itself will reside either on the source (and directly configure the
credit manager) or on the destination (and send credit manager
configurations back to the source to be applied). We want to
make the metrics it needs available to it in, at most, an RTT for
fast convergence. With the above constraint, the metrics can
either be co-located with the ASM or reside on the other end
of communication and be piggy-backed within an RTT on the
flock’s traffic. If the metrics reside anywhere else, we would
need a large volume of control packets for a similar effect.

2.2 HotCocoa’s Abstractions
This section describes HotCocoa’s programming abstractions
in more detail using the following example.

Running Example. Suppose each VM v in a data center
network receives traffic from a set of end hosts Sv , and the
operator wants to set the maximum allowed sending rate
of each end host i ∈ Sv in proportion to its current sending
rate, such that the total traffic received at v stays within its
bandwidth capacity c. Here, the CC flocks of interest are sets
of packets going from the same source to the same destination.
The network monitor should collect the rate at which each
VMv receives traffic from each CC flock i, denoted as r iv , and
keep track of the sum for all flocks in Sv (Σj ∈Sr

j
v). The control

algorithm for each flock needs to know the values of r iv and
the sum of the values. If the sum goes above c, the algorithm
re-calculates i’s maximum allowed sending rate as C×r iv

Σj∈S r
j
v

.

2.2.1 CC Flocks. A CC flock is a set of packets that
should be treated as a group for congestion control purposes.
We distinguish between two types of CC flocks, Streams and
Datagrams. Streams, such as TCP flows, are CC flocks in
charge of the reliable transfer of bytestreams and therefore
exchange control messages at the transport layer before,
during, and after data transfer (TCP connection establishment,
acknowledgments, and tear down). Datagrams, in contrast,
consist of individual messages sent in separate packets and do
not differentiate between data and control packets at the trans-
port layer. Making this distinction is necessary for a congestion
control programming interface, as some CC algorithms need
control messages (e.g., acknowledgments), only available in
Streams, to regulate the transmission of data packets.

A CC flock is just a set of packets. Thus, to define a CC
flock, programmers should specify the set of header fields
that distinguish the packets of that flock, i.e., header fields
with the same specified value in all the packets of that flock.
For instance, following is the definition of a UDP flow as a
Datagram flock in HotCocoa:

Datagram udp1([srcip = 10.0.0.1, dstip = 10.0.0.2,
ip_proto = UDP, srcport = 5000, dstport = 80]);

Defining Stream flocks is similar but requires additional
arguments which specify both the format of control packets
for connection setup and tear down and acknowledgements.

Specifying CC flocks one by one can be cumbersome.
Therefore, we need a compact way of defining a set of CC
flocks together. This can be done by specifying a set of values
for each header field. For instance, the CC flocks of our
running example can be defined in HotCocoa as follows:

Datagram ex_flock([srcip = s, dstip = d |
s <- all_ips, d <- all_ips, s != d]);

The above code snippet defines a set of CC flocks, each
of which is a set of packets with a source and destination IP
address from the set of all IP addresses, such that the source
and destination IP addresses are not the same. We define
these flocks as Datagrams because, in our example, they are
supposed to be rate-limited per packet, independent of whether
they are transferring bytestreams or individual messages.

2.2.2 Network Monitoring. Suppose we have a central
controller, with comprehensive knowledge about the network
structure and traffic demands of all the endpoints at any point
of time, that can choose the path of each packet. In such a
setting, each endpoint can be scheduled to send packets into
the network, such that a desired global utility function is
maximized at all times [25]. Such a centralized approach to
congestion control, however, is not likely to easily scale to data
centers with hundreds of thousands of endpoints. As a result,
we target the more common distributed congestion control
solutions, in which each endpoint relies on events and metrics

collected on the endpoints of communication (receipt of acks,
timestamps, etc.) and/or feedback from the network (ECN,
H_Feedback [19], etc.) to schedule packet transmissions.
More specifically, we need to enable CC algorithms to closely
monitor packets of each flock as they go from their source to
their destination and collect their metrics of interest.

To do so, HotCocoa breaks a packet’s journey into its
significant stages and triggers events as packets enter and exit
each stage. Programmers can register user-defined callback
functions for these events to collect metrics or update the
state of ASMs to reconfigure the credit managers. Note that
to allow efficient hardware implementation, the scope of
possible computation within a call-back function in HotCocoa
is inevitably limited. However, we argue that the programming
model is general enough to allow programmers to specify
virtually any desired packet-level statistics, as the set of
primitive events cover all the significant transitions of the
packet that are visible from the communication endpoints. The
rest of this section describes these events and explains how
they can be used in HotCocoa to collect metrics.

Events. Primitive events are those triggered as packets of a
CC flock travel through different stages, as shown in Figure 1:

• Source. Each CC flock has its own packet queue at the
source. A packet enters this stage by being enqueued when
the CC flock wants to send it out (pkt_enqueued), and exits
by being dequeued when the flock’s credit manager has
enough available credit for it (pkt_dequeued).

• Network. The packet enters this stage once it is sent out to-
ward the destination (pkt_sent). The packet travels across
the network, during which it can be dropped, delayed, or
tagged with extra information about the network; it exits
this stage when it arrives at its destination.

• Destination. The packet enters this stage when it arrives at
the NIC at the destination end host (pkt_rcvd).

For Streams, similar events are triggered when acks travel
from the destination back to the source to support the
broad set of CC algorithms that use acks to regulate packet
transmissions [3, 5, 13, 23]. Moreover, CC algorithms use
timers to detect packet loss, pace credit allocation, etc. Thus,
HotCocoa allows programmers to define their own timers and
register call-back functions for their timeouts.

Primitive events are useful for calculating metrics, such as
maximum acked sequence number or received rate, that are
updated on a per-packet basis. However, to ensure stability,
most CC algorithms update their state to reconfigure credit
managers at a much coarser level of granularity, e.g., after the
transmission of a window of packets, or when the RTT rises
above a threshold. Thus, HotCocoa provides programmers
with ways to define their own events with their desired level
of granularity using metrics collected from the network.
Suppose a HotCocoa program defines the metric avg_rtt.
Programmers can create an event that will be triggered when
this metric dips below (rises above) a certain level, say 5ms,
using falling(avg_rtt, 5) (falling(avg_rtt, 5)). More-
over, they can use boolean expressions over metrics to make

an existing event conditional (e.g., pkt_rcvd if avg_rtt

< 5ms). Finally, events can be combined using conjunction
(&&) and disjunction (||). For instance, (e1 || e2) && e3 is
triggered if either e1 or e2 is triggered alongside e3.

Metrics. Metrics are statistics collected as packets travel
from their source to their destination. When a packet transi-
tions from one stage to the next, the callback functions for the
metrics registered for that event are executed to update the
values of those metrics. This, in turn, could trigger a chain of
other events or updates to ASMs’ states. Recall from our first
design constraint that for efficient hardware implementation,
packets of a flock should only access the state of their own flock.
Thus, HotCocoa’s metrics are collected per-flock, but as will be
discussed later, they can also be aggregated, with certain lim-
itations, across flocks that have the same source or destination

Metrics associated with a single flock are called simple
metrics. A simple metric can be defined by specifying (i) the
metric state, (ii) the metric initialization code, (iii) the set of
events that trigger metric update, and (iv) the callback function
for each event that is a simple imperative program without
loops, i.e., a sequence of assignments and conditionals. These
functions are known to be easily pipelined and efficiently
implemented in hardware at line rate [28]. A simple metric
in our running example is the rate at which each flock’s traffic
is received at the destination:

Metric rcvd_rate(Flock f){
Int val, cnt, start, interval = 200;
Timer t;

def init(){
val = 0; _cnt = 0; start = now; t.set(interval);}

def update(f.pkt_rcvd e){cnt += e.pkt.len;}
def update(t.timeout e){
val = cnt / (now - start);
cnt = 0; start = now; t.set(interval);}

def Val() {return val;}}

Other common metrics, such as send and receive rate in
terms of bytes and packets, number of sent and received bytes
and packets, queue length at the source, and packet drops, can
be similarly implemented and provided as a built-in library.

An aggregate metric combines a simple metric across a set
of flocks. For instance, in our running example, we need to
measure the total rate at which traffic is received by each VM
from all flocks communicating with it. Using the code snippet
below, we can group CC flocks in ex_flock by destination IP
address and combine rcvd_rate of CC flocks in each group.

AggrMetric t_rr(sum, rcvd_rate, ex_flock, [], [dstip]);

Aggregate metrics cannot be used with falling and rising

to define events. To see why, suppose we define an event
rising(t_rr, 1Gbps) and use it in the ASM of the CC flocks
in ex_flock. A packet from flock x in ex_flock can cause _rr
to go above 1Gbps; as a result, the ASM of multiple flocks in
ex_flock may require updating. Thus, aggregate metrics can
only be used in boolean expressions to condition other events
(e.g., pkt_rcvd if t_rr > 1Gbps). Moreover, because of our
second design constraint, an aggregate metric should group

CC flocks based on source IP or destination IP or both so that
if it is used in the ASM of a CC flock, it can be located at either
the traffic source or the sink.

2.2.3 Credit Managers. Every CC algorithm has a
credit manager that enforces its decisions by releasing the
queued packets of a CC flock only if it has enough credits (Fig-
ure 1). A credit manager needs to (i) have internal variables to
keep track of a flock’s credits, (ii) decide when there is enough
credit to send a packet out (deq_criteria), (iii) register for
relevant primitive events such as enqueue and dequeue of
packets and receipt of acks to manage credits as packets fly
by, and (iv) expose parameters that ASM can configure. Our
running example, for instance, uses rates to control packet
transmissions. The following example illustrates a credit
manager based on a token bucket rate limiter, that can be used
to enforce these rates. This credit manager exposes the rate
and capacity parameters to ASMs for configuration.

CreditManager Token_Bucket (Flock f) {
expose Int rate, cap;
Int toks; Timer t;

def init() {t.set(200);}
def deq_criteria(Packet pkt){return pkt.len <= toks;}
def on_enqueue(Packet pkt){}
def on_deqeue(Packet pkt){toks -= pkt.len;}
def on_timeout<t>(){
toks += rate * 0.2; t.set(200);
if (toks > cap){toks = cap;}}}

We have implemented other common credit management
schemes, such as sliding windows for Streams, and can
provide these as a library for HotCocoa programmers.

2.2.4 Accrediting State Machines. The core of a con-
gestion control solution is the control algorithm that allocates
credit to the credit manager of each flock. Looking at the CC
algorithms in the literature, we observe that they consist of a set
of states reflecting their beliefs about the possible states of the
network, and transition between states based on their observa-
tions of the network. In each state, simple rules determine how
much credit is allocated to the credit manager. Thus, HotCocoa
abstracts the CC algorithm as an Accrediting State Machine
(ASM) that executes a simple imperative program in each state
to configure the credit manager of a flock (fl.CM), and transi-
tions between states on certain events. The following code illus-
trates how to implement the ASM in our running example.

ASM ex_asm (Flock f, Params p){
State Normal{};
State Congestion{f.cm.rate = f.rcvd_rate/f.t_rr;};
Init Normal; // Declare initial State

Transitions {
| Normal on f.pkt_rcvd if f.t_rr > p.max_rate

==> Congestion;
| Congestion on f.pkt_rcvd if f.t_rr <= p.max_rate

==> Normal
};}

The ASM shown above loops in the Normal state without
changing the corresponding token bucket as long as the total
received rate stays below the max_rate. If a packet is received

but the total received rate is above max_rate, it enters the
Congestion state, calculates a new rate for its corresponding
flock, and configures the token bucket accordingly.

Once CC flocks and ASMs are defined, the programmer can
specify which ASM should regulate the packet transmission of
which CC flocks using the CoCo (COngestion COntrol) prim-
itive: CoCo(ex_flock, token_bucket, ex_asm, {max_rate

: 1Gbps}). This will program the credit manager of each flock
in ex_flock as a token_bucket, and track the metrics used
in its ASM, i.e. rcvd_rate and t_rr, to trigger state changes
in the ASM.

3 LANGUAGE EVALUATION
In this section, we evaluate HotCocoa’s expressiveness and
provide a proof of concept, using simulation, that a CC algo-
rithm implemented in HotCocoa can safely replace its native
implementation in general-purpose programming languages.

Expressiveness. We implemented four well-known CC
algorithms, Reno, DCTCP [3], PCC1 [13], and TIMELY [23],
in HotCocoa (the programs are available at [1]). Each program
includes the definition of all four components of HotCocoa:
CC flocks, a network monitor, ASM, and a credit manager.
For all the above CC algorithms, the CC flocks of interest are
TCP flows. For Reno and DCTCP, the enforcement module is
a sliding window, whereas for PCC and TIMELY, it is a token
bucket rate limiter. Table 1 shows the number of lines of codes
used to implement each element of each algorithm. Overall,
all the algorithms can be expressed in HotCocoa in less than
150 lines of code.

Soundness. As a proof of the soundness of the CC
algorithms implemented in HotCocoa, we wrote a simple C++
program to simulate our implementation of Reno in HotCocoa,
incorporated it into NS2, and compared the result with NS2’s
implementation of Reno to show that our implementation
perfectly follows the behavior of that of NS2 in terms of
throughput and congestion window.

We created a topology with six end hosts, five as senders
and one as receiver, all connected to a router. The round-trip
time between the senders and receiver was 100ms. We started
a single TCP flow from one of the hosts, and sequentially
started and stopped other senders at 30 second intervals.
We performed the experiment once with NS2’s native Reno
and once with HotCocoa’s. Figures 2(a) and 2(b) depict
the throughput of flows over time; as the figures show, they
were perfectly matched in both runs of the experiment. We
repeated the experiment with only one sender and observed
that the calculated congestion windows for HotCocoa’s
implementation of Reno perfectly match that of NS2’s native
implementation. We take our results as a preliminary proof of
concept that programs written in HotCocoa can safely replace
their native implementation in general-purpose programming
languages. We are planning to perform similar experiments

1As HotCocoa currently does not support random number generation, we
implemented PCC with deterministic testing of sending rates.

(a) Reno - NS2 (b) Reno - HotCocoa

Figure 2: Reno’s implementation in HotCocoa perfectly
tracks Reno’s implementation in NS2. (a) and (b) com-
pare the throughput for 5 flows sequentially started and
stopped at 30 second intervals.

CC Algorithm Monitoring
#LoC

Control Algorithm
#LoC

Credit Manager
#LoC

Reno 64 45 12
DCTCP 97 45 12
PCC 39 92 17
TIMELY 9 34 17

Table 1: #LoC used for implementing different CC
algorithms in HotCocoa.

with other CC algorithms, and once we prototype the compiler
and can push these algorithms to hardware.

4 COMPILATION STRATEGY
To compile HotCocoa programs to programmable NICs, we
propose a logical pipeline with stages for the elements of
CC algorithms, and a compilation strategy to map HotCocoa
programs to the pipeline. We leave a full implementation of
the logical pipeline on a programmable NIC and the compiler
for future work.

4.1 Logical Target Pipeline
Our proposed logical pipeline is depicted in Figure 3. It
contains a DRAM and a fast cache in SRAM to keep
HotCocoa’s program state and packet queues (the trapezoid
in the middle), a logical block for flock classification, logical
blocks for implementing credit management logic and
handling of events, metrics, and ASMs, and a TX scheduler
that picks which flock should send a packet out next. There
are separate ingress and egress pipelines that process packets,
and a timer pipeline that handles timeout events, all of which
can access the program state from the memory. Note that
this is a preliminary proposed design, and several hardware
mechanisms, including ensuring ASM consistency among
handler blocks, need to be carefully designed.

Memory Module. The program state, including per-flock
state as well as aggregate metrics, is stored in a memory
module consisting of a DRAM and an SRAM cache for storing
active flocks. The per-flock state includes the ASM state and
the simple metrics it uses, its credit manager state, and its
packet queue head and tail pointers.

Flock Classifier. There is a logical block at the beginning
of both ingress and egress pipelines that classifies packets

Figure 3: Proposed logical pipeline for HotCocoa
programs on the NIC.

into their corresponding flock. It can be implemented with a
TCAM with ternary matches.

Credit Manager and TX Scheduler. There is a logical
block in the egress pipeline that implements the credit manager
logic in the program and decides when to dequeue packets
based on their available credit. The packets are then processed
by the TX Scheduler that decides which flock can send its
packet out next. Each credit manager has a service queue for
configuration requests. It pulls these requests from its service
queue and applies them to its parameters.

Handler Blocks. We have a handler block for each
primitive event. An x handler block records the occurrence
of primitive event x , and updates corresponding metrics and
the ASM state if applicable. If a state transition happens in
the ASM, the resulting credit manager configurations will be
queued in the credit manager’s service queue. We have handler
blocks for enqueue, dequeue, send, and receive.

Timer Pipeline. The Timer pipeline keeps track of timers
for timeout events. Timeouts could trigger updates to multiple
flocks. Therefore, to make sure they do not stall the packet
processing pipelines, we plan to design a scheduler for the
Timer pipeline to pick a bounded number of flocks with
expired timers at a time and handle their timeout events in the
Timeout Handler.

4.2 Compiler
The logical pipeline is designed to have building blocks for
different elements of the programming language. Therefore,
the central technical challenge of the HotCocoa compiler is
to decide whether to place a flock’s associated events, metrics,
and ASM at the source or the destination.

The placement for primitive events such as pkt_sent and
pkt_rcvd is determined by definition (source and destination,
respectively). However, a HotCocoa program can have a
metric with multiple update functions, each triggered by the
occurrence of a different primitive event. These events may not
necessarily happen at the same location, and there is a choice to
be made about where, at the source or destination, to maintain
this metric’s value. This choice affects the amount of meta
data that is piggy-backed on the data packets of the CC flock
to get the metric implementation the information it needs from
events to update its value. Moreover, metrics can be used to

define events themselves, and these events can, in turn, trigger
updates to other metrics. These events and metrics can also
be used in ASMs, which need to configure credit managers at
traffic sources. Given these dependencies, the compiler needs
to decide the optimal location for maintaining the metrics and
ASM states, such that the metadata communicated between
endpoints to correctly implement the program is minimized.
We believe this can be accomplished using a constraint solver.
Once the placement is decided, the compiler can generate
configurations for each block in Figure 3 according to the
logic specified in the input program.

5 RELATED WORK
Data Center Congestion Control Algorithms. There is
a vast literature on congestion control algorithms in data
centers [3, 4, 8, 9, 18, 23, 29, 31, 33] that use sliding windows
or rate limiters to control packet transmission of flows and
flow aggregates. HotCocoa provides abstractions for operators
to specify these algorithms in a high-level program, and run
them directly on the NIC.

Congestion Control in Hypervisor. AC DC [16] and
vCC [11] make the case that data center operators need to
deploy their own congestion control algorithms in multi-tenant
data centers and easily update them based on state-of-the-art.
However, they propose these algorithms to be implemented
in software in the hypervisor. As we argued earlier, software
implementation of traffic shaping schemes, and the times-
tamps upon which they depend, are inaccurate and CPU
inefficient [20, 22, 23, 27], and are not expected to scale at
a reasonable CPU cost for next generation NICs. Thus, we
enable the deployment of congestion control algorithms
directly in programmable NICs by providing a high-level DSL
as a solution to the high barrier for hardware programming.

6 CONCLUSIONS
Given the impact of congestion control on tenants’ experience
in a multi-tenant data center, the ever-evolving nature of the
Cloud and its congestion control algorithms, and the need for
efficiency and accuracy in packet processing as we move to
higher network speeds, we propose implementing congestion
control algorithms directly in programmable NICs. To over-
come the high barrier for programming hardware, we propose
HotCocoa, a high-level DSL for expressing congestion control
algorithms that can directly run in hardware. We propose a
high-level target pipeline and a compiling strategy to translate
HotCocoa programs to pipeline configurations.

ACKNOWLEDGMENTS
This work is supported by DARPA Contract No.
HR001117C0047 and NSF grant CNS-1703493. We
thank the anonymous reviewers, Victor Bahl, Doug Burger,
Adrian Caulfield, Derek Chiou, Daniel Firestone, Roch
Guerin, Changhoon Kim, Larry Luo, Ratul Mahajan, Jitendra
Padhye, Andrew Putnam, Shachar Reindel, Vishal Shrivastav,
and Anirudh Sivaraman for helpful feedback.

REFERENCES
[1] HotCocoa Github Repository. https://github.com/minmit/CoCoA.git.
[2] Generic Receive Offload. https://lwn.net/Articles/358910/, 2008.
[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In
SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center. In NSDI, 2012.

[5] M. Allman, V. Paxon, and W. Stevens. TCP Congestion Control, 4 1999.
RFC 2581.

[6] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. IMC ’10, 2010.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 2014.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
BBR: Congestion-Based Congestion Control. ACM Queue, 2016.

[9] L. Chen, K. Chen, W. Bai, and M. Alizadeh. Scheduling Mix-Flows
in Commodity Datacenters with Karuna. In SIGCOMM, 2016.

[10] G. W. Connery, W. P. Sherer, G. Jaszewski, and J. S. Binder. Offload
of TCP Segmentation to a Smart Adapter, 1999. US Patent 5,937,169.

[11] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy. Virtualized Congestion Control. In
SIGCOMM, 2016.

[12] David Maltz. Keeping Cloud-Scale Networks Healthy. https:
//video.mtgsf.com/video/4f277939-73f5-4ce8-aba1-3da70ec19345.

[13] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC:
Re-architecting Congestion Control for Consistent High Performance.
NSDI’15, 2015.

[14] D. Firestone. SmartNIC: Accelerating Azure’s Network with FPGAs
on OCS servers. https://ocpussummit2016.sched.com/event/68u4/.

[15] D. Firestone. VFP: A Virtual Switch Platform for Host SDN in the
Public Cloud. In NSDI, 2017.

[16] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella. AC/DC TCP: Virtual Congestion Control Enforcement for
Datacenter Networks. In SIGCOMM, 2016.

[17] Intel LAN Access Division. PCI-SIG SR-IOV Primer: An Introduction
to SR-IOV Technology. https://www.intel.sg/content/dam/doc/
application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf.

[18] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg. EyeQ: Practical Network Performance Isolation at the
Edge. In NSDI, 2013.

[19] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[20] H. Marouani and M. R. Dagenais. Internal Clock Drift Estimation
in Computer Clusters. Journal of Computer Systems, Networks, and
Communications, 2008.

[21] C. Metz. Microsoft Bets its Future on a Repro-
grammable Computer Chip. https://www.wired.com/2016/09/
microsoft-bets-future-chip-reprogram-fly/, 2016.

[22] D. L. Mills. Precision Synchronization of Computer Network Clocks.
SIGCOMM Comput. Commun. Rev., 1994.

[23] R. Mittal, V. The Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. TIMELY: RTT-Based
Congestion Control for the Datacenter. In SIGCOMM, 2015.

[24] Netronome SmartNICs. https://www.netronome.com/products/
smartnic/overview/.

[25] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass:
A Centralized Zero-Queue Datacenter Network. In SIGCOMM, 2014.

[26] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger.
A Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services. In ISCA, 2014.

[27] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli,
and A. Vahdat. Carousel: Scalable Traffic Shaping at End Hosts. In
SIGCOMM, 2017.

[28] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking. Packet Transactions:
High-level Programming for Line-Rate Switches. In SIGCOMM, 2016.

[29] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-Aware Datacenter
TCP (D2TCP). In SIGCOMM, 2012.

[30] Will Chu. Intelligent Networks by Cavium. http://www.cavium.com/
newsevents_Caviumnetworks_CoredgeNetworks.html.

[31] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better Never than
Late: Meeting Deadlines in Datacenter Networks. In SIGCOMM, 2011.

[32] K. Winstein and H. Balakrishnan. TCP Ex Machina: Computer-
generated Congestion Control. In SIGCOMM, 2013.

[33] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion Control for
Large-Scale RDMA Deployments. In SIGCOMM, 2015.

