
Herding the Elephants: Detecting Network-Wide
Heavy Hitters with Limited Resources

Anonymous Author(s)

ABSTRACT
Detecting “heavy hitters” e.g., flows with traffic volume ex-

ceeding a threshold, is the core of many network monitor-

ing applications. While past work has shown how to mea-

sure heavy hitters on a single switch, network operators

often need to identify network-wide heavy hitters on a small

timescale to react quickly to anomalies. Detecting network-

wide heavy hitters efficiently requires striking a careful bal-

ance between the memory and processing resources required

on each switch and the network-wide coordination protocol.

We present Herd, a distributed technique for detecting

network-wide heavy hitters with high accuracy under com-

munication and state constraints. Our solution combines

the sample-and-hold algorithm for measurements on the

switches with probabilistic reporting to a central coordinator.

Based on these reports, the coordinator adapts the report-

ing threshold and probability at each switch to the spatial

locality of the flows. We present an algorithm to tune Herd

in order to maximize detection accuracy under resource con-

straints. Simulations using real traffic traces show that our

P4-based prototype can detect network-wide heavy hitters

accurately with 17% savings in communication overhead and

38% savings in switch state compared to existing approaches.

1 INTRODUCTION
To effectively manage their networks, operators continu-

ously monitor their traffic to detect attacks, congestion, and

failures. To identify these conditions, operators often seek to

detect heavy-hitters by separating the elephant flows from the

mouse flows. Elephants are the relatively few flows that sig-

nificantly contribute to the overall traffic volume and mouse

flows are the more numerous but smaller flows. To distin-

guish flows into these two categories, network operators

must choose between measuring flows in network devices,

which have both limited memory and computational capac-

ity, or sending a subset of traffic to general-purpose CPUs

for analysis. In the latter case, the operator is limited both in

how much traffic can be sent across the network but also by

the fact that general-purpose CPUs process data far slower

than line rate.

Currently deployed solutions, such as NetFlow [6] and

sFlow [18], rely heavily on packet sampling (e.g., sampling

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 out of 4000 packets [14]) to reduce the measurement data

exported from the switches. Unfortunately, low sampling

rates result in longer delays for computing accurate estimates

of flow sizes, which lead to temporal “blind spots” to short-

term network conditions (e.g., TCP incast [5] or microbursts).

Other solutions [1, 15, 23, 28] run streaming algorithms (with

compact data structures like count-min sketch [8]) directly

on the resource-constrained switches. These techniques de-

tect heavy hitters on each switch individually. Flows that

generate a large volume of traffic for the network in total,

but are not heavy at any single switch would go undetected.
1

For example, if a host inside the network is the victim of

a denial-of-service attack and monitoring is performed at

the ingress switches, each ingress switch may only observe

a moderate amount of traffic to the victim host, yet aggre-

gating the analysis over all switches would indicate that a

high volume attack is occurring. Furthermore, when attacks

of this magnitude begin to converge at a network choke

point or at the victim itself, network devices can become

unresponsive which may prevent further measurement from

being performed and stymie root-cause analysis. Therefore,

it is appropriate to place the monitoring upstream of con-

vergence, i.e., at multiple locations which are able to handle

fractions of the overall attack.

Detecting network-wide heavy-hitters reduces to a dis-

tributed monitoring problem among edge switches, i.e., the

entry points of traffic into the network, and a centralized co-

ordinator. The coordinator aggregates the partial information

observed at each switch to identify flows whose aggregate

count exceeds a global threshold. Deciding when a switch

should report to the coordinator and what the switch should

report determines howmuch communication is required and,

ultimately, the accuracy of the results. For example, recent

work [2, 14] shows how to periodically collect and combine

sketches from multiple locations to compute a network-wide

estimate of the traffic. However, these techniques fail to strike

the balance between real-time analysis and low communica-

tion overhead.

The Continuous DistributedMonitoring (CDM)model pro-

vides a communication-efficient method for reporting local

conditions, as-needed, to continuously track the heavy hit-

ters without respect to a fixed monitoring interval. However,

1
Here, the definition of a flow may be more coarse-grained than a five-tuple,

such as source/destination IP address.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

Pr
ot

oc
ol

Data Structure

Communication

Accuracy

State State State

Coordinator

Figure 1: Herd Architecture. The coordinator aggre-
gates the partial information observed at each switch
to identify network-wide elephants.

this model assumes the ability to store per-flow state, which

has hindered its adoption in actual monitoring systems [7].

We present Herd (depicted in Figure 1), a practical moni-

toring system for detecting network-wide heavy hitters in

real time, with high accuracy, and under communication and

state constraints. We extend the standard taxonomy of mice

and elephant flows to more accurately describe the costs of

performing heavy-hitter detection in a network-wide setting.

Herd instructs each switch to probabilistically identify and

report potentially substantial flows, while accounting for the

locality of flows to minimize communication. Our solution

extends probabilistic reporting techniques presented in [27]

and combines themwith the sample-and-hold algorithm [10],

to report measurements of individual flows in real time. Herd

tunes the system parameters using representative traffic ob-

served by the network to achieve the best accuracy possible

within the available memory and bandwidth constraints. We

summarize our contributions as follows:

Continuous, communication-efficient coordination.
We developed a new coordination protocol for detecting

network-wide heavy hitters that uses adaptive thresholds

to account for flow locality. This protocol probabilistically

reports when switches observe a non-trivial contribution

from amonitored flow and infers network-wide heavy hitters

at the coordinator from these reports. Our analysis shows

that this protocol reduces the communication cost by 17%

for achieving 97% accuracy compared to sampling.

Memory-efficient switch data structure.Wedeveloped

a data structure that efficiently stores locality parameters and

counters for flows that show a non-trivial contribution to a

network-wide count. This data structure probabilistically de-

termines the subset of flows to monitor at the switch from a

larger traffic stream. We demonstrate that this data structure

can be implemented in modern programmable switches for

line-rate execution. Our evaluation shows that our solution

requires 40% less switch memory at the expense of 3% degra-

dation in detection accuracy when compared to counting all

of the flows.

Parameter-tuning algorithm for high accuracy.While

our solution consists of well-known algorithmic [9] and

data-structure [10] building blocks, combining these build-

ing blocks to produce accurate results within resource con-

straints is challenging. We present an algorithm that relates

the parameters of both the protocol and the data structure

to the potential significance of flows to be monitored and

how those parameters affect Herd’s performance in terms of

accuracy, communication, and state. We describe a heuristic

for achieving high accuracy under communication and state

constraints.

In § 2, we summarize Herd’s architecture for network-

wide heavy hitter detection. We present the design of the

coordination protocol in § 3, and the switch data structure in

§ 4. In § 5, we present an algorithm for configuring various

system parameters. To demonstrate the deployability of Herd,

we present our Protocol Independent Switch Architecture

(PISA) [3] prototype in § 6. Finally, we evaluate our protoype

in § 7, and discuss related work in § 8.

2 HERD OVERVIEW
The Herd architecture is composed of ingress switches and

a centralized coordinator, as shown in Figure 1. The coordi-

nator aggregates the partial information observed at each

switch to identify flows whose aggregate count exceeds a

threshold. By counting locally at each switch and periodically

reporting to the coordinator, we can reduce the communica-

tion cost, but the memory at switches is limited which also

affects accuracy. In this section, we first describe the taxon-

omy of flows in the network that affects how much state

and communication is required to perform network-wide

heavy-hitter detection and then we describe the mechanisms

we use to distinguish flows in that taxonomy.

2.1 Who’s Who in the Zoo
In order to identify network-wide heavy hitters under com-

munication and state constraints, we need a way to classify

flows both locally and globally. Additionally, we need to be

able to relate the sizes of these classes to the amount of mem-

ory and communication required to perform the network-

wide detection.

Local moles and mules. Global elephants.We extend

the traditional taxonomy of flows by introducing two new

classes:moles andmules (see Figure 2). At each switch, a large
number of flows will have no local or global significance

which is the traditional class of mice; we seek to allocate no

scarce resources for these flows. However, a smaller set of

flows may be significant locally, but a switch will not know

if these flows matter globally. Switches will have to maintain

state for these flows to determine whether or not they might
have global significance; we call these flows moles. However,

when amole reaches a local threshold that could significantly

Herding the Elephants CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA

flow count

f1 40
f3 2
f5 1

flow count

f1 80
f2 200
f3 99
f4 10

C

A B

flow count

f1 120
f2 200
f3 80

mule >20

mole <20

mice <5

Local

Global

Elephant >100

Figure 2: Example zoo thresholds and counts.

impact a global count, a switch is obligated to inform the

central coordinator; we call these flows mules.

Mules are, inherently, tracked both locally and globally. A

single switch that determines a flow is a mule and reports it

to the central coordinator, which then tracks the flow as a

mule globally. Based on the reports sent by the switches for

each of their mule flows, the central coordinator determines

when a mule flow has become a network-wide elephant.

The zoo determines resource allocation.This extended
taxonomy allows us to better reason about the resources

required to perform network-wide heavy-hitter detection.

With a known upper bound on the state per switch, we fo-

cus our effort on ensuring that the number of moles at each

switch does not exceed the upper bound. Similarly, if we

know the allowed communication rate for each switch, we

must ensure that the number of mules and their reporting

frequency does not send too many reports to the coordinator.

In the next section, we discuss the mechanisms Herd uses to

distinguish among these classes of flows.

Example. Figure 2 shows a simple example where two

switches (A and B) communicate with a central coordinator

(C) to determine the network-wide elephants. In this exam-

ple, we use thresholds of 5 and 20 to distinguish mole from

mouse flows and mule from mole flows, respectively; we set

the threshold for network-wide elephants at 100. The tables

below each switch show the actual counts observed for flows

f1-f5 at each switch. At switchA, we avoid maintaining state

for mouse flows f3 and f5, but store the counts for the local
mule flow f1. At switch B, we store counters for f1-f4, but
we do not report f4 to the coordinator because it is only a

local mole. The coordinator is aware of all mules (f1-f3) from
both switches, but determines that only f1 and f2 are global,
network-wide elephants. In the case of f3, notice how both

switches and the coordinator all have different views of the
total count for this flow. Since f3 is a mouse at switch A, the
switch actually has no information about the flow’s count at

all. At switch B, flow f3 is a mule locally, but since the switch

reports to the coordinator only once every 20 counts (the

mule threshold), the coordinator believes the global count

of f3 is only 80. In fact, the global count of f3 meets the

network-wide threshold of 100, but our taxonomy of flows

and their reporting requirements would not identify f3 as a
network-wide elephant; this is by design.

2.2 Probabilistic Counting and Reporting
Based on the above taxonomy, wemust distinguishmice from

moles and moles from mules. Once differentiated, we must

also determine how frequently to update the coordinator

with local information about the mules. In this section, we

describe the techniques Herd uses for doing so.

Distinguishing moles from mice.Many existing tech-

niques for storing flow counters with small state focus on

accurately detecting only the local heaviest flows. For ex-

ample, using a count-min sketch does not eliminate storing
state for small flows, but it does provide bounds on the error

incurred by doing so. Using a count-min sketch would both

violate our goal of maintaining no state for mice, but we

would also need a very large sketch to overcome the error

incurred by storing the small but numerous mouse flows.

Similarly, the space-saving algorithm [16] works well for

storing local elephants, but that algorithm would allow local

mice to evict moles from the data structure, which would

lead to inaccurate results.

To avoid maintaining state for small flows, we use a data

structure that relies on the sample-and-hold technique [10].

In this technique, the switch checks whether each incom-

ing packet belongs to the set of moles. If so, it updates the

counter; otherwise, the switch chooses to start counting the

flow with some sampling probability (s). Effectively, this
approach defines the set of moles as those whose count is

greater than (1/s), in expectation. We show how to choose s
such that it reduces the memory footprint without compro-

mising the detection accuracy in Section 4.1.

Distinguishing mules from moles. Only a subset of

the mole flows will ever become large enough to impact the

global count. We set a local threshold (τ) for local flow counts

such that 1/s < τ . This ensures that the set of mule flows

is strictly smaller than the set of mole flows. When a local

mole flow’s count reaches τ , the switch promotes the flow

to a mule locally and reports to the coordinator.

Reporting Mules. Requiring all switches to send reports
each time (τ) packets are observed for all mule flows to the

coordinator would limit our system’s ability to support large

networks with many ingress switches. Rather than sending

a report for each mule every time τ packets are observed, we

build on the theoretical approach first described in [27] and

report to the coordinator with probability (r) each time (τ)
packets are observed for a mule. The coordinator identifies a

mule as a network-wide heavy hitter if it receives R reports

for this flow from any of the switches. We could choose to

report very frequently (e.g., r = 1) for high accuracy, or we

could choose a lower value of r to lower the coordination

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

overhead. In Section 3.1, we show how to select values for

τ , r , and R that strike a balance between detection accuracy

and communication cost.

3 COORDINATION PROTOCOL
The coordination protocol must allow the edge switches to

efficiently communicate to the coordinator when they have

observed counts that could be significant network-wide. In

this section, we describe a protocol that sets the threshold for

each mole flow to become a mule, and then uses the reports

about the mules to determine the network-wide elephant

flows. We then describe an extension to this protocol that

leverages the spatial-locality of network traffic to reduce the

communication cost of the protocol.

3.1 When to Report Which Flows
3.1.1 Separating the Mules from Moles. The switch distin-

guishes locally between moles and mule flows, and in doing

so it determines which flows to report. The switch can per-

form this discrimination by comparing the count of a mole to

a local threshold (τ) set by the coordinator. Once a mule flow

is identified, the switch reports to the coordinator, each time

a bundle of τ packets is observed at the switch—answering

when to report.

3.1.2 Scaling to Large Networks. However, the downside
of the above technique is that it will not scale as the number

of switches in the network grows. Because a switch only

reports a flow once for every τ packets it observes, it will

often have residual flow counts smaller than τ which have

not yet been reported. In aggregate, these residual counts

represent a “blind spot” for the coordinator and necessarily

cause inaccuracies in the global count it maintains.

Algorithm 1: Switch Algorithm

Input: Local Threshold (τ), Report Probability (r)
Func ProcessPacket(pkt):

f ← ExtractFlow(pkt)
exceeds ← UpdateAndCheck(f,D)
if exceeds

if Flip(r)
Report(f)

D[f] ← 0

As τ increases or the number of switches grows, the inaccu-

racy of the final results will increase. One possible way to re-

duce the inaccuracy is to significantly lower τ . However, that
would increase communication, since the switch will pro-

duce many more reports for each mule flow. Prior work [9]

proposed a probabilistic reporting approach that scales with

the number of switches in the network and proved its effi-

ciency. However, implementing this technique has proven

to be challenging, and has yet to be implemented [7]. We

adapt this technique to account for flow locality and enable

execution on modern programmable switches.

3.1.3 Probabilistically Separating Elephants and Mules.
Our algorithm for probabilistically reporting mule flows

to the coordinator is described in Algorithm 1. The func-

tion ProcessPacket processes every packet received by the

switch and ExtractFlow extracts from the packet the fields

that identify flow f . The function UpdateAndCheck updates

the counter for this flow and compares it with a local thresh-

old (τ) (see Section 4 for further details). If the updated count

exceeds τ , then the switch reports the flow to the coordinator

with probability r . Here D is just a simple key-value store

and a single r and τ apply to all flows. By reporting with

probability r , each bundle reported now represents a count

of τ/r in expectation, which reduces the total number of

reports that must be sent. The coordinator executes Algo-

rithm 2; after receiving a report for flow f , if the number of

reports received for f exceeds threshold R, the coordinator
determines that this mule flow is now an elephant.

Algorithm 2: Coordinator Algorithm
Input: Reporting Threshold (R)
Output: Heavy Hitter Set (H)

Func HandleReport(f):
Reportsf ← Reportsf + 1

if Reportsf ≥ R
H ← H ∪ { f }

3.1.4 Configuring Parameters. Configuring the parame-

ters (τ , r , and R) to strike a balance between accuracy and

communication cost is non-trivial. For example, we want to

set τ high enough such that it can effectively differentiate

between the mule and mole flows, but low enough that it

does not increase the number of flows classified as mules by

the switch and, consequently, the communication cost. Previ-

ous work [9] demonstrated tight bounds on communication

and error by selecting specific values of r = 1/k (k is the

number of switches) and τ by introducing an approximation

factor (ϵ). Their results show that this approach can achieve

high accuracy with modest communication overhead that

does not grow proportionally to the number of switches in

the network. We generalize the results from prior work by

setting r = 1/k , τ = ϵT /k , for 0 < ϵ < 1; the coordinator

then determines that a flow is an elephant after receiving

R = kr/ϵ reports. When r = 1/k this threshold simplifies to

R = 1/ϵ , but in Section 5 we describe how we might vary the

value of r when tuning all of the Herd’s parameters together.

Example. Let us consider an example topology with k =
10 switches, global threshold T = 2500 and we choose an

Herding the Elephants CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA

approximation factor of ϵ = 0.1. In this case, switches would

report every τ = 25 packets to the coordinator with prob-

ability r = 0.1. The coordinator would therefore declare

any mule an elephant after receiving R = 10 reports. Here, a

single τ and r apply to all flows at all switches in the network.

3.2 Locality-aware Reporting Parameters
The protocol we described in the previous section implicitly

assumes that all of the k switches in the network are equally

likely to observe a portion of the traffic for a given flow. This

assumption results in lower local thresholds (τ) as networks
grow large. A smaller τ will result in the switch determining

that more mole flows are mules, and, ultimately, increase

the communication cost. However, in practice, most flows

exhibit spatial locality, i.e., only a subset of edge switches

observe traffic for a given flow. If a flow is only observed at

l << k locations, then we should configure the parameters

based on this smaller number of switches. Accounting for this

locality would increase τ , which, in turn, ensures that fewer

moles are unnecessarily promoted to mules, thus reducing

the communication cost.

3.2.1 Configuring Parameters. We now require an addi-

tional parameter lf to account for the spatial locality. Here,

lf denotes the number of switches that observe flow f . For
now, we can assume that we know the locality parameters

for all flows a priori because forwarding state can be used to

infer this information. Accounting for this locality parame-

ter, we adjust the local threshold as τ = ϵT /lf and reporting

probability as r = 1/lf for each flow at the switch. The co-

ordinator reports flow f as a heavy hitter when it receives

R = 1/ϵ reports from the switches. Returning to Algorithm 1,

we must augment the key-value store D to maintain lf for
each flow. The values for τ and r are then calculated based

on looking up D[f].l .
Example. Let us return to our example with k = 10

switches, global threshold T = 2500, and an approxima-

tion factor of ϵ = 0.1. Let us now consider that a particular

flow f is observed only at lf = 2 switches in the network.

We now can increase both our bundle size to τf = 125 and

reporting probability to rf = 0.5. The coordinator would still
declare a mule an elephant after receiving R = 10 reports

for the flow, but there are now fewer mules sending reports

to the coordinator due to the larger bundle size. Now, the

threshold (τ) and reporting probability (r) can vary based on

how many switches actually observe the flow.

3.2.2 Tracking Spatial Locality. In reality, the locality of

flows in a network changes due to routing updates, mis-

configuration, and failure; lf must be tracked dynamically.

Thus, Herd introduces a protocol that independently tracks

changes in the spatial locality for flows directly in the data

plane. At all times, a switch has knowledge of which flows

Algorithm 3: Coordinator Algorithm for Learning lf

Func HandleHello (hello):
f , s ← ExtractFlow(hello)
if s < Sf

Sf ← Sf ∪ s

if |Sf | ≥ 2lf
lf ← |Sf |

Send(x ∈ Sf , lf)
else

Send(s,lf)

it expects to observe (more on this in Section 4.2). When a

switch receives a packet from an unexpected flow, the switch

sends a Hello message to the coordinator. As shown in Al-

gorithm 3, the coordinator extracts the flow (f) and switch

identifier (s) from the Hello message and looks up the value

of lf . It also updates a data structure (Sf) that maintains a

mapping of flows to switches. Finally, it sends the updated

parameter to all switches in Sf . To avoid updating the pa-

rameter due to spurious or transient conditions, we choose

to update the locality parameter for a flow only when the

set of switches actually observing the flow (Sf) is doubled.

4 SWITCH DATA STRUCTURE
The coordination protocol described in the previous section

assumed that switches could store a counter and lf for each

flow. Although modern programmable switches enable flexi-

ble packet processing directly in the data plane, the amount

of memory available for stateful operations is orders of mag-

nitude smaller thanwhat the coordination protocol described

earlier requires. In this section, we again exploit the observa-

tions that (1) only a few flows are heavy hitters, and (2) flows

exhibit spatial locality to reduce the memory footprint on

the switches. We first describe how we avoid maintaining

state for the many mice flows, and then how we decouple

storing the locality parameter from the flow counters,

4.1 Separating Mice from Moles
To reduce the memory footprint, we need a data structure

that can avoid consuming resources for local mice flows,

which are too small to significantly contribute to a network-

wide elephant. This structure therefore needs to effectively

and efficiently separate mole flows from mouse flows.

Why not just use sketches? In order to separate mice

from moles, we could use a count-min sketch (CMS) to es-

timate the size of all flows, and then only allocate an ex-

act counter when a flow exceeds some minimum thresh-

old (τ ′ < τ). Conventionally, approximate data structures,

such as CMS, have been used to monitor heavy hitters with

bounded memory and error. [8, 14, 15, 28] Unfortunately,

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

these data structures were designed for tracking single-site

elephants, and are therefore normally used for identifying

flows which take up a large portion of the traffic at a single

switch. Using a CMS to accurately estimate both mouse and
mole flows instead would require much larger sketches to

achieve acceptable accuracy.

For example, a CMS that uses b bits per row with r rows
and processes N packets will produce an estimate that errs

at most 2N /b with probability at least 1 − (1/2)r from the

true count. Assuming 100M packets are processed by the

switch in a monitoring interval, setting b = 10K will result

in an error of at most 20K and we would need to allocate

b = 100K to get an error of at most 2,000. For the task of

counting small flows, a CMS does not strike the right balance

between state and accuracy.

Sample and Hold the Moles. Although mice flows com-

prise a large portion of the total flows in a network, these

flows are few in total packet count. Therefore, we can use

sampling to effectively filter out those flows whose count

is less than the inverse of the sampling probability, in ex-

pectation. For flows that we do sample, however, we store

an exact counter so that we can separate mules from moles

as described in Section 3.1.1. While this technique will not

prevent all mouse flows from erroneously being promoted

to moles, it does eliminate enough mouse flows to store the

sampled mole flows in the limited switch memory.

Algorithm 4: Sample and Hold Switch Algorithm

Func UpdateAndCheck(f ,D):
if f ∈ D

lf ← D[f].l

τf ← ϵT /lf
D[f].count ← D[f].count + 1

if D[f].count ≥ τf
D[f].count ← 0

return True

else
if Flip(s)

D[f].count← v

return False

We describe the UpdateAndCheck function in Algorithm 4

using a key-value store D of limited size. For each incoming

packet belonging to a flow f , the switch first checks if f is

currently in the key-value store D. If not, the switch inserts

f into D with probability s . If the switch decides to insert the

flow, it initializes the count in D to an initial value (v = 1

s).

We discuss how to set sampling rates and initial values in

more detail in Section 5. If the flow is in D, the switch first

looks up the lf parameter stored in D to calculate τf and rf .

flow count
f1 10

src dst l

10.0.0.0/8 20.0.0.0/8 3

5.0.0.0/8 6.0.0.0/8 2

Figure 3: Herd Switch Data Structures for locality.

The switch then updates the count and checks to see if it

will report this bundle to the coordinator.

We can reduce the memory footprint of D by using a

low sampling probability. However, we want a sampling

probability high enough such that when sampled, the initial

value does not exceed (τ), therefore automatically promoting

all moles to mules. We prevent this by selecting a sampling

probability greater than
1

τ .

4.2 Locality-aware Data Structure
As we discussed in Section 3.2, a locality-aware coordination

protocol ensures that switches can use a higher reporting

threshold τf based on the locality parameter lf . However,
the forces that affect flow locality (e.g., Internet routing) can

operate at a granularity independent of the granularity at

which we may want to monitor flows. We must account for

this disparity in the locality-aware data structure.

4.2.1 Storing Parameters at the Granularity of Locality. So
far, we have assumed that switches can calculate per-flow

parameters such as reporting probability (rf), and reporting

threshold (τf) based on the locality parameter lf . The over-
head of maintaining these parameters at the flow-level of

granularity could outweigh the benefits of locality aware-

ness both in terms of communication and memory costs.

Fortunately, the granularity at which flows exhibit spatial

locality is much coarser than that required for monitoring.

For example, forwarding decisions are usually made at the

granularity of source and/or destination IP prefixes, affecting

where flows will display locality. On the other hand, network

operators might be interested in detecting heavy hitters at

the five-tuple or source-destination pair address granular-

ity. We will now show how we leverage this observation to

reduce the memory footprint and communication overhead

for maintaining locality-aware parameters.

To leverage this observation, we define a group (дsrc,dst)
based on source-destination IP prefix pairs, such thatдsrc,dst =
{ f | f .srcIP ∈ src, f .dstIP ∈ dst}. As shown in Figure 3,

rather than maintaining and updating the locality parameter

on a per-flow basis, a switch maintains the locality parame-

ter based on the group that displays this locality. We store

a group (д) at a switch if at least one flow f ∈ дsrc,dst is
observed at the switch. Algorithm 1 is modified so that the

switch extracts the locality parameter lд for a flow f based

Herding the Elephants CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA

on the group to which the flow belongs. The switch then

calculates the parameters τд and rд and supplies τд as an

additional parameter to UpdateAndCheck. The updated Al-

gorithm 6 shows small changes needed from the original

switch algorithm and is provided for reference in Appen-

dix A. Algorithm 3 is also modified slightly such that all

variables indexed by f are now indexed by д.

5 TUNING SYSTEM PARAMETERS
So far, we have discussed how we designed the coordination

protocol and switch data structure to achieve high accuracy

with limited communication and memory costs. However,

when configuring the parameters for each (e.g., sampling

and reporting probability, local threshold, etc.) in isolation,

we may actually choose values for these parameters that

worsen performance under resource constraints. Given the

operational constraints on switch memory S and the com-

munication overhead C , we now describe an algorithm for

determining the optimal parameter configuration such that

the system achieves high detection accuracy within the con-

straints. In this section, we use representative packet traces

to first set the sampling rate based on the switch memory

bounds (§ 5.1). We then show how to set reporting param-

eters (§ 5.2) based on bandwidth constraints. Finally, we

describe a heuristic algorithm that maximizes the detection

accuracy for a given bandwidth and memory budget (§ 5.3)

by choosing “good” values of parameters based on funda-

mental bounds (§ 5.4). In this section, we assume a single

flow group for the sake of clarity since the same process can

be applied to multiple flow groups.

5.1 Sampling Based on State Constraints
If we had unlimitedmemory in the switch, we couldmaintain

exact counters for all of the flows by setting the sampling

probability to s = 1. However, the available memory is finite,

and Herd needs to account for this limitation. Given the

operational constraints on a switch’s memory is S , our goal is
to determine the highest sampling probability s that satisfies
this constraint given the workload.

If P denotes the number of packets observed by the switch,

then we expect the memory usage to be (sP). Therefore, the
maximum sampling probability the switch data structure

could support is
S
P for a given bound on switch memory S .

However, if the flow size distribution is known a priori, we

can select a higher sampling probability, based on the num-

ber of moles that the switch can maintain. The GetSampling
function in Algorithm 5 shows howwe use the given data (D)
to empirically determine the highest possible sampling prob-

ability, given the memory constraint S . LetM denote the set

of mole flows observed at the switch. The CalculateMoles
function is used to calculate M , given the workload D and

Symbol Meaning

Given

T Global threshold

C Communication budget per switch

S Memory budget per switch (# counters)

k Total number of ingress switches

l Number of switches which observe a flow

D Training Data

Determine

ϵ Approximation Factor

τ Local (Mule) threshold

M Set of moles observed at switch

U Set of mules at a switch

r Reporting probability to coordinator

s Sampling probability at a switch

Table 1: Network-Wide Heavy Hitter Parameters

sampling probability s; the function iteratively searches for

the largest setM that the switch can support.

To ensure that the actual set of moles sampled at the switch

contains true mules, we must ensure that we sample with

probability greater than
1

τ in order to ensure that the count

of the sampled flows is strictly less than the mule threshold

τ , in expectation. In summary, the local mule threshold de-

termines the lower bound for sampling probability, and the

available switch memory sets its upper bound.

5.2 Reporting Based on Communication
If we had unlimited bandwidth, we could set ϵ as small as

needed to achieve the desired accuracy and incur the result-

ing communication overhead. However, communication re-

sources are also constrained so we need to adjust the system

parameters accordingly. Given the communication bound C ,
we must configure the reporting probability.

In section 3.1.4, we calculate the reporting probability as

1

l to achieve good accuracy and grow to large size networks.

However, we must adjust the local threshold (τ), reporting
probability (r), and global reporting threshold (R) for high
accuracy given communication constraints. The function

DeriveReporting configures these parameters based on a

given value of (ϵ). A switch sends
T
τ reports to the coordina-

tor for each mule flow when r = 1. We denoteU to be the set

of mule flows observed at a switch. The CalculateMules
function is used to determine U , given the set of moles and

the local threshold as input. Finally, the algorithm uses the

set of mule flows and the communication budget to calculate

the reporting probability. The total number of reports sent

to the coordinator is bound by the total number
T |U |r

τ , in

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

expectation. For a given C , the upper bound on reporting

probability is, therefore,
C ·τ
T |U | .

5.3 Tuning for High Accuracy
Once we have set the sampling rate and determined the re-

porting probability, we can now find an optimal local thresh-

old. Since the local threshold can be tuned with the approxi-

mation factor ϵ , we describe an algorithm that searches for an

optimal value based on the given parameters of the system.

In the TuneAccuracy function, the algorithm uses represen-

tative packet traces to empirically compute the moles and

mules and set the parameters of the system as described

above. After calculating all parameters, the algorithm calls

the GetAccuracy function to determine the accuracy of the

System using this parameter configuration. The algorithm

then iteratively searches for a value of ϵ that is at least ϵmin
where the accuracy of a succeeding iteration is less than the

preceding iteration and then terminates.

5.4 Selecting the Right Values of ϵ
Many counter estimation techniques often leave selecting

the approximation factor (ϵ) to the user. However, näively

choosing values of ϵ without regard to the other parameters

can actually result in poor system performance. By wisely

selecting values of ϵ , we can both reduce the range of possi-

ble values for ϵ that Algorithm 5 has to explore and avoid

the detrimental effects that can occur when discretizing pa-

rameters. For example, although ϵ is a real number, it is used

to calculate integer thresholds for the local switches (τ) and
the global number of reports (R). When determining these

discrete values based on a continuous calculation, rounding

can significantly degrade system performance, which we

describe and show later in Section 7.2. To reduce this error,

we can select values of ϵ that result in whole integer values

for other parameters. First, we begin by asserting that there

are maximum (ϵmax) and minimum values (ϵmin) that we

wish to explore shown here in Theorems 1, 2. We include

the proof of each theorem below in Appendix B.

Theorem 1 (ϵmin). For all k, l ,T where k ≥ l and τ ≥ 1,
there exists an ϵmin ≥

k
T .

Since we also know that as the local threshold on the

switch grows too large, the accuracy of the system degrades.

Consequently, we can ignore values of ϵ that would result in
local thresholds larger than (T /k), shown here in Theorem 2.

Theorem 2 (ϵmax). For all k, l ,T where k ≥ l and τ ≤ T
k ,

there exists an ϵmax ≤
l
k .

Intuitively, we also know that ϵmax should be greater than

or equal to ϵmin . Whenever that condition does not hold, we

cannot use our algorithm to find the best value of ϵ . We can

Algorithm 5: Algorithm for tuning parameters.

Func GetSampling(S,D,mole_tau):
s ← 1

mole_tau
M ← CalculateMoles(D, s) // Section 5.1

while |M | < S do
mole_tau ←mole_tau − 1

M ← CalculateMoles(D, s)
end
returnmole_tau

Func DeriveReporting(C,ϵ, l , s):
τ ← ϵT

l // Section 5.2

M ← CalculateMoles(D, s)
U ← CalculateMules(M , τ)
r ← C ·τ

T |U |

R ← l ·r
T

return R,U , r ,τ

Func TuneAccuracy(T , S,C,D, l):
Amax ← 0 // Section 5.3

mole_tau ← GetSampling(S,D,T)

s ← 1

mole_tau
while ϵ ∈ [ϵmax . . . ϵmin] do

R,U , r ,τ ← DeriveReporting(C, ϵ, l , s)

A← GetAccuracy(D, R, T, U, r, s, τ ,)
if A ≥ Amax

ϵmax ← ϵ

ϵ ← ϵ − σ // Section 5.4

Amax ← A

else
break

end

use Theorems 1 and 2 to determine in what combination of

compatible parameters this condition will hold.

Theorem 3 (Parameter Compatibility). By Theorems 1
and 2, for all k, l ,T where k ≥ l , parameters are compatible
when T ≥ k2

l .

To minimize quantization error when selecting values of ϵ ,
we should seek to ensure that the calculated local threshold

is a whole integer without rounding. We therefore select a

quantization step (σ = l
T) and set ϵ as an integer factor of

this step to ensure that all values of τ are whole integers.

Theorem 4 (Quantization Factor (σ)). For allk, l ,T , ϵ,τ
where σ = l

T , there exists an integer factor (n) that ensures τ
is a whole integer.

Finally, we can use Theorems 1, 2 and 4 to determine the

values of nmin ≥
k
l and nmax ≤

T
k .

Herding the Elephants CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA

6 P4 PROTOTYPE
We now describe our P4 prototype that implements the co-

ordination protocol and the switch data structure. A modern

PISA [24] switch consists of a programmable parser that

can extract user defined fields from a packet. It stores the

extracted packet fields, as well as additional metadata fields

in a packet header vector (PHV). A multi-staged packet pro-

cessing pipeline transforms this PHV using a fixed amount

of resources in each stage. Each stage consists of one or more

match-action tables (MAT) that consume the finite TCAM,

SRAM, and ALUs to match on and transform fields in the

PHV. At the end of the processing pipeline, a deparser seri-

alizes the PHV, into a packet before sending it to an egress

interface. In this section, we describe the overall structure of

our P4 prototype and then describe the challenges that we

faced while implementing our prototype in this architecture.

6.1 The Life of a Packet
When a packet enters the PISA pipeline, we first determine

to which group (дsrc,dst) the packet belongs. The group iden-
tifier is then used to match a rule in a MAT (§ 6.2), in order

to determine the local threshold (τд), and reporting proba-

bility (rд) for that group. Next, two independent but biased

coin flips (§ 6.3) are performed; the first coin flip is based

on the sampling probability (s) and the second based on the

reporting probability (r). Both results are stored as packet

metadata values f lip1 and f lip2, respectively, for use later
in the pipeline. Finally, we must check if the flow is stored in

the hash tables that implement the key-value store D (§ 6.4).

If the flow is found, its counter is incremented. If the counter

is greater than τд , the counter is reset to 0; if f lip2 == true
as well, a report is then sent for this flow. If the flow was

not found and f lip1 == true, then the flow is sampled

and stored in the hash table. If no empty space is found in

the hash table, then the packets in the flow are sent to the

coordinator—trading communication cost for accuracy.

6.2 Storing Locality Parameters with MAT
So far, our presentation of the switch data structure assumed

that the switch could compute the local threshold (τд), and
reporting probability (rд) by itself if it knew lд . However in
practice, such computations require floating point arithmetic

that is currently not supported in PISA switches. Since both

parameters are specific to each locality group, we can store

both parameters in a match-action table as shown in Figure 3.

However, instead of storing lд itself, we can precompute the

values of (τд) and (rд) and store them instead. Consequently,

we can retrieve these values using a single lookup in the

match-action table where τд and rд are stored. This example

shows how seemingly simple algorithms must be altered in

order implement them on (today’s) PISA switches.

6.3 Flipping Coins with Hashes
The Flip function, used in Algorithms 2, 4, and 6, requires

flipping a biased coin in the switch. A naïve implementation

of Flip also requires support for floating point arithmetic

on the switch. Instead, we represent floating point values

(0 < i ≤ 1.0) as unsigned integers, which is similar to how

other works [1] have implemented probabilistic techniques

with PISA switches. We then use a combination of a packet’s

timestamp and other header fields to compute a 32-bit hash

value. A Flip operation returns True if the computed hash

is less than

⌈
2
32i

⌉
. This approach introduces a small quan-

tization error since we can only represent probabilities as

multiples of
1

2
32
.

6.4 Key-Value Store with Hash Tables
The UpdateAndCheck function (detailed in Algorithm 4) for

updating the counters of mole flows requires implement-

ing the key-value data store D. We can implement this data

store as a hash-indexed register array within a single stage.

However, these hash-indexed arrays will likely encounter

collisions in a single stage. To address this problem, we im-

plement D as a multi-stage hash-table. When inserting a

value into D, we insert the value in the first hash table that

contains no collision. Though this approach ensures that a

switch can maintain counters for a large number of mole

flows, the limited memory per stage and number of stages

ensures that collisions are inevitable as the number of flows

grows large.

7 EVALUATION
In this section, we quantify how Herd makes efficient use of

limited communication and state resources to detect network-

wide heavy hitters with as high accuracy as possible. We

use real-world packet traces to demonstrate how combining

probabilistic counting with probabilistic reporting reduces

Herd’s memory footprint by 38% and bandwidth footprint by

17% to report network-wide heavy hitters with 97% accuracy.

7.1 Setup
To quantify Herd’s performance, we run a simple network-

wide heavy-hitter query to determine which flows (based

on the standard five-tuple of source/destination IP address,

source/destination port, and transport protocol) send a num-

ber of packets greater than a global threshold (T) during a

rolling time window (W).

Simulation experiments. For our experiments, we mon-

itor at the edge switches of the network where the num-

ber of edge switches (k) is 10 — representative of a wide-

area network connecting multiple data centers for cloud

providers [13]. For all experiments, each flow shows affinity

for two ingress switches, i.e., l = 2, based on the source IP

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

Technique Prob.
Counting

Prob.
Reporting

State
Required

Strawman ✗ ✗ 345K

RLA ✗ ✓ 345K

Sampling ✗ ✓ N/A

Herd ✓ ✓ 211K

Table 2: Comparing to other Heavy-Hitter detection
techniques. Herd uses both probabilistic counting and
reporting where other approaches use only one.

address. We choose a global threshold that corresponds to

the 99.99th percentile flow count in the packet trace.

Packet traces. To emulate real-world traffic distributions,

we used CAIDA’s anonymized Internet traces from 2016 [19].

These traces consist of all the traffic traversing a single OC-

192 link between Seattle and Chicago within a major ISP’s

backbone network. Each minute of the trace consists of ap-

proximately 64 million packets. For our experiments, we use

a time window (W) of five seconds resulting in around 5

million packets and hence ≈ 270K unique flows per window.

Since the packet traces are collected from a single link

only, we associate packets from the trace with a given ingress

switch based on a hash of the source IP address. For each

source IP address, we assign an affinity for a specific ingress

switch with probability p. Packets from a given source IP are,

therefore, processed at a “preferred” switch with probability

p and at the other switches with probability (1 − p). For the
case of l = 2, this distribution simulates a primary/alternate

relationship on ingress for a single source and p = 0.95.

7.2 Baseline Herd Performance
To demonstrate the benefits of combining probabilistic count-

ing and reporting, we quantify the amount of state and com-

munication overhead for Herd and compare it with the ex-

isting heavy-hitter detection techniques that either employ

probabilistic counting or reporting, but not both.

Alternative Approaches. First, we consider a strawman

solution that makes use of neither probabilistic counting or

reporting; each switch maintains counters for every flow (all

flows are moles) and reports all the counters to a central

coordinator at the end of a window. Second, we consider a

solution based on the randomized reporting technique [9];

where the switch still treats all flows as moles, but it proba-

bilistically reports mules to the coordinator with parameters

that ignore locality. Finally, we consider a solution based

on packet sampling technique [18], which probabilistically

samples packets based on a sampling rate and reports all of

those samples to the coordinator.

0 2000 4000 6000
Communication per Interval (KB)

50

60

70

80

90

100

Fs
co

re
(%

)

Sampling
Strawman
RLA
Herd

Figure 4: Communication vs. Accuracy. Herd can
achieve accurate results with comparably lower com-
munication overhead than existing approaches.

Communication and State Savings. We quantify the

state overhead as the number of stateful counters required

at the switch and the communication overhead as kilobytes

sent to the coordinator for each window interval. We quan-

tify accuracy in terms of both precision (PR) and recall (RE)
and present them as a single F1 score calculated as

2×PR×RE
PR+RE .

In Table 2, we see that Herd achieves 38% savings in the

state required for alternate approaches. In Figure 4, we com-

pare how much communication is needed to reach a certain

level of accuracy. We see that to achieve an F1 score of 97%,
Herd communicates 17% less than sampling packets with a

probability of 0.075.
As the threshold determining heavy-hitters decreases, this

advantage becomes more pronounced. We evaluated the

communication/accuracy tradeoff compared with sampling

for three different heavy-hitter thresholds ranging from the

99.99th to the 99
th

percentile thresholds. Herd performs

strictly better than the sampling approach in all cases, ex-

cept in the 99.99th percentile threshold where the sampling

probability is greater than 0.05 – an unrealistically-high sam-

pling probability for modern data centers. Graphs showing

the affect of different thresholds is shown in Appendix C.

7.3 Tuning for Resource Constraints
So far, we have demonstrated that combining probabilistic

counting with reporting reduces both the memory and band-

width footprint for detecting network-wide heavy hitters.We

will now show the relationship between Herd’s performance

(accuracy) and configuration parameters (ϵ) for different op-
erational constraints. These relationships guide the design

of our tuning algorithm.

Unconstrained Performance. We first show the rela-

tionship between accuracy and configuration parameters

(derived from ϵ) for the unconstrained case. Figure 5, shows

both precision and recall for Herd while varying ϵ without
any resource constraints. As we choose a smaller epsilon,

the accuracy of the results generally improves. However, we

Herding the Elephants CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA

10−3 10−2 10−1 100

(psilRn

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Recall
3recisiRn

(a) Un-quantized Values of ϵ

10−2 10−1 100

Epsilon

20

40

60

80

100

Ac
cu

rac
y (

%)

Recall
Precision

(b) Properly Quantized Values of ϵ

Figure 5: Accuracy while varying values of ϵ .

do see that this relationship is not strictly monotonic. We ob-

serve the bands of decreasing precision when ϵ is very large

or very small. These bands are caused by the the quantiza-

tion errors introduced when discretizing system parameters

such as τ and R (discussed in Section 5.4). For example, in the

bands of decreasing precision on the right of Figure 5(a), each

data point corresponds to a single global reporting threshold

(R) but a range of local thresholds (τ) that can vary by up

to a thousand. On the left side of the graph, the opposite

is true; a single local threshold corresponds to a range of

global reporting thresholds. By properly quantizing values

of epsilon as shown in Section 5.4, we do not observe these

artifacts as shown in Figure 5(b).

Constrained State. Here, we limit the number of coun-

ters each switch can store. By choosing the sample-and-hold

technique for storing counters at switches, we expect that

for a given state capacity (S) and sampling probability (s),
the data structure will contain a mixture of both small and

heavy flows. However, as we increase S and s , we will count
more small flows in expectation. As shown in Figure 6(a),

increasing S and s improves the precision of the results, but

the improvement diminishes as S grows large.

ConstrainedCommunication.We expect that as we de-

crease ϵ , we should increase communication and increase the

10−4 10−3 10−2 10−1 100

Epsilon

0
20
40
60
80

100
120

Pr
ec

isi
on

 (%
)

smax =500.0
smax =5000.0
smax =40000.0

(a) Constrained in state unconstrained by communication

10−4 10−3 10−2 10−1 100

Epsilon

0
20
40
60
80

100
120

Pr
ec

isi
on

 (%
)

cmax =10k
cmax =50k
cmax =90k

(b) Constrained in communication unconstrained by state

Figure 6: Precision for various ϵ with constraints.

accuracy of the results. Algorithm 5, shows us how to adjust

the reporting probability based on the available communi-

cation capacity (C), however, as we decrease the reporting
probability and the reporting threshold to cope with the

communication bound, too many false positives are gener-

ated as shown in Figure 6(b). This trend is not reflected in

the unconstrained case. These results show that the rela-

tionship between accuracy and ϵ is non-monotonic, though

communication and state costs do monotonically decrease

as ϵ increases. These observations guided the design of our

tuning algorithm that empirically tries to find the largest

value of ϵ that achieves the highest detection accuracy.

Tuning Efficacy. To determine the effectiveness of our

tuning algorithm, we varied both state and communication

constraints and let Algorithm 5 find the best value of ϵ . In
Figure 7(a), we see the performance of tuning when both

state and communication constraints are imposed, shown

on the x and y-axes, respectively. We see that as resource

constraints are relaxed, the system finds a smaller value of ϵ .
In Figure 7(b), we see the system’s accuracy under the same

constraints using the best value of ϵ determined by tuning ϵ
for those constraints. Herd is able to produce more accurate

results as the constraints are relaxed, but Herd also provides

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

10000 20000 30000 40000
State Bound (Counters)

20000

40000

60000

80000

Co
mm

un
ica

tio
n B

ou
nd

 (K
B)

Best Epsilon

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

(a) The best value of ϵ after tuning.

10000 20000 30000 40000
State Bound (Counters)

20000

40000

60000

80000

Co
mm

un
ica

tio
n B

ou
nd

 (K
B)

Accuracy with Best Epsilon

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975

(b) Accuracy with best epsilon.

Figure 7: Efficacy of tuning.

good accuracy even under strict memory and bandwidth

constraints.

8 RELATEDWORK
Scalable measurement techniques. NetFlow [6] was the

first standardized approach for collecting ongoing telemetry

from network switches. However, Netflow incurs significant

CPU overhead or specialized hardware to run efficiently.

Packet sampling [18] emerged as the de facto technique to

cope with both the memory and communication limitations.

However, packet sampling can introduce significant inac-

curacy to detecting heavy hitters, especially on small time

scales [18]. FlowRadar [14] reduces the memory and commu-

nication overhead using a novel encoding of flow counters.

Similarly, CSamp [22] provides a sampling mechanism for

network-wide measurements. While both of these works

are general-purpose solutions for performing network-wide

measurement of most flows, we offer a tailored solution for

continuous, network-wide monitoring of a global threshold

distributed across several switches.

Single-switch heavy hitters with limited state. Prior
work showed how to use compact data structures (e.g., count-

min sketch [8] and Space-Saving [16]) to compute heavy

hitters on a single switch. However, Sivaraman et al. [23]

showed that implementing such algorithmswith state-of-the-

art programmable switches is difficult. Similarly, other tech-

niques such as Cuckoo [17] andd-left [25] hashing can detect
heavy hitters with small state, but they prove to be impossi-

ble or impractical to implement in modern programmable

switches [4]. Recent work, such as ElasticSketch [26], offers

a technique to avoid maintaining state for mouse flows in

the data plane by offloading the computation to the control

plane. Other solutions, such as SketchVisor [12], rely on soft-
ware packet processing which limits their abilities to handle

very high data rates. Our approach, based on the sample-and-

hold [10] technique, uses sampling to filter out mice flows

completely in the data plane and only maintains per-flow

state for potential heavy hitters.

Network-wide heavy hitters with limited communi-
cation. Detecting network-wide heavy hitters is an instance

of the continuous distributed monitoring (CDM) problem [7].

This formulation of the problem has enabled theoretical anal-

yses that demonstrated upper and lower bounds on the com-

munication complexity [9, 27] for both deterministic and ran-

domized solutions. In our work, we extend the basic model

from these theoretical works to account for the realities of

flow affinity in modern networks [20, 21], as well as the

capabilities of programmable switches to support these pro-

tocols. Recent work [11] showed that using adaptive local

thresholds to account for flow locality could reduce com-

munication overhead for computing network-wide heavy

hitters exactly, but that solution does not scale as the number

of nodes increases and requires much more communication

overhead than our approach. In contrast, our work accounts

for flow locality in the CDM model and the communication

costs do not scale in proportion to the number of switches in

the network. Our solution also offers tunable accuracy based

on bandwidth constraints.

9 CONCLUSION
We presented a system for detecting network-wide heavy

hitters with high accuracy under communication and state

constraints. We combined sample-and-hold counting on the

switches with probabilistic reporting to a central coordi-

nator. Based on these reports, the coordinator adapts the

parameters at each switch to the spatial locality of the flows.

We presented an algorithm for tuning the various System

parameters to increase detection accuracy under resource

constraints. In the future, we would like to apply more ro-

bust techniques to avoid overfitting system parameters to

the training data.

Herding the Elephants CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA

REFERENCES
[1] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018.

Efficient Measurement on Programmable Switches Using Probabilistic

Recirculation. In IEEE ICNP.
[2] Ran Ben-Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, and

Danny Raz. 2018. Network-wide routing-oblivious heavy hitters. In

ACM/IEEE ANCS.
[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming Protocol-

independent Packet Processors. ACM SIGCOMM Computer Communi-
cation Review (July 2014).

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-

eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-

warding Metamorphosis: Fast Programmable Match-Action Processing

in Hardware for SDN. In ACM SIGCOMM.

[5] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.

Joseph. 2009. Understanding TCP Incast Throughput Collapse in

Datacenter Networks. In ACM SIGCOMM Workshop on Research on
Enterprise Networking.

[6] Benoit Claise. 2004. Cisco Systems NetFlow Services Export Version 9.

RFC 3954 (2004).
[7] Graham Cormode. 2011. Continuous Distributed Monitoring: A Short

Survey. In International Workshop on Algorithms and Models for Dis-
tributed Event Processing.

[8] Graham Cormode and Shan Muthukrishnan. 2005. An Improved Data

Stream Summary: The Count-Min Sketch and Its Applications. Journal
of Algorithms (2005).

[9] Graham Cormode, S Muthukrishnan, and Ke Yi. 2011. Algorithms for

Distributed Functional Monitoring. ACM Transactions on Algorithms
(2011).

[10] Cristian Estan and George Varghese. 2003. New Directions in Traffic

Measurement and Accounting: Focusing on the Elephants, Ignoring

the Mice. ACM Transactions on Computer Systems (2003).
[11] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018.

Network-Wide Heavy Hitter Detection with Commodity Switches. In

ACM SIGCOMM Symposium on SDN Research.
[12] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao

Chen, and Gong Zhang. 2017. SketchVisor: Robust Network Measure-

ment for Software Packet Processing. In ACM SIGCOMM.

[13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon

Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan

Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vah-

dat. 2013. B4: Experience with a Globally-deployed Software Defined

WAN. In ACM SIGCOMM.

[14] Yuliang Li, RuiMiao, Changhoon Kim, andMinlan Yu. 2016. FlowRadar:

A Better NetFlow for Data Centers. In USENIX NSDI.
[15] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and

Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking

Network Flow Monitoring with UnivMon. In ACM SIGCOMM.

[16] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2006. An

Integrated Efficient Solution for Computing Frequent and Top-k Ele-

ments in Data Streams. ACM Transactions on Database Systems (2006).
[17] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing.

Journal of Algorithms (2004).
[18] P. Phaal, S. Panchen, and N. McKee. 2001. InMon Corporation’s sFlow:

A Method for Monitoring Traffic in Switched and Routed Networks.

RFC 3176 (2001).
[19] report [n. d.]. The CAIDA Anonymized Internet Traces 2016

Dataset. https://www.caida.org/data/passive/passive_2016_dataset.

xml. ([n. d.]).

[20] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.

Snoeren. 2015. Inside the Social Network’s (Datacenter) Network. In

ACM SIGCOMM.

[21] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,

Harsha V Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr

Lapukhov, and Hongyi Zeng. 2017. Engineering Egress with Edge

Fabric: Steering Oceans of Content to the World. In ACM SIGCOMM.

[22] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ra-

mana Rao Kompella, and David G. Andersen. 2008. cSamp: A System

for Network-Wide Flow Monitoring. In USENIX NSDI.
[23] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S.

Muthukrishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection

Entirely in the Data Plane. In ACM SIGCOMM Symposium on SDN
Research.

[24] url [n. d.]. Barefoot’s Tofino. https://www.barefootnetworks.com/

technology/. ([n. d.]).

[25] Berthold Vöcking. 1999. How Asymmetry Helps Load Balancing. In

IEEE Symposium on Foundations of Computer Science.
[26] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,

Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive

and Fast Network-Wide Measurements. In ACM SIGCOMM.

[27] Ke Yi and Qin Zhang. 2009. Optimal Tracking of Distributed Heavy

Hitters and Quantiles. In ACM SIGMOD-SIGART-SIGACT Symposium
on Principles of Database Systems.

[28] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic

Measurement with OpenSketch. In USENIX NSDI.

A MODIFIED SWITCH ALGORITHM
As described in Section 4.2, Algorithm 1 is modified so that

the switch extracts the locality parameter lд for a flow f
based on the group to which the flow belongs, and then cal-

culates the parameters τд and rд . Algorithm 6 shown below

details the needed modifications.

Algorithm 6: Switch Algorithm

Input: See Table 1
Func ProcessPacket(pkt):

f ← ExtractFlow(pkt)
lд ← GetLFromGroup(f)
τд , rд ← τ = ϵT /lд ,

1

lд
exceeds ← UpdateAndCheck(f,D,τд)
if exceeds

if Flip(rд)
Report(f)

B PARAMETER SELECTION PROOFS
We Provide proofs for theorems from Section 5.4.

Theorem 1 (ϵmin). For all k, l ,T where k ≥ l and τ ≥ 1,
there exists an ϵmin ≥

k
T .

Proof.

Tϵ

max(k, l)
= τ

Tϵmin

max(k, l)
≥ 1

https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/

CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Anon.

Tϵmin

k
≥ 1

ϵmin ≥
k

T
□

Theorem 2 (ϵmax). For all k, l ,T , where k ≥ l and τ ≤ T
k ,

there exists an ϵmax ≤
l
k .

Proof.

Tϵmax

min(k, l)
≤
T

k
ϵmax

l
≤

1

k

ϵmax ≤
l

k
□

Theorem 3 (Parameter Compatibility). By Theorems 1
and 2, for all k, l ,T where k ≥ l , parameters are compatible
when ϵmax ≥ ϵmin .

Proof.

l

k
≥ ϵmax ≥ ϵmin ≥

k

T
l

k
≥

k

T

1 ≥
k2

T · l

T ≥
k2

l
□

Theorem 4 (Quantization Factor (σ)). For allk, l ,T , ϵ,τ ,
where σ = l

T there exists an integer factor (n) that ensures τ is
a whole integer.

Proof.

ϵ = σn

τ =
Tϵ

l

τ = n
Tσ

l

τ = n
T

l
·
l

T
τ = n

□

C ADDITIONAL EVALUATIONS
Sensitivity to Heavy-Hitter Threshold. In section 7, we

showed in Figure 4, that Herd can achieve higher accuracy for

less bandwidth compared to existing approaches. In Figure 8,

we show the communication/accuracy tradeoff compared

with sampling for three different heavy-hitter thresholds

ranging from the 99.99th percentile to the 99
th

percentile

threshold. In each case, we see that Herd performs strictly

better than the sampling approach except in the 99.99th per-

centile threshold and the sampling probability is greater than

0.05 which is unrealistically-high for modern data centers.

0 2000 4000 6000
Communication (KBytes)

40

60

80

100

Pr
ec

isi
on

 (%
)

99.99%-Herd
99.99%-Sample
99.9%-Herd
99.9%-Sample
99%-Herd
99%-Sample

(a) Precision

0 2000 4000 6000
Communication (KBytes)

40

60

80

100

Re
ca

ll (
%) 99.99%-Herd

99.99%-Sample
99.9%-Herd
99.9%-Sample
99%-Herd
99%-Sample

(b) Recall

Figure 8: Accuracy vs. Communication Cost and
Threshold.

	Abstract
	1 Introduction
	2 Herd Overview
	2.1 Who's Who in the Zoo
	2.2 Probabilistic Counting and Reporting

	3 Coordination Protocol
	3.1 When to Report Which Flows
	3.2 Locality-aware Reporting Parameters

	4 Switch Data Structure
	4.1 Separating Mice from Moles
	4.2 Locality-aware Data Structure

	5 Tuning System Parameters
	5.1 Sampling Based on State Constraints
	5.2 Reporting Based on Communication
	5.3 Tuning for High Accuracy
	5.4 Selecting the Right Values of Epsilon

	6 P4 Prototype
	6.1 The Life of a Packet
	6.2 Storing Locality Parameters with MAT
	6.3 Flipping Coins with Hashes
	6.4 Key-Value Store with Hash Tables

	7 Evaluation
	7.1 Setup
	7.2 Baseline Herd Performance
	7.3 Tuning for Resource Constraints

	8 Related Work
	9 Conclusion
	References
	A Modified Switch Algorithm
	B Parameter Selection Proofs
	C Additional Evaluations

