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ABSTRACT
Identifying the “heavy hitter” �ows or �ows with large
tra�c volumes in the data plane is important for several
applications e.g., �ow-size aware routing, DoS detec-
tion, and tra�c engineering. However, measurement
in the data plane is constrained by the need for line-
rate processing (at 10-100Gb/s) and limited memory in
switching hardware. We propose HashPipe, a heavy hit-
ter detection algorithm using emerging programmable
data planes. HashPipe implements a pipeline of hash
tables which retain counters for heavy �ows while evict-
ing lighter �ows over time. We prototype HashPipe in P4
and evaluate it with packet traces from an ISP backbone
link and a data center. On the ISP trace (which contains
over 400,000 �ows), we �nd that HashPipe identi�es
95% of the 300 heaviest �ows with less than 80KB of
memory.

KEYWORDS
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1 INTRODUCTION
Many network management applications can bene�t
from �nding the set of �ows contributing signi�cant
amounts of tra�c to a link: for example, to relieve link
congestion [5], to plan network capacity [18], to de-
tect network anomalies and attacks [23], or to cache
forwarding table entries [36]. Further, identifying such
“heavy hitters” at small time scales (comparable to tra�c
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variations [1, 5]) can enable dynamic routing of heavy
�ows [16, 35] and dynamic �ow scheduling [41].

It is desirable to run heavy-hitter monitoring at all
switches in the network all the time, to respond quickly
to short-term tra�c variations. Can packets belonging to
heavy �ows be identi�ed as the packets are processed in
the switch, so that switches may treat them specially?

Existing approaches to monitoring heavy items make
it hard to achieve reasonable accuracy at acceptable
overheads (§2.2). While packet sampling in the form of
NetFlow [12] is widely deployed, the CPU and band-
width overheads of processing sampled packets in soft-
ware make it infeasible to sample at su�ciently high
rates (sampling just 1 in 1000 packets is common in
practice [34]). An alternative is to use sketches, e.g.,
[14, 24, 25, 45] that hash and count all packets in switch
hardware. However, these systems incur a large memory
overhead to retrieve the heavy hitters — ideally, we wish
to use memory proportional to the number of the heavy
�ows (say the top hundred). There may be tens of thou-
sands of active �ows any minute on an ISP backbone
link (§5) or a data center top-of-rack switch [4].

Emerging programmable switches [3, 7, 9] allow us
to do more than sample, hash, and count, which sug-
gests opportunities to run novel algorithms on switches.
While running at line rates of 10-100 Gbps per port
over 10-100 ports, these switches can be programmed to
maintain state over multiple packets, e.g., to keep �ow
identi�ers as keys along with counts. Stateful manipu-
lations can also be pipelined over multiple stages, with
the results carried by the packet from one stage to the
next and compared to stored state in subsequent stages.

However, switches are also constrained by the need
to maintain high packet-processing throughput, having:

• a deterministic, small time budget (1 ns [7]) to
manipulate state and process packets at each
stage;

• a limited number of accesses to memory stor-
ing state at each stage (typically just one read-
modify-write);

• a limited amount of memory available per stage
(e.g., 1.4MB shared across forwarding and moni-
toring [7]);



• a need to move most packets just once through
the pipeline, to avoid stalls and reduced through-
put (“feed-forward” [19]).

We present HashPipe, an algorithm to track the k
heaviest �ows with high accuracy (§3) within the fea-
tures and constraints of programmable switches. Hash-
Pipe maintains both the �ow identi�ers (“keys”) and
counts of heavy �ows in the switch, in a pipeline of hash
tables. When a packet hashes to a location in the �rst
stage of the pipeline, its counter is updated (or initial-
ized) if there is a hit (or an empty slot). If there is a miss,
the new key is inserted at the expense of the existing
key. In all downstream stages, the key and count of the
item just evicted are carried along with the packet. The
carried key is looked up in the current stage’s hash table.
Between the key looked up in the hash table and the one
carried, the key with the larger count is retained in the
hash table, while the other is either carried along with
the packet to the next stage, or totally removed from the
switch if the packet is at the last stage. Hence, HashPipe
“smokes out” the heavy keys within the limited available
memory, using pipelined operation to sample multiple
locations in the hash tables, and evicting lighter keys
in favor of heavier keys, with updates to exactly one
location per stage.

We prototype HashPipe in P4 [6] (§4) and test it on
the public-domain behavioral switch model [32]. We
evaluate HashPipe with packet traces obtained from an
ISP backbone link (from CAIDA) and a data center, to-
gether containing over 500 million packets. We show
that HashPipe can provide high accuracy (§5). In the
backbone link trace, HashPipe incurs less than 5% false
negatives and 0.001% false positives when reporting 300
heavy hitters (keyed by transport �ve-tuple) with just
4500 counters (less than 80KB) overall, while the trace
itself contains 400,000 �ows. The errors both in false neg-
atives and �ow count estimations are lower among the
heavier �ows in the topk . At 80KB of memory, HashPipe
has 15% lower false negatives with respect to sample
and hold [17], and 3-4% with respect to an enhanced
version of the count-min sketch [14].

2 BACKGROUND ON HEAVY-HITTER
DETECTION

2.1 Problem Formulation
Heavy hitters. “Heavy hitters” can refer to all �ows
that are larger (in number of packets or bytes) than
a fraction t of the total packets seen on the link (the
“threshold-t” problem). Alternatively, the heavy hitters
can be the top k �ows by size (the “top-k” problem).
Through the rest of this paper, we use the “top-k” de�-
nition.

Flow granularity. Flows can be de�ned at various lev-
els of granularity, such as IP address (i.e., host), transport
port number (i.e., application), or �ve-tuple (i.e., trans-
port connection). With a �ner-grained notion of �ows,
the size and number of keys grows, requiring more bits
to represent the key and more entries in the data struc-
ture to track the heavy �ows accurately.
Accuracy. A technique for detecting heavy hitters may
have false positives (i.e., reporting a non-heavy �ow as
heavy), false negatives (i.e., not reporting a heavy �ow),
or an error in estimating the sizes of heavy �ows. The
impact of errors depends on the application. For exam-
ple, if the switch performs load balancing in the data
plane, a few false negatives may be acceptable, espe-
cially if those heavy �ows can be detected in the next
time interval. As another example, if the network treats
heavy �ows as suspected denial-of-service attacks, false
positives could lead to unnecessary alarms that over-
whelm network operators. When comparing approaches
in our evaluations, we consider all three metrics.
Overhead. The overhead on the switch includes the
total amount of memory for the data structure, the num-
ber of matching stages used in the switch pipeline (con-
strained by a switch-speci�c maximum, say 16 [7]). The
algorithms are constrained by the nature and amount of
memory access and computation per match stage (e.g.,
computing hash functions). On high-speed links, the
number of active �ve-tuple �ows per minute can easily
be in the tens of thousands, if not more. Our central goal
is to maintain data-plane state that is proportional to the
target number k of heavy hitters (e.g., 5k or 10k), rather
than the number of active �ows. In addition, we would
like to use as few pipeline stages as possible, since the
switch also needs to support other functionality related
to packet forwarding and access control.

2.2 Existing Solutions
The problem of �nding heavy �ows in a network is
an instance of the “frequent items” problem, which is
extremely well studied in the streaming algorithms lit-
erature [13]. While high accuracy and low overhead are
essential to any heavy hitter detection approach, we are
also speci�cally interested in implementing these algo-
rithms within the constraints of emerging programmable
switches (§1). We classify the approaches into two broad
categories, sampling and streaming, discussed below.
Packet sampling using NetFlow [12] and sFlow [38]
is commonly implemented in routers today. These tech-
nologies record a subset of network packets by sampling,
and send the sampled records to collectors for analysis.
To keep packet processing overheads and data collec-
tion bandwidth low, NetFlow con�gurations in practice
use aggressively low sampling probabilities, e.g., 1% or
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even 0.01% [30, 34]. Such undersampling can impact the
estimation accuracy.

Sample and hold [17] enhances the accuracy of packet
sampling by keeping counters for all packets of a �ow
in a �ow table, once a packet from that �ow is sam-
pled. Designing large �ow tables1 for fast packet lookup
is well-understood: hash table implementations are al-
ready common in switches, for example in router for-
warding tables and NetFlow [24]. However, it is chal-
lenging to handle hash collisions when adding �ows
to the �ow table, when a packet from a new �ow is
sampled. Some custom hardware solutions combine the
hash table with a “stash” that contains the over�ow, i.e.,
colliding entries, from the hash table [22]. But this intro-
duces complexity in the switch pipeline, and typically
involves the control plane to add entries into the stash
memory. Ignoring such complexities, we evaluate sam-
ple and hold in §5 by liberally allowing the �ow table to
lookup packets anywhere in a list of a bounded size.
Streaming algorithms implement data structures with
bounded memory size and processing time per packet,
while processing every packet in a large stream of pack-
ets in one pass. The algorithms are designed with prov-
able accuracy-memory tradeo�s for speci�c statistics of
interest over the packets. While these features make the
algorithms attractive for network monitoring, the spe-
ci�c algorithmic operations on each packet determine
feasibility on switch hardware.

Sketching algorithms like count-min sketch [14] and
count sketch [10] use per-packet operations such as
hashing on packet headers, incrementing counters at
hashed locations, and determining the minimum or me-
dian among a small number of the counters that were
hashed to. These operations can all be e�ciently im-
plemented on switch hardware [45]. However, these
algorithms do not track the �ow identi�ers of packets,
and hash collisions make it challenging to “invert” the
sketch into the constituent �ows and counters. Simple
workarounds like collecting packets that have high �ow
count estimates in the sketch could result in signi�cant
bandwidth overheads, since most packets from heavy
�ows will have high estimates.

Techniques like group testing [15], reversible sketches
[37], and FlowRadar [24] can decode keys from hash-
based sketches. However, it is challenging to read o�
an accurate counter value for a packet in the switch
pipeline itself since the decoding happens o� the fast
packet-processing path.

Counter-based algorithms [27, 29] focus on measur-
ing the heavy items, maintaining a table of �ows and cor-
responding counts. They employ per-counter increment
1Large exact-match lookups are typically built with SRAM, as large
TCAMs are expensive.

and subtraction operations, but potentially all counters
in the table are updated during some �ow insertions. Up-
dating multiple counters in a single stage is challenging
within the deterministic time budget for each packet.

Space saving is a counter-based algorithm that uses
only O (k ) counters to track k heavy �ows, achieving
the lowest memory usage possible for a �xed accuracy
among deterministic heavy-hitter algorithms—both the-
oretically [28] and empirically [13]. Space saving only
updates one counter per packet, but requires �nding
the item with the minimum counter value in the table.
Unfortunately, scanning the entire table on each packet,
or �nding the minimum in a table e�ciently, is not di-
rectly supported on emerging programmable hardware
(§1). Further, maintaining data structures like sorted
linked lists [28] or priority queues [41] requires multi-
ple memory accesses within the per-packet time budget.
However, as we show in §3, we are able to adapt the
key ideas of the space saving algorithm and combine it
with the functionality of emerging switch hardware to
develop an e�ective heavy hitter algorithm.

3 HASHPIPE ALGORITHM
As described in §2.2, HashPipe is heavily inspired by
the space saving algorithm [28], which we describe now
(§3.1). In the later subsections (§3.2-§3.4), we describe
our modi�cations to the algorithm to make it amenable
to switch implementation.

3.1 Space Saving Algorithm
To track the k heaviest items, space saving uses a table
withm (which is O (k )) slots, each of which identi�es a
distinct �ow key and its counter. All slots are initially
empty, i.e., keys and counters are set to zero.

Algorithm 1: Space Saving algorithm [28]
1 . Table T hasm slots, either containing (keyj ,valj )

at slot j ∈ {1, . . . ,m}, or empty. Incoming packet
has key iKey.

2 if ∃ slot j in T with iKey = keyj then
3 valj ← valj + 1
4 else
5 if ∃ empty slot j in T then
6 (keyj ,valj ) ← (iKey, 1)
7 else
8 r ← arдminj ∈{1, ...,m } (valj )

9 (keyr ,valr ) ← (iKey,valr + 1)
10 end
11 end
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The algorithm is summarized in Algorithm 1.2 When
a packet arrives, if its corresponding �ow isn’t already
in the table, and there is space left in the table, space
saving inserts the new �ow with a count of 1. If the
�ow is present in the table, the algorithm updates the
corresponding �ow counter. However, if the table is
full, and the �ow isn’t found in the table, the algorithm
replaces the �ow entry that has the minimum counter
value in the table with the incoming packet’s �ow, and
increments this minimum-valued counter.

This algorithm has three useful accuracy properties [28]
that we list here. Suppose the true count of �ow keyj is
c j , and its count in the table isvalj . First, no �ow counter
in the table is ever underestimated, i.e., valj ≥ c j . Sec-
ond, the minimum value in the table valr is an upper
bound on the overestimation error of any counter, i.e.,
valj ≤ c j +valr . Finally, any �ow with true count higher
than the average table count, i.e., c j > C/m, will always
be present in the table (here C is the total packet count
added into the table). This last error guarantee is par-
ticularly useful for the threshold-heavy-hitter problem
(§2.1), since by using 1/t counters, we can extract all
�ows whose true count exceeds a threshold t of the total
count. However, this guarantee cannot be extended di-
rectly to the top-k problem, since due to the heavy-tailed
nature of tra�c [17], the kth heaviest �ow contributes
nowhere close to 1/k of the total tra�c.

The operation of �nding the minimum counter in
the table (line 8)—possibly for each packet—is di�cult
within switch hardware constraints (§2.2). In the fol-
lowing subsections, we discuss how we incrementally
modify the space saving algorithm to run on switches.

3.2 Sampling for the Minimum Value
The �rst simpli�cation we make is to look at the mini-
mum of a small, constant number d of randomly chosen
counters, instead of the entire table (in line 8, Algo-
rithm 1). This restricts the worst-case number of mem-
ory accesses per packet to a small �xed constant d . The
modi�ed version, HashParallel, is shown in Algorithm 2.
The main change from Algorithm 1 is in the set of table
slots examined (while looking up or updating any key),
which is now a set of d slots obtained by hashing the
incoming key using d independent hash functions.

In e�ect, we sample the table to estimate a minimum
using a few locations. However, the minimum of just d
slots can be far from the minimum of the entire table of
m slots. An in�ated value of the minimum could impact
the useful error guarantees of space saving (§3.1). Our
evaluations in §5.4 show that the distributions of the

2We show the algorithm for packet counting; it easily generalizes to
byte counts.

minimum of the entire table and of the subsample are
comparable.

However, Algorithm 2 still requires the switch to read
d locations at once to determine their minimum, and
then write back the updated value. This necessitates a
read-modify-write operation, involving d reads and one
write anywhere in table memory, within the per-packet
time budget. However, multiple reads to the same table
(d > 1) are supported neither in switch programming
languages today [6] nor in emerging programmable
switching chips [7]. Further, supporting multiple reads
for every packet at line rate requires multiported mem-
ories with strict access-latency guarantees, which can
be quite expensive in terms of area and power [20, 44].

3.3 Multiple Stages of Hash Tables
The next step is to reduce the number of reads to mem-
ory to facilitate operation at line rate. We split the counter
table T into d disjoint tables, and we read exactly one
slot per table. The algorithm is exactly the same as Algo-
rithm 2; except that now hash function hi returns only
slots in the ith stage.

This design enables pipelining the memory accesses
to the d tables, since di�erent packets can access di�er-
ent tables at the same time. However, packets may need
to make two passes through this pipeline: once to de-
termine the counter with the minimum value among d
slots, and a second time to update that counter. The sec-
ond pass is possible through “recirculation” of packets
through the switching pipeline [2, 39, 42] with addi-
tional metadata on the packet, allowing the switch to
increment the minimum-valued counter in the second
pass. However, the second pass is potentially needed for
every packet, and recirculating every packet can halve
the pipeline bandwidth available to process packets.

Algorithm 2: HashParallel: Sample d slots at once
1 . Hash functions hi (iKey) → slots, i ∈ {1, . . . ,d }
2 H = {h1 (iKey), . . . ,hd (iKey)}

3 if ∃ slot j ∈ H with iKey = keyj then
4 valj ← valj + 1
5 else
6 if ∃ empty slot j ∈ H then
7 (keyj ,valj ) ← (iKey, 1)
8 else
9 r ← arдminj ∈H (valj )

10 (keyr ,valr ) ← (iKey,valr + 1)
11 end
12 end
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3.4 Feed-Forward Packet Processing
We now alleviate the need to process a packet more than
once through the switch pipeline, using two key ideas.
Track a rolling minimum. We track the minimum
counter value seen so far (and its key) as the packet
traverses the pipeline, by moving the counter and key
through the pipeline as packet metadata. Emerging pro-
grammable switches allow the use of such metadata to
communicate results of packet processing between dif-
ferent stages, and such metadata can be written to at any
stage, and used for packet matching at a later stage [42].

Algorithm 3: HashPipe: Pipeline of d hash tables
1 . Insert in the �rst stage
2 l1 ← h1 (iKey)

3 if keyl1 = iKey then
4 vall1 ← vall1 + 1
5 end processing
6 end
7 else if l1 is an empty slot then
8 (keyl1 ,vall1 ) ← (iKey, 1)
9 end processing

10 end
11 else
12 (cKey, cVal ) ← (keyl1 ,vall1 )

13 (keyl1 ,vall1 ) ← (iKey, 1)
14 end
15 . Track a rolling minimum
16 for i ← 2 to d do
17 l ← hi (cKey)

18 if keyl = cKey then
19 vall ← vall + cVal

20 end processing
21 end
22 else if l is an empty slot then
23 (keyl ,vall ) ← (cKey,CVal )

24 end processing
25 end
26 else if vall < cVal then
27 swap (cKey, cVal ) with (keyl ,vall )

28 end
29 end

As the packet moves through the pipeline, the switch
hashes into each stage on the carried key, instead of hash-
ing on the key corresponding to the incoming packet.
If the keys match in the table, or the slot is empty, the
counter is updated in the usual way, and the key needs
no longer to be carried forward with the packet. Other-
wise, the keys and counts corresponding to the larger

of the counters that is carried and the one in the slot
is written back into the table, and the smaller of the
two is carried on the packet. We leverage arithmetic
and logical action operations available in the match-
action tables in emerging switches [7] to implement the
counter comparison. The key may be carried to the next
stage, or evicted completely from the tables when the
packet reaches the last (i.e., dth) stage.
Always insert in the �rst stage. If the incoming key
isn’t found in the �rst stage in the pipeline, there is no
associated counter value to compare with the key that
is in that table. Here, we choose to always insert the
new �ow in the �rst stage, and evict the existing key and
counter into packet metadata. After this stage, the packet
can track the rolling minimum of the subsequent stages
in the usual way described above. The �nal algorithm,
HashPipe, is shown in Algorithm 3.

One consequence of always inserting an incoming
key in the �rst stage is the possibility of duplicate keys
across di�erent tables in the pipeline, since the key can
exist at a later stage in the pipeline. Note that this is
unavoidable when packets only move once through the
pipeline. It is possible that such duplicates may occupy
space in the table, leaving fewer slots for heavy �ows,
and causing evictions of heavy �ows whose counts may
be split across the duplicate entries.

However, many of these duplicates are easily merged
through the algorithm itself, i.e., the minimum tracking
merges counters when the carried key has a “hit” in
the table. Further, switches can easily estimate the �ow
count corresponding to any packet in the data plane
itself by summing all the matching �ow counters; so can
a data collector, after reading the tables out of the switch.
We also show in our evaluations (§5.1) that duplicates
only occupy a small portion of the table memory.

Fig. 1 illustrates an example of processing a packet
using HashPipe. A packet with a keyK enters the switch
pipeline (a), and since it isn’t found in the �rst table, it is
inserted there (b). Key B (that was in the slot currently
occupied by K) is carried with the packet to the next
stage, where it hashes to the slot containing key E. But
since the count of B is larger than that of E, B is written
to the table and E is carried out on the packet instead (c).
Finally, since the count of L (that E hashes to) is larger
than that of E, L stays in the table (d). The net e�ect
is that the new key K is inserted in the table, and the
minimum of the three keys B, E, and L—namely E—is
evicted in its favor.

4 HASHPIPE PROTOTYPE IN P4
We built a prototype of HashPipe using P4 version 1.1 [42].
We veri�ed that our prototype produced the same results
as our HashPipe simulator by running a small number of
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(a) Initial state of table (b) New �ow is placed with value 1 in �rst stage

(c) B being larger evicts E (d) L being larger is retained in the table
Figure 1: An illustration of HashPipe.

1 action doStage1() {
2 mKeyCarried = ipv4.srcAddr;
3 mCountCarried = 0;
4 modify_�eld_with_hash_based_o�set (mIndex, 0,

stage1Hash, 32) ;
5
6 // read the key and value at that location
7 mKeyTable = �owTracker[mIndex];
8 mCountTable = packetCount[mIndex];
9 mValid = validBit [mIndex];

10
11 // check for empty location or di�erent key
12 mKeyTable = (mValid == 0) ? mKeyCarried : mKeyTable;
13 mDif = (mValid == 0) ? 0 : mKeyTable − mKeyCarried;
14
15 // update hash table
16 �owTracker[mIndex] = ipv4 . srcAddr;
17 packetCount[mIndex] = (mDif == 0) ? mCountTable+1: 1;
18 validBit [mIndex] = 1;
19
20 // update metadata carried to the next table stage
21 mKeyCarried = (mDif == 0) ? 0 : mKeyTable;
22 mCountCarried = (mDif == 0) ? 0 : mCountTable;
23 }
24

Listing 1:HashPipe stagewith insertion of new�ow.
Fields pre�xed with m are metadata �elds.

arti�cially generated packets on the switch behavioral
model [32] as well as our simulator, and ensuring that
the hash table is identical in both cases at the end of the
measurement interval.

At a high level, HashPipe uses a match-action stage in
the switch pipeline for each hash table. In our algorithm,
each match-action stage has a single default action—the
algorithm execution—that applies to every packet. Every
stage uses its own P4 register arrays—stateful memory

that persists across successive packets—for the hash ta-
ble. The register arrays maintain the �ow identi�ers
and associated counts. The P4 action blocks for the �rst
two stages are presented in Listings 1 and 2; actions
for further stages are identical to that of stage 2. The
remainder of this section walks through the P4 language
constructs with speci�c references to their usage in our
HashPipe prototype.

Hashing to sample locations: The �rst step of the ac-
tion is to hash on the �ow identi�er (source IP address in
the listing) with a custom hash function, as indicated in
line 4 of Listing 1. The result is used to pick the location
where we check for the key. The P4 behavioral model
[32] allows customized hash function de�nitions. We
use hash functions of the type hi = (ai ·x +bi )%p where
the chosen ai ,bi are co-prime to ensure independence
of the hash functions across stages. Hash functions of
this sort are implementable on hardware and have been
used in prior work [24, 25].
Registers to read andwrite�ow statistics:The �ows
are tracked and updated using three registers: one to
track the �ow identi�ers, one for the packet count, and
one to test validity of each table index. The result of
the hash function is used to index into the registers for
reads and writes. Register reads occur in lines 6-9 and
register writes occur in lines 15-18 of Listing 1. When
a �ow identi�er is read from the register, it is checked
against the �ow identi�er currently carried. Depending
on whether there is a match, either the value 1 is written
back or the current value is incremented by 1.
Packet metadata for tracking current minimum:
The values read from the registers are placed in packet
metadata since we cannot test conditions directly on
the register values in P4. This enables us to compute
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1 action doStage2{
2 · · ·

3 mKeyToWrite = (mCountInTable < mCountCarried) ?
mKeyCarried : mKeyTable));

4 �owTracker[mIndex] = (mDif == 0) ? mKeyTable :
mKeyToWrite;

5
6 mCountToWrite = (mCountTable < mCountCarried) ?

mCountCarried : mCountTable;
7 packetCount[mIndex] = (mDif == 0) ? (mCountTable +

mCountCarried) : mCountToWrite;
8
9 mBitToWrite = (mKeyCarried == 0) ? 0 : 1) ;

10 validBit [mIndex] = (mValid == 0) ? mBitToWrite : 1) ;
11 · · ·

12 }

Listing 2: HashPipe stage with rolling minimum.
Fields pre�xed with m are metadata �elds.

the minimum of the carried key and the key in the table
before writing back into the register (lines 11-13 of List-
ing 1 and lines 3, 6, and 9 of Listing 2). Packet metadata
also plays a crucial role in conveying state (the current
minimum �ow id and count, in this case) from one stage
to another. The metadata is later used to compute the
sample minimum. The updates that set these metadata
across stages are similar to lines 20-22 of Listing 1.
Conditional state updates to retain heavier �ows:
The �rst pipeline stage involves a conditional update to
a register to distinguish a hit and a miss for the incoming
packet key in the table (line 17, Listing 1). Subsequent
stages must also write back di�erent values to the table
key and count registers, depending on the result of the
lookup (hit/miss) and a comparison of the �ow counts.
Accordingly, we perform a conditional write into the
�ow id and count registers (lines 4 and 7, Listing 2). Such
conditional state updates are feasible at line rate [19, 40].

5 EVALUATION
We now evaluate HashPipe through trace-driven sim-
ulations. We tune the main parameter of HashPipe—
the number of table stages d—in §5.1. We evaluate the
performance of HashPipe in isolation in §5.2, and then
compare it to prior sampling and sketching solutions in
§5.3. Then, we examine the performance of HashPipe
in context of the idealized algorithms it is derived from
(§3) in §5.4.
Experiment setup. We compute the k heaviest �ows
using two sets of traces. The �rst trace is from a 10Gb/s
ISP backbone link, recorded in 2016 and available from
CAIDA [8]. We measure heavy hitters aggregated by
transport 5-tuple. The tra�c trace is 17 minutes long,
and contains 400 million packets. We split this trace into
50 chunks, each being about 20 seconds long, with 10

million packets. The chunks on average contain about
400,000 5-tuple �ows each. Each chunk is one trial, and
each data point in the graphs for the ISP trace reports
the average across 50 trials. We assume that the switch
zeroes out its tables at the end of each trial, which cor-
responds to a 20 second “table �ush” period.

The second trace, recorded in 2010, is from a data
center [4] and consists of about 100 million packets in
total. We measure heavy hitters aggregated by source
and destination IPs. We split the trace into 1 second
intervals corresponding to the time scale at which data
center tra�c exhibits stability [5].

The data center trace is two and a half hours long,
with roughly 10K packets (300 �ows) per second. We ad-
ditionally replay the trace at two higher packet rates to
test whether HashPipe can provide good accuracy over
the 1 second time scale. We assume a “typical” average
packet size of 850 bytes and a 30% network utilization as
reported in prior tra�c studies [4]. For a switch clocked
at 1GHz with 48 ports of 10Gb/s each, this corresponds
to roughly 20 million packets per second through the
entire switch, and 410K packets per second through a
single link. At these packet rates, the trace contains
20,000 and 3200 �ows per second respectively. For each
packet rate, we report results averaged from multiple
trials of 1 second each.
Metrics. As discussed in §2.1, we evaluate schemes on
false negatives (% heavy �ows that are not reported),
false positives (% non-heavy �ows that are reported),
and the count estimation error (% error for heavy �ows).
Note that for the top-k problem, the false positive error
is just a scaled version of the false negative.

5.1 Tuning HashPipe
Given a total memory sizem, HashPipe’s only tunable
parameter is the number of table stages d that it uses.
Once d is �xed, we simply partition the available mem-
ory equally into d hash tables. As d increases, the num-
ber of table slots over which a minimum is computed
increases, leading to increased retention of heavier keys.
However, with a �xed total memory, an increase in the
value ofd decreases the per-stage hash table size, increas-
ing the likelihood of hash collisions, and also of dupli-
cates (§3.4). The switch hardware constrains the number
of table stages to a small number, e.g., 6-16 [7, 31].

Fig. 2 shows the impact of changing d on the false
negatives. For the ISP trace, we plot false negatives for
di�erent sizes of memory m and di�erent number of
desired heavy hitters k . As expected, the false negatives
reduce as d increases starting at d = 2, but the decrease
quickly tapers o� in the range between 5–8, across the
di�erent (m,k ) curves. For the data center trace, we
show false negatives for k = 350 with a memory of 840
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Figure 2: Impact of table stages (d) on false negatives.
Error decreases as d grows, and then �attens out.

counters (15KB), and we see a similar trend across all
three packet rates. The false positives, elided here, also
follow the same trend.

To understand whether duplicates impact the false
negative rates, we also show the prevalence of duplicates
in HashPipe’s hash tables in Fig. 3. Overall, duplicates
only take up between 5-10% of the available table size
in the ISP case and between 5-14% in the data center
case. As expected, in going from d = 2 and d = 8, the
prevalence of duplicates in HashPipe’s table increases.

Fig. 4 shows the count estimation error (as a percent-
age of actual �ow size) for �ows in HashPipe’s tables at
the end of each measurement interval, with a memory
size of 640 counters (11.2KB). In general, the error re-
duces as d increases, but the reduction from d = 4 to
d = 8 is less signi�cant than the reduction from d = 2
to d = 4. In the ISP trace, the estimation error is stable
across �ow sizes since most �ows recorded by HashPipe
have sizes of at least 1000. In the data center trace where
there are fewer total �ows, there is a more apparent
decrease in error with true �ow size, with �ows of size
x > 1000 having near-perfect count estimations.
Choosing d = 6 table stages. To summarize, we �nd
that (i) as the number of table stages increases above
d = 4, all the accuracy metrics improve; (ii) however, the
improvement dimishes at d = 8 and beyond, due to the
increasing prevalence of duplicates and hash collisions.
These trends hold across both the ISP and data center
scenarios, for a variety of measured heavy hitters k and
memory sizes. Hence, we choose d = 6 table stages for
all further experiments with HashPipe.

5.2 Accuracy of HashPipe
We plot error vs. memory tradeo� curves for HashPipe,
run with d = 6 table stages. Henceforth, unless men-
tioned otherwise, we run the data center trace at the
single link packet rate.
False negatives. Fig. 5 shows the false negatives as
memory increases, with curves corresponding to di�er-
ent numbers of reported heavy hitters k . We �nd that
error decreases with allocated memory across a range of
k values, and settles to under 10% in all cases on the ISP
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increasing d . Error decreases with actual �ow size.

trace at 80KB of memory, which corresponds to 4500
counters. In any one trial with the ISP trace, there are on
average 400,000 �ows, which is two orders of magnitude
higher than the number of counters we use. In the data
center trace, the error settles to under 10% at just 9KB of
memory (520 counters) for all the k values we tested.3

These results also enable us to understand the inter-
play between k and the memory size required for a spe-
ci�c accuracy. For a 5% false negative rate in the ISP trace,
the memory required for k = 60 is 60KB (3375 ≈ 55k
counters), whereas the memory required for k = 300
is 110KB (6200 ≈ 20k counters). In general, the factor
of k required in the number of counters to achieve a
particular accuracy reduces as k increases.
Which �ows are likely to be missed? It is natural to
ask which �ows are more likely missed by HashPipe.
Fig. 6 shows how the false negative rate changes as the
number of desired heavy hitters k is varied, for three
di�erent total memory sizes. We �nd that the heaviest
�ows are least likely to bemissed, e.g.,with false negatives
in the 1-2% range for the top 20 �ows, when using 3000
counters in the ISP trace. This trend is intuitive, since
HashPipe prioritizes the retention of larger �ows in the
table (§3.1). Most of the higher values of false negative
errors are at larger values of k , meaning that the smaller

3The minimum memory required at k = 300 is 6KB (≈ 300 counters).
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across a range of table sizes and reported heavy hitters
in the ISP trace, and under 3% in the data center trace.

of the top k �ows are more likely to be missed among
the reported �ows.
False positives. Fig. 7 shows the false positives of Hash-
Pipe against varying memory sizes, exhibiting the natu-
ral trend of decreasing error with increasing memory. In
particular, we �nd that with the ISP trace, false positive
rates are very low, partly owing to the large number
of small �ows. On all curves, the false positive rate is
smaller than 0.1%, dropping to lower than 0.01% at a
table size of 80KB. In the data center trace, we �nd that
the false positive rate hovers under 3% over a range of
memory sizes and heavy hitters k .

In summary, HashPipe performs well both with the
ISP backbone and data center traces, recognizing heavy-
hitter �ows in a timely manner, i.e., within 20 seconds
and 1 second respectively, directly in the data plane.

5.3 HashPipe vs. Existing Solutions
Comparison baselines.We compare HashPipe against
two schemes—representative of sampling and sketching—
which are able to estimate counts in the switch directly
(§2.2). We use the same total memory as earlier, and
measure the top k = 150 �ows. We use the ISP backbone
trace henceforth (unless mentioned otherwise), and com-
pare HashPipe with the following baseline schemes.
(1) Sample and Hold: We simulate sample and hold [17]
with a �ow table that is implemented as a list. As de-
scribed in §2.2, we liberally allow incoming packets to
look up �ow entries anywhere in the list, and add new
entries up to the total memory size. The sampling prob-
ability is set according to the available �ow table size,
following recommendations from [17].
(2) Count-min sketch augmented with a ‘heavy �ow’
cache: We simulate the count-min sketch [14], but use a
�ow cache to keep �ow keys and exact counts start-
ing from the packet where a �ow is estimated to be
heavy from the sketch.4 We liberally allow the count-
min sketch to use the o�ine-estimated exact count of
the kth heaviest �ow in the trace, as a threshold to iden-
tify heavy �ows. The �ow cache is implemented as a
hash table that retains only the pre-existing �ow key on
a hash collision. We allocate half the available memory
each to the sketch and the �ow cache.5
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Figure 8: False negatives of HashPipe and other base-
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count-min sketch over the entire memory range.

4A simpler alternative—mirroring packets with high size estimates
from the count-min sketch—requires collecting ≈ 40% of the packets
in the data center trace played at the link rate.

5We follow guidance from [17, page 288] to split the memory.
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False negatives. Fig. 8 shows false negatives against
varying memory sizes, for the three schemes compared.
We see that HashPipe outperforms sample and hold as
well as the augmented count-min sketch over the entire
memory range. (All schemes have smaller errors as the
memory increases.) Notably, at 100KB memory, Hash-
Pipe has 15% smaller false negative rate than sample
and hold. The count-min sketch tracks the error rate
of HashPipe more closely from above, staying within a
3-4% error di�erence. Next, we understand where the
errors occur in the baseline schemes.
Where are the errors in the other baselines? Fig. 9
shows the count estimation error (%) averaged across
�ows whose true counts are higher than the x-value,
when running all the schemes with 26KB memory.

Sample and hold can make two kinds of estimation
errors. It can miss the �rst set of packets from a heavy
�ow because of not sampling the �ow early enough, or
(less likely) miss the �ow entirely due to not sampling
or the �ow table becoming full. Fig. 9 shows that sam-
ple and hold makes the former kind of error even for
�ows with very high true counts. For example, there are
relative errors of about 10% even for �ows of size more
than 80,000 packets. As Fig. 8 shows, the errors becomes
less prominent as the memory size increases, since the
sampling rate increases too.

The count-min sketch makes errors because of its
inability to discriminate between heavy and light �ows
during hash collisions in the sketch. This means that a
light �ow colliding with heavy �ows may occupy a �ow
cache entry, preventing a heavier �ow later on from
entering the �ow cache. For instance in Fig. 9, even
�ows as large as 50,000 packets can have estimation
errors close to 20%. However, as Fig. 8 shows, the e�ect
of hash collisions becomes less signi�cant as memory
size increases.

On the other hand, HashPipe’s average error on �ows
larger than 20,000 packets—which is 0.2% of the total
packets in the interval—is negligible (Fig. 9). HashPipe
has 100% accuracy in estimating the count of �ows larger
than 30,000 packets.

5.4 HashPipe vs. Idealized Schemes
We now compare HashPipe against the idealized algo-
rithms it is derived from (§3), namely space saving [28]
and HashParallel.

There are two reasons why HashPipe may do badly
relative to space saving: (i) it may evict a key whose
count is much higher than the table minimum, hence
missing heavy items from the table, and (ii) it may allow
too many duplicate �ow keys in the table (§3.4), reduc-
ing the memory available for heavy �ows, and evict
heavy �ows whose counts are underestimated due to
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Figure 9: Comparison of average estimation error (%) of
�ows whose true counts are higher than the x-value in
the graph. Sample and hold underestimates heavy�ows
due to sampling, and count-min sketch misses heavy
�ows due to lighter �ows colliding in the �ow cache.
HashPipe has no estimation errors for �ows larger than
30,000 packets.

the duplicates. We showed that duplicate keys are not
very prevalent in §5.1; in what follows, we understand
their e�ects on false negatives in the reported �ows.
Howfar is the subsampledminimumfrom the true
table minimum? Fig. 10 shows the complementary
CDF of the minimum count that was chosen by Hash-
Pipe, obtained by sampling the algorithm’s choice of
minimum at every 100th packet in a 10 million packet
trace. We don’t show the corresponding CCDF for the
absolute minimum in the table, which only takes on
two values—0 and 1—with the minimum being 1 more
than 99% likely.6 We see that the chance that HashPipe
chooses a certain minimum value decreases rapidly as
that value grows, judging from the straight-line plot on
log scales in Fig. 10. For example, the minimum counter
has a value higher than 5 less than 5% of the time. There
are a few larger minimum values (e.g., 100), but they are
rarer (less than 0.01% of the time). This suggests that it
is unlikely that HashPipe experiences large errors due
to the choice of a larger minimum from the table, when
a smaller counter exists.
Comparison against space saving and HashParal-
lel. We compare the false negatives of the idealized
schemes and HashPipe against varying memory sizes in
Fig. 11 and Fig. 12, when reporting two di�erent num-
ber of heavy hitters, k=150 and k=60 respectively. Two
features stand out from the graph for both k values.
First, wherever the schemes operate with low false neg-
ative error (say less than 20%), the performance of the
three schemes is comparable (i.e., within 2-3% of each

6Note that this is di�erent from the minimum of space saving, whose
distribution contains much larger values.
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Figure 12: Comparison of false negatives ofHashPipe to
idealized schemes when detecting k=60 heavy hitters.

other). Second, there are small values of memory where
HashPipe outperforms space saving.

Why is HashPipe outperforming space saving? Space
saving only guarantees that the kth heaviest item is in
the table when the kth item is larger than the average
table count (§3.1). In our trace, the 60th item and 150th
item contribute to roughly 6000 and 4000 packets out
of 10 million (resp.), which means that they require
at least7 1700 counters and 2500 counters in the table
(resp.). These correspond to memory sizes of 30KB and
45KB (resp.). At those values of memory, we see that
space saving starts outperforming HashPipe on false
negatives.

We also show why space saving fails to capture the
heavier �ows when it is allocated a number of coun-
ters smaller than the minimum number of counters
mentioned above. Note that HashPipe attributes every
packet to its �ow entry correctly (but may miss some
packets entirely), since it always starts a new �ow at
counter value 1. However, space saving increments some
counter for every incoming packet (Algorithm 1). In con-
texts where the number of active �ows is much larger
than the number of available counters (e.g., 400,000 �ows
with 1200 counters), this can lead to some �ows having
enormously large (and grossly overestimated) counters.
In contrast, HashPipe keeps the counter values small for
small �ows by evicting the �ows (and counts) entirely
from the table.

At memory sizes smaller than the thresholds men-
tioned above, incrementing a counter for each packet
may result in several small �ows catching up to a heavy
�ow, leading to signi�cant false positives, and higher
likelihood of evicting truly heavy �ows from the table.
We show this e�ect on space saving in Fig. 13 for k=150
and m=1200 counters, where in fact m = 2500 coun-
ters are required as described earlier. The distribution of
the number of keys contributing to a false positive �ow
counter in the table is clearly shifted to the right relative
to the corresponding distribution for a true positive.
Impact of duplicate keys in the table. Finally, we
investigate how duplicate keys and consequent underes-
timation of �ow counts in the table may a�ect the errors
of HashPipe. In Fig. 14, we show the bene�ts of reporting
more than k counters on false negatives, when the top
k=300 �ows are requested with a memory size ofm=2400
counters. While the false negative rates of space saving
and HashParallel improve signi�cantly with overreport-
ing, the errors for HashPipe remains �at throughout
the interval, dropping only around 1800 reported �ows.
We infer that most heavy �ows are retained somewhere
in the table for space saving and HashParallel, while
HashPipe underestimates keys su�ciently often that

710 million / 6000 ≈ 1700; 10 million / 4000 ≈ 2500.
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they are completely evicted—to the point where overre-
porting does not lower the false negative errors. We �nd
that overreporting �ows only increases the false posi-
tive errors slightly for all schemes, with values staying
between 0.1-0.5% throughout.
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Figure 14: Bene�ts of overreporting �ows on false nega-
tive errorswithk=300 heavy�ows andm=2400 counters.
While space saving and HashParallel improve signi�-
cantly by reporting even 2k �ows, HashPipe does not,
because of evictions due to duplicate entries.

6 RELATEDWORK
Applications that use heavy hitters. Several applica-
tions use information about heavy �ows to do better
tra�c management or monitoring. DevoFlow [16] and
Planck [35] propose exposing heavy �ows with low
overhead as ways to provide better visibility and reduce
congestion in the network. UnivMon [25] uses a top-k
detection sketch internally as a subroutine in its “univer-
sal” sketch, to determine more general statistics about

the network tra�c. There is even a P4 tutorial applica-
tion on switch programming, that performs heavy hitter
detection using a count-min-sketch-like algorithm [11].
Measuring per-�ow counters. Prior works such as
FlowRadar [24] and CounterBraids [26] have proposed
schemes to measure accurate per-�ow tra�c counters.
Along similar lines, hashing schemes like cuckoo hash-
ing [33] and d-left hashing [43] can keep per-�ow state
memory-e�ciently, while providing fast lookups on the
state. Our goal is not to measure or keep all �ows; just
the heavy ones. We show (§5) that HashPipe uses 2-3
orders of magnitude smaller memory relative to having
per-�ow state for all active �ows, while catching more
than 90% of the heavy �ows.
Other heavy-hitter detection approaches.The multi-
resolution tiling technique in ProgME [46], and the hier-
archical heavy-hitter algorithm of Jose et al. [21] solve a
similar problem as ours. They estimate heavy hitters in
tra�c online, by iteratively “zooming in” to the portions
of tra�c which are more likely to contain heavy �ows.
However, these algorithms involve the control plane in
running their �ow-space-partitioning algorithms, while
HashPipe works completely within the switch pipeline.
Further, both prior approaches require temporal stabil-
ity of the heavy-hitter �ows to detect them over multi-
ple intervals; HashPipe determines heavy hitters using
counters maintained in the same interval.

7 CONCLUSION
In this paper, we proposed an algorithm to detect heavy
tra�c �ows within the constraints of emerging pro-
grammable switches, and making this information avail-
able within the switch itself, as packets are processed.
Our solution, HashPipe, uses a pipeline of hash tables
to track heavy �ows preferentially, by evicting lighter
�ows from switch memory over time. We prototype
HashPipe with P4, walking through the switch pro-
gramming features used to implement our algorithm.
Through simulations on a real tra�c trace, we showed
that HashPipe achieves high accuracy in �nding heavy
�ows within the memory constraints of switches today.
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