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Abstract— Significant research on the Web is per-
formed using logs collected from proxies and servers.
Virtually all of these logs are from sites running the 1.0
version (or earlier) of HTTP. After four years a draft-
standard specification of HTTP /1.1 has emerged. How-
ever, many proxies and servers still use HTTP /1.0, and
most so-called HTTP/1.1 servers do not employ all of
the key features available in the protocol. It is not fea-
sible to evaluate the impact of HTTP/1.1 traffic using
HTTP/1.0 logs. Thus, there is a need to examine ways
of postulating HTTP/1.1 traffic from HTTP/1.0 traffic.
This paper presents the En Passant architecture and a
tool based on the architecture to convert HTTP /1.0 logs
and traffic into plausible HTTP /1.1 traffic based on var-
ious parameters representing changes between the two
versions of the protocol. The tool takes both the high-
level information in HTTP /1.0 server logs and low-level
information found in packet traces as input and gener-
ates a possible HTTP/1.1 log. We present the set of
parameters and the actual feature changes between the
protocol that impact the traffic by using a live packet
trace as example.

I. INTRODUCTION

With the emergence of the World Wide Web as the
dominant Internet application, evaluating the perfor-
mance of the HTTP protocol and Web client, proxy,
and server software has become very important. Since
Web traffic patterns are not widely understood, and
typically do not follow simple analytic distributions,
most performance studies have been based on simula-
tion or actual implementations, drawing on measured
traffic or on synthetic workloads derived directly from
such measurements. Many of these studies have drawn
on collections of Web server logs [1-5]. Virtually all of
these studies have focused on server or proxy logs based
on HTTP/1.0 traffic.

HTTP/1.1 [6] introduces several new features that
may substantially change the characteristics of Web
traffic in the coming years. However, there is very
little end-to-end HTTP/1.1 traffic in the Internet to-
day, making it difficult to evaluate new Web policies
and software systems under representative HTTP/1.1
workloads. Even when servers claim to implement
HTTP/1.1, many of the high-traffic sites are not fully
compliant with the protocol specification and some of
the new features in HTTP/1.1 are disabled by config-

uration or only partially available to end users [7]. In
addition, HTTP/1.1 has had very little penetration at
proxies; for example, to date, Apache does not have
proxy software that implements HTTP/1.1. As such, it
may be several years before the majority of Web trans-
actions use HTTP/1.1 across the entire path between
the client and the server. Thus, there is a strong re-
liance on HTTP/1.0 logs and synthetic load generators
to postulate improvements to HT'TP /1.1, and to eval-
uate new proxy and server policies.

We believe that Web performance studies should use
more realistic logs that account for the changes to the
HTTP protocol. However, proxy and server logs typi-
cally do not contain enough information to allow projec-
tions of how the same logs would look under HTTP/1.1.
We are addressing this problem by developing a tool,
En Passant, for converting an HTTP/1.0 log into a
representative HT'TP/1.1log. En Passant is being con-
structed based on three sources of information: packet-
level traces, extended server logs, and the differences
between HTTP/1.0 and HTTP/1.1. Towards this end,
we are installing a packet monitor at AT&T’s Easy
World Wide Web (EW3) hosting platform [8], where we
are already collecting server logs. The packet traces,
combined with extended server logs, will provide de-
tailed information that is not typically available in con-
ventional server logs.

A packet trace, collected at the Web proxy or server
site, can provide important information not available in
server logs:

o Timing of packets on the wire

o Out-of-order and lost packets

o Interleaving of packets from different response mes-

sages

o TCP-level events such as SYN and FIN packets

o TCP and/or HTTP requests that are not processed

by the server

o Amount of data transferred on aborted responses
The value of packet traces has been demonstrated in re-
cent studies on the impact of TCP dynamics on the per-
formance of Web proxies and servers [9, 10]. A complete
collection of packet traces of both request and response
traffic at a Web server would provide a unique opportu-



nity to gauge how a change to HTTP/1.1 would affect
the workload. In addition, the extended Web server
logs can allow us to measure the components of delay
at the server, and record additional information to aid
in matching the server log entries with the appropriate
parts of the packet trace.

Although the En Passant work focuses on developing
a tool for converting HTTP/1.0 server logs into a semi-
synthetic HTTP/1.1 logs, the tool could also be used to
create synthetic workload generators. Research on In-
ternet workload characterization has typically focused
on creating generative models based on packet traces
of various applications [11,12]. A synthetic modeling
approach has also been applied to develop workload
generators for Web traffic [13,14]. However, it may be
difficult to project how these models should change un-
der the new features in HT'TP/1.1.

This position paper highlights the key changes be-
tween HTTP/1.0 and HTTP/1.1, and how a tool like
En Passant could be used (Section 2). We then de-
scribe the information available in the combined packet
traces/server logs and our measurement approach (Sec-
tion 3). We discuss the issues surrounding the En Pas-
sant tool and present some preliminary results based
on an existing HTTP packet trace [15] when applied to
two areas of changes in HT'TP/1.1—caching/coherency
and range requests (Section 4). The paper concludes
with a summary of our work (Section 5).

IT. CHANGEs BETWEEN HTTP/1.0 AND HTTP/1.1

In this section, we survey the main changes between
HTTP/1.0 and HTTP/1.1, and identify ways that Fn
Passant can track usage (and potential usage) of pro-
tocol features.

A. Protocol changes

In an attempt to clarify several parts of the
HTTP/1.0 specification and to fix several flaws, sev-
eral researchers have worked for the last four years to
come up with a new version of the HTTP protocol.
A comprehensive discussion of the differences between
HTTP/1.0 and HTTP/1.1 is presented in [16], upon
which this section is based.

Significant effort was expended in improving the
semantic transparency of caching; several new head-
ers (such as opaque entity tags to reduce dependency
on clock synchronization when comparing timestamps,
cache control directives to enable relative expiration
times, etc.) were added. Proper deployment of caches
and the overall semantic transparency in caching should

reduce the number of both GET If-Modified-Sincere-
quests and consequent 304 (Not-Modified) responses
with HTTP/1.1.

Reduction in bandwidth usage can be obtained by
compressing a resource before transmission and re-
questing only interesting subsets of a resource (via the
Range request). The Expect/Continue mechanism en-
ables clients to verify that large requests can indeed be
handled before actually sending them. Since HTTP
is typically implemented on top of TCP, and since
most web transactions are short, a significant portion
of the time was spent in setting up and tearing down
TCP connections. With persistent connections (HTTP
connections lasting beyond a single request response
sequence) and pipelining (sending additional requests
without having to wait for response for previous ones),
significant time savings are possible. Thus, embed-
ded images in an HTML document can be downloaded
quickly without new TCP connections.

In HTTP/1.0 it was not possible to know if a response
was received in its entirety; 1.1 provides ways to detect
errors in transmission via support for content length
calculation and chunked encoding. The Host header
was added to reduce the needless proliferation of TP
addresses by permitting vanity URLs without requiring
a separate hostname to be created with it. Security
was strengthened by moving away from HTTP/1.0’s
model of transmitting passwords in cleartext; it is now
encrypted and valid only for a single resource/method.
Content negotiation permits a suitable representation
for a requested resource if it is available in many forms
(language, character sets, etc.).

B. En Passant Tool

The En Passant tool will take an HTTP/1.0 log, a
set of high level parameters of interest to the server site
(such as improving caching or miniminzing bandwidth
usage), and an optional packet trace, as input to pro-
duce an approximation to the corresponding HTTP/1.1
log. En Passant groups the lower level entities whose
combination impacts the parameter (e.g., appropriate
request and response headers), extracts the necessary
information from the server log and packet trace (if
present), to produce the potential HTTP/1.1 stream.
If the server site is interested in improving caching, En
Passant would track cache-related request and response
headers (such as ETag and Cache-Control directives).
If the server site is interested in reducing bandwidth
usage, Fn Passant would track aborted transfers to see
if there is a potential for using Range requests; or see



if large PUT requests result in a server error (e.g., 413
Request Entity Too Large) indicating the potential
for use of the Expect request header. A requirement of
safe and accurate receipt of data might trigger the use
of chunked encoding.

I1I. DaTA COLLECTION

We now describe our measurement architecture that
combines extended server logging at a Web hosting
complex with fine-grain packet monitoring.

A. Server Logs

Server logs range in duration (days to several
months), number of records (few hundred to millions),
and number of fields in each record. The six common
fields found in most logs include:

o TP address or name of the client (remote host)

o Date/time of the request

o First line of the request: HT'TP method and URL

o HTTP response status code (200, 304, ...)

¢ Number of bytes in the response
Logs may also have the remote log and user’s name,
the referer field—the URL from which the current URL
was reached, user agent information, etc. We have de-
veloped a robust and efficient process for cleaning and
anonymizing server logs, and producing a simplified in-
termediate format for post-processing [17].

The meaning of date/time field could be the time at
which the server

o started processing the request

o started writing the response data into the send

socket

o finished writing the response data into the send

socket

These times are shown by a x symbol in the timeline
in Figure 1. With all three time values, we could iso-
late the various components of server delay. For ex-
ample, the first two timestamps would allow us to de-
termine the server latency in processing client requests
(e.g., due to disk I/O, or the generation of dynamic con-
tent), whereas the second two timestamps would cap-
ture the time required to write into the send socket.
Even these additional timestamps would not indicate
when the server finished transmitting the data from the
socket buffer, and when the last client acknowledgment
arrived, or if the client aborted the response after the
server process finished writing the data into the send
socket buffer. This information is available from the
packet traces.

These three timestamps would also help in match-
ing the server log entries with the packet data. The

first timestamp would help in identifying the HTTP re-
quest packets, and the last two timestamps would help
in identifying the HTTP response packets. The server
could also log the client TCP port number for each re-
quest which should match with the packet trace. Once
an accurate match is performed, the three server times-
tamps can be used to determine portions of delay that
were introduced by server processing. With accurate
clock synchronization, it may also be possible to deter-
mine the latency in receiving and parsing the request,
by considering the time that the server starting pro-
cessing the request (from the server log) and the time
that the server machine received the request (from the
packet trace).

At an HTTP/1.1 server, several new fields can be
logged, including the various Cache-Control headers,
the Expect header, requests handled on the same per-
sistent connection and the number of such requests;
these will aid in better understanding of the potential
reduction of latency and bandwidth usage.

B. Packet Traces

Packet traces can complement the server logs by pro-
viding detailed information about the timing of pack-
ets in the network, as well as header fields that are
not logged by the server. The packet monitor also sees
packets dropped by the server during transient over-
load. By parsing the contents of an HT'TP response
message, a packet monitor could conceivably extract
information about hypertext references and embedded
images. Currently, we focus on

o fields in the HTTP request and response messages

« information about the actual request and response

transfers

o timestamps of the actual request and response

transfers

Fields common to the packet trace and the server log
can be used to match a server log entry with the corre-
sponding request/response pair from the packet trace.
In the request header we record the request method
(e.g., GET, HEAD), URL, and referer field. From the
response header, the HTTP response code (e.g., 200,
304), content type, and content length are extracted.
Optional header fields used for caching and authenti-
cation, such as the If-Modified-Since modifier in a
GET request and the Last-Modified timein an 200 (OK)
response are recorded.

The packet trace provides additional information:

1. The client port number of the TCP connection

which can be used to measure the reuse of TCP
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connections, even in HTTP/1.0 (via Keep-Alive).

2. TCP SYN (open) requests not handled by the
server, and connections that are closed before the
server generates a log entry.

3. The way in which the TCP connection was closed
(a conventional FIN or a RST) and who closed
the connection first (client/server).
used to study client aborts and transient server
overload.

Finally, and perhaps most importantly, the packet
trace has timing details about the steps involved in re-
trieving Web resources, as shown by the arrows in the
timeline in Figure 1. The trace includes timestamps
for the TCP open (client SYN and server SYN-ACK)
and close (FIN, RST) packets, as well as the timestamp
for the first packets of the HTTP request and response
headers, as well as the first and last data packets. In a
packet trace collected at the server, the timestamps of
the client SYN and the server SYN-ACK can be used to
estimate the server delay in establishing the TCP con-
nection. In a packet trace collected at the client, the
timestamps can be used to estimate the entire TCP-
establishment delay, including the network round-trip
time. The timestamps of the request and response
headers, and the data packets, can be used to study
the client throughput and delay.

These can be

C. Proposed Measurement Architecture

We propose a hybrid approach that complements ex-
tended server logging with passive packet monitoring
by a separate machine on the same network segment,
as shown in Figure 2. We are realizing this measure-
ment architecture in the AT&T Easy World Wide Web
(EW3) web-hosting platform [8], which hosts content
for several thousand companies. Server logs from EW3
have been used in several recent studies (e.g.,[18]). To
augment the server logging, we are installing a packet
monitor on the FDDI rings that connect the platform
to the rest of the Internet, and extending the server
logging to capture more detailed information.

The packet monitor consists of a 500 MHz Alpha with

Example request-response timeline from server log (X) and packet trace (1 and |)

server logs
Web . | Web
Server Server
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Internet
Packet
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Fig. 2. Measurement architecture

a 10-gigabyte array of striped magnetic disks and a 140-
gigabyte magnetic tape robot. We ensure that the mon-
itor 1s passive by running a modified FDDI driver that
can receive but not send packets, and by not assigning
an IP address to the FDDI interface. We control the
monitor by connecting to it over an AT&T-internal net-
work that does not carry customer traffic. The traces
are anonymized by encrypting the IP addresses as soon
as packets come off the FDDI link, before writing any
packet data to stable storage. To collect Web packet
traces, the PacketScope software uses tcpdump to cap-
ture all port-80 (HTTP) packets and copy them directly
to disk. A background process demultiplexes the pack-
ets into separate request and response packet flows, re-
orders any out-of-order packets, and presents summary
statistics about each request and response [15,19]. This
information includes the timestamps of key TCP and
HTTP events, as well as the HT'TP headers. A sepa-
rate offline process matches the requests and responses.
Experiences with the packet monitor at a WorldNet mo-
dem bank indicates that these instruments can capture
more than 150 million packets per day with less than
0.3% packet loss.

IV. STATISTICS

To demonstrate the potential impact of the changes
to HTTP, and the value of a tool like En Passant,



we have collected statistics on an HTTP packet trace
of modem customers in AT&T WorldNet. We fo-
cus on two important changes between HTTP/1.0 and
HTTP/1.1 — caching/coherency and range requests.

A. HTTP Packet Trace

Our preliminary study of the capabilities of En Pas-
sant draws on an eleven-day packet trace collected from
WorldNet in July 1998. The PacketScope monitored
dial-up traffic on a FDDI ring connecting a bank of 450
modems to the WorldNet backbone. The trace includes
12.6 million request/response pairs involving 4.0 mil-
lion unique URLs. Over 98.42% of the Web transfers
involved GET requests, with 1.55% POST requests and
0.03% HEAD requests. Approximately 34.5% of the re-
quests carried cookies. About one-third of the requests
claimed to use the 1.1 version of the HT'TP protocol,
though this does not imply that the proxies and servers
involved in these transfers had also used HTTP/1.1.
Approximately 70.0% of the responses were 200 (OK)
and 22.4% were 304 (Not-Modified).

B. Caching and Coherency

HTTP/1.0’s relatively simple caching model is based
on resource expiry times set by the server, where the
server include an Expires header to indicate the latest
time that a cached copy could be used. Before using a
cached resource, the client or proxy can issue a condi-
tional GET request with an If-Modified-Since modi-
fier with the Last-Modified time from the last server
response message for this resource. The server either
responds with a 304 (Not-Modified) message if the re-
source has not changed, else a 200 (0K) response and the
latest version of resource. The cache coherency model
introduces a trade-off between the likelihood of return-
ing a stale resource and the overheads of cache valida-
tions. When servers do not send an Expires header,
the client or proxy is forced to rely on heuristics to de-
cide whether or not to revalidate a cached resource.

HTTP/1.1 provides the Cache-Control general
header as an explicit directive mechanism that permits
clients or servers to override default actions. For exam-
ple, max-stale=3600 can be used to extend the time
before validation is needed. Likewise, the no-cache
response directive permits specific header fields from
being reused. HTTP/1.1 also permits response headers
to include a unique entity tag for each version of a re-
source, which can be used as a opaque cache validator
for reliable validation.

The packet trace data provides an initial estimate of

the potential savings from better cache coherency mech-
anisms. For example, 24.5% of the request messages
included an If-Modified-Since modifier, and 91.3%
of these requests resulted in a 304 (Not-Modified) re-
sponse. As a result, 304 (Not-Modified) messages ac-
count for 22.4% of all response messages in our trace.
Better cache coherency schemes could have avoided
the server overhead, network bandwidth, and user-
perceived latency introduced by the unnecessary val-
idation traffic. However, the server response messages
did not provide sufficient information. Just 56.4% of
the responses included a Last-Modified time, and just
6.1% of responses included an Expires header. Future
deployments of HTTP/1.1 server software should im-
prove the information available to clients and proxies,
allowing them to avoid unnecessary validation traffic.
This will reduce the number of server logs entries with
304 (Not-Modified) responses. This, in turn, should
reduce the number of requests, and affect the spacing
of requests for individual clients.

C. Range Requests

HTTP/1.0 does not provide an effective way to
request a server to send a portion of a resource.
HTTP/1.1 range requests allow a client or proxy to re-
quest specific subsets of the bytes in a resource, instead
of the full content. This is useful when only a small
portion of the resource is of interest, or to retrieve the
remainder of a resource after a partial transfer (e.g., an
aborted response). Proxy servers could properly cache
ranges to generate range responses later from caches.
Origin servers and proxies can reduce the amount of
bytes transmitted and thus reduce latency. Range re-
quests will alter the size distribution in the traffic mix
and lower user-perceived latency. For example, if a
client aborts a response, the browser could cache the
partial contents of the resource. If the client attempts
to download the resource again, the browser can send
a request for the remainder of the resource, along with
an If-Modified-Since modifier to make sure that the
resource has not changed in the meantime.

The packet traces suggest that aborts are an impor-
tant performance consideration. A previous study con-
sidered the impact of client aborts on the effectiveness
of proxy caching [19]. Aborts are somewhat difficult to
detect, so we follow a conservative approach. In some
cases, an abort is initiated by an RST (reset) on the
client’s TCP connection to the server. However, some
platforms use a regular FIN (close) packet, making it
difficult to distinguish between a close and an abort.



The content-length field enables us to distinguish most
cases, since an aborted connection often has fewer bytes
transferred than the content-length suggests. However,
not all response headers have a content-length field
(e.g., dynamically-generated responses).

In the current client trace, our conservative estimate
suggests that 5.85% of responses are aborted. On av-
erage, the server sends 25.5% of the aborted resource
before terminating transmission; the client may not re-
ceive all of these bytes, depending on how and when the
receive socket is closed. These bytes contribute 8.3% of
the total Web response traffic to the modem clients.
Under HTTP/1.0, the aborted bytes would have to be
transferred a second time if the client requests the re-
source again. We plan to study how often the client is-
sues a subsequent request for the same resource. Also,
we plan to repeat this analysis for the packet trace col-
lected at the Web server platform. This should provide
statistics for a more diverse set of clients with differ-
ent bandwidth resources. The En Passant tool can use
these results to estimate the bandwidth savings in sat-
isfying repeat requests after an aborted response.

V. CONCLUSION

We have presented an architecture for gathering
detailed data at Web server sites to transform a
HTTP/1.0 traffic into a plausible traffic in the new ver-
sion of the protocol. We discuss the changes that need
to be done at the Web server, the network-specific and
server-specific data elements that need to be gathered,
and the set of parameters needed for the transforma-
tion. Based on an actual packet trace from a large ISP
network, we examined how the traffic could be con-
verted. We believe that a tool like En Passant will
go a long way in helping various sites to convert their
HTTP/1.0 logs to see how they might be affected by
the changes in the protocol.
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