The Geomorphic View of Networking:
A Network Model and Its Uses

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA
pamela@research.att.com

ABSTRACT

The Internet is evolving away from its original architecture
and toward the use of multiple, customized protocol stacks.
A pluralistic architecture is best explained by the “geomor-
phic view” of networks, in which each layer is a microcosm of
networking, and layers can be instantiated at many different
levels, scopes, and purposes. Exploiting the commonalities
identified by the geomorphic view, an abstract layer model
can lead to architectural insights that help extend commu-
nication services, derive design principles, and generate net-
work software.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol Architecture

General Terms
Design, Performance, Security, Verification

Keywords
Internet, overlay, mobility

1. INTRODUCTION

The “classic” Internet architecture is usually depicted with
five layers: physical, link, network, transport, and applica-
tion. It is now widely agreed that this architecture fails to
meet many of society’s present and future requirements [3,
6, 7). The Internet is evolving as numerous stakeholders
attempt to meet their goals for dependability, security, mo-
bility, scalability, quality of service, and improved resource
management. The result is a trend toward multiple, cus-
tomized protocol stacks.

Multiple, customized protocol stacks can be envisioned in
a principled way as a future pluralistic Internet architecture
[1, 5, 13]. The present incarnation of the trend is more
pragmatic than principled, but nevertheless effective. For
example, Figure 1 shows the headers of a typical packet
in the AT&T backbone network. Counting one layer per

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MWA4NG *12 December 3-7, 2012, Montreal, Canada

Copyright 2012 ACM 978-1-4503-1607-1/12/12 ...$10.00.

Jennifer Rexford
Princeton University
Princeton, New Jersey, USA
jrex@cs.princeton.edu

Application
HTTP
TCP
P

IPsec

IP

GTP

UDP

IP

MPLS

MPLS
Ethernet

Figure 1: Headers of a typical packet in the AT&T
backbone network.

header, this packet is handled by an architecture with twelve
layers above the physical, instead of the classic four.

In this customized architecture, every layer above the UDP
layer and below the application is middleware. GTP is a cell-
phone protocol providing mobility, quality-of-service, and
billing. IPsec provides security. HT'TP is serving as a trans-
port protocol, not because it is suitable for the application
or even designed as a transport protocol, but because it is
almost the only way to traverse NAT boxes and firewalls
[12]. The presence of two MPLS layers, three IP layers, and
two transport protocols from the IP suite is an indication of
ad hoc code re-use, as protocols are instantiated at different
positions in the stack to serve different purposes.

The good news to be found in Figure 1 is that middleware
can be used to meet a wide variety of requirements, even for
those stakeholders who cannot influence the lower layers of
the architecture.

The bad news to be found in the figure is more exten-
sive. It illustrates major problems and unmet needs in the
following three areas.

Communication services: HI'TP is a transaction-oriented
client-to-server protocol. Although it supports Web ser-
vices fairly well, there is a wide variety of potential In-
ternet applications for which it is poorly suited. These
include real-time, connection-oriented, peer-to-peer, server-
to-client, and multi-party applications. When implemented
on top of HT'TP, these applications are difficult to develop,

Figure 2: Members and links of a layer.

difficult to deploy and maintain, and very inefficient [15].
We need to provide a broader range of communication ser-
vices so that all applications can be developed easily and
efficiently, while security policies appropriate to each appli-
cation are reliably enforced.

Design principles: With so many layers, this customized
architecture is very unlikely to be the most efficient way
to satisfy the stakeholders’ requirements. In fact, there is
no way of predicting what its performance properties are,
as an estimated 15 load-balancing algorithms apply to each
packet, and each of the algorithms has been designed and
analyzed mostly in isolation [14]. We need principles to help
us design customized architectures that meet a variety of
functional and nonfunctional requirements in an efficient,
modular, and predictable way.

Software development: If the Internet evolves so that each
application runs on its own customized Internet architec-
ture, then a large amount of new network software will be
required. We need to develop this software through code
re-use and code generation, because conventional program-
ming will be too slow, too expensive, and too prone to er-
rors. Figure 1 shows code re-use, but does not meet other
requirements such as efficiency and predictability.

This paper outlines a research agenda aimed at solving
these problems. It is based on a “geomorphic view” of net-
works, in which each layer is a microcosm of networking—it
has all of the basic ingredients of networking in some form.
Layers are the architectural modules. In a network architec-
ture there are many layer instances; they appear at differ-
ent levels of the “uses” hierarchy, with different scopes, with
different versions of the basic ingredients, and for different
purposes. This view is described in more detail in Section 2.

The beauty of the geomorphic view is that any lesson we
learn about layers in general can be used many times over.
Section 3 explains how it might be possible to develop an
abstract, formal model of a layer that would be helpful in
solving the problems introduced above. We discuss both the
abstractions and our progress on building such a model.

Finally, Section 4 proposes some ways in which the layer
model could be exploited to solve the problems above. First,
it could delineate design spaces and elucidate how decisions
in one space depend on decisions in other spaces, leading to
principles of network design. Second, it could broaden the
set of mechanisms available to network designers, leading
to a richer set of communication services without sacrificing
other goals such as dependability, security, performance, and
scalability. Third, it could serve as a framework in which a
custom layer can be generated by selecting and integrating
library components.

2. THE GEOMORPHIC VIEW
OF NETWORKS

processes on
one machine

‘St
@ ©

 registration

O—O—D>—O

Figure 3: Implementation of a link in an overlay by
a session in an underlay.

In the geomorphic view of networks, the architectural
module is a layer. A layer has members, each of which has a
unique, persistent name. For example, Figure 2 is a snapshot
of a layer with five members, each having a capital letter as
a name. In general a member is a process, i.e., an indepen-
dent, asynchronous locus of state and control. The actual
behavior of a member may be no more complex, however,
than a sequence of procedure calls.

The members of a layer communicate with each other
through links, shown by lines in Figure 2. A link is a com-
munication channel. In general, a layer does not have a link
between each pair of members.

One of the two primary functions of a layer is to enable
members to send messages to each other. To do this, a layer
needs routes indicating how one member can reach another
through links and intermediate members. For example, (A,
B, D, E) is a route from A to E. It also needs a forwarding
protocol that runs in all members. The forwarding protocol
enables members to send and receive messages. In addition,
when a member receives a message on an incoming link that
is not destined for itself, its forwarding protocol uses the
route information to decide on which outgoing link it will
forward the message.

A channel is an instance of a communication service. As
mentioned above, a link is a channel. If a layer does not
implement its links internally, then its links are implemented
by other layers that this layer uses, placing the other layers
lower in the uses hierarchy.

If an underlay (lower layer) is implementing a link for an
overlay (higher layer), then the state of the channel must be
stored as data in the underlay. In the underlay, the channel
is known as a session. (There must be two names for chan-
nels, because a typical layer has both links and sessions.)

The second primary function of a layer is to implement
enriched communication services on top of its bare message
transmission. Typical enrichments for point-to-point ser-
vices include FIFO delivery and quality-of-service guaran-
tees. This function is carried out by a session protocol. A
layer can implement sessions on behalf of its own members,
as well as or instead of as a service to overlays.

For a link in an overlay to be implemented by a session in
an underlay, both endpoint machines must have members in
both layers, as shown in Figure 3. A machine is delimited by
an operating system that provides fast, reliable communica-
tion between processes on the machine. This fast, reliable

primary function state component

members «————— member algorithm
locations €—————— location algorithm
session protocol —————) sessions
attachments €———— attachment algorithm
links €—————— link algorithm
routes —————— routing algorithm

maintenance algorithm

forwarding protocol

Figure 4: Major components of a layer. Arrows
show which protocol or algorithm writes a state
component.

operating-system communication is the foundation on which
networked communication is built.!

A registration is a record that relates an overlay member
to an underlay member on the same machine. Registrations
must be stored as data in both layers. In the overlay they
are called attachments, because they indicate how a member
is attached to the network through a lower layer. In the
underlay they are called locations, because they indicate that
a member is the location of a process in a higher layer.

The session protocol creates and maintains sessions data
in its layer, and uses locations data. For example, in Fig-
ure 3, A sent a request to a for a session with E. To create
this session, a learned from its layer’s locations that F is
currently located at e. Messages sent from A to F through
the link in the overlay travel through a, b, d, and e; the first
and last steps uses operating-system communication, while
the middle three steps use networked communication.

The six major components of the state of a layer are listed
in Figure 4. All can be dynamic. We have seen that the
session protocol creates and maintains sessions; the other
five are created and maintained by their own maintenance
algorithms.

This view of networking was inspired by the work of Day
[4], although we have made many changes and additions in
both content and presentation. It may seem familiar and ob-
vious because both the classic Internet architecture [2] and
the OSI reference model [9] also describe network architec-
ture as a hierarchy of layers, but in fact there are several
radical differences, which the name “geomorphic” has been
chosen to emphasize.

In the Internet and OSI architectures, each layer has a spe-
cialized function that is viewed as different from the func-
tion of the other layers. In both architectures, there is a
fixed number of global layers. For example, in the Inter-
net architecture the network layer is defined by IP, while
the transport layer is defined primarily by TCP and UDP.
If the earth’s crust resembled these architectures, it would
consist of exactly five or seven smooth and unbroken layers,
each surrounding the earth like a shell. In the geomorphic
view the arrangement of layers is more varied and complex,
as it actually is in the earth’s crust.

In the geomorphic view, each layer is viewed as the same
in containing all the basic functions of networking, and there
can be as many layers as needed. Consequently, the network
(IP) and transport (TCP/UDP) layers of the Internet archi-
tecture fit into one “Internet core” layer of the geomorphic
view, where IP is the forwarding protocol and TCP and

LA virtual machine can be regarded as a machine, in which
case communication through the hypervisor and soft switch
of the physical machine is regarded as networked communi-
cation.

Application 1

o

Application 2
() ()
N/ —/
Internet core
gateway NN gateway
A AN AV A

-

LAN 3

LAN 2

LAN 1

Figure 5: Geomorphic view of the classic Internet
architecture. Internet links are labeled with the
LAN that implements them.

UDP are variants of the session protocol offering variants of
Internet communication service.

Because layers instantiated at different levels have differ-
ent purposes, their functions take different forms. For one
example, we are most familiar with routing algorithms in the
Internet core, where their purpose is reachability. A higher-
level middleware layer might offer security as part of its
communication services. Implementing security might en-
tail routing all messages to a particular destination through
a particular filtering server, so that, in this layer, part of the
purpose of routing is security. An application layer might
have a link or potential link between any two members, im-
plemented by communication services below, so that in this
layer the routing algorithm is vestigial.

For another example of a basic function with different
forms in different layers, low-level layers such as Ethernet
LANs provide broadcast as a communication service. The
services provided by the Internet core are point-to-point,
while an application layer might implement its own form of
broadcast.

The scope of a layer is its set of potential members. In the
Internet and OSI architectures there is exactly one layer at
each level of the hierarchy. In the geomorphic view, as shown
in Figure 5, a layer can have a small scope, and there can
be many layers at the same level of the hierarchy. Figure 5
shows the geomorphic view of the classic Internet architec-
ture, with many LAN layers at the bottom level. In each
LAN layer, the data structures, algorithms, and protocols
are precisely those of the particular LAN technology being
used. This is in sharp contrast to the idea of a generic,
global “link layer,” which cannot be made precise because it
is a generalization of a large number of different technolo-
gies.

Figure 5 also shows that each application is a layer with
its own members, name space, and communication services.

These layers overlap geographically, while sharing the re-
sources of the Internet core. The overlapping and abutting
shapes in Figure 5 are common to both geological diagrams
and networking.

It is self-evident that fixed layer structures cannot explain
today’s customized architectures, as exemplified by Figure 1.
The geomorphic view is intended not only to describe them,?
but also to generate a design space including many others
not yet explored.

3. TOWARD AN ABSTRACT LAYER MODEL

Our goal is to develop an abstract formal model of a layer,
so that we can exploit it to solve the problems presented in
Section 1. Because the diversity of network technologies and
the overall complexity of networking make this goal appear
quixotic, we first explain some of the factors that make this
goal feasible, before summarizing our progress.

3.1 What makes a useful layer abstraction
seem feasible?

As noted above, each layer instance corresponds to some-
thing real and specific, such as a particular LAN, as opposed
to a generalization. This means that we can compare a real
layer instance to an abstract formal model, and decide with-
out ambiguity whether the layer instance is a special case of
the formal model.

Although the geomorphic view is not intended to limit
network functions in any way, it is intended to be somewhat
prescriptive in how they are described. For one example,
a layer has one name space, in which a member has one
name. It follows that if there appears to be a process with an
“identifier” and a “locator,” it must actually be two processes
on the same machine, each in a different layer, with one
being registered to the other. For another example, there is
no concept of tunneling within a layer. Wherever “tunneling”
is used, the “tunnel” is a link in one layer, and it “tunnels
through” the links of a lower layer. For this reason, the two
MPLS layers in Figure 1 must also be two distinct layers in
the geomorphic view.

Prescriptive description brings many benefits. Most rel-
evant to this subsection, each layer is a simpler structure,
because it need not include multiple name spaces, tunnels,
and other unnecessary complexities. Another benefit is that
it forces designers to make explicit decisions that are usually
left unexplained or even undefined, such as the purposeful
relationship between routing in an overlay (whose links are
“tunnels”) and routing in the underlay (whose routing imple-
ments the tunnels). Finally, prescriptive description helps
ensure that each architecture has only one correct descrip-
tion, rather than many synonymous ones. This should prove
beneficial in comparing architectures and generating design
spaces.

In our current layer model most data structures (mem-
bers, attachments, locations, links, and routes) are regarded
as centralized, or, more precisely, their distribution over the
states of layer members is not specified. In the same way, the
functional components that maintain them (member, attach-
ment, location, link, and routing algorithms) are specified as

?In the geomorphic view Figure 1 would probably corre-
spond to 7 layers, from bottom to top: Ethernet, MPLS,
MPLS, IP+UDP+GTP, IP+IPsec, IP+TCP+HTTP, Ap-
plication.

layer benefiting
from mobility

1
layer |
1

) 1- ‘.‘
e [®

mobility

o [o ©
layers L2

Figure 6: A session with attachment mobility serv-
ing endpoint A and location mobility serving end-
point B. Dynamic registrations are shown as dotted
lines.

(centralized) algorithms rather than (distributed) protocols.

This abstraction is extremely important because most of
the difficult decisions made in designing a network layer are
about or related to how the state is distributed, and how
protocols maintain adequate consistency across the layer.
Choices range from initializing state structures that cannot
change thoughout the life of a layer, through using a cen-
tralized database with lookup and update transactions, to
highly redundant, distributed state and complex consistency
protocols. These choices, in concert with choices about the
shape of the member/link graph, the structure of names, and
other constraints, are the major influences on scale, perfor-
mance, and dependability. We cannot defer these choices
forever, but the abstraction enables us to defer them until
they are relevant.

3.2 Progress on the model

We have a formal model of a point-to-point session pro-
tocol written in Promela, and have verified many desirable
properties with the model-checker Spin [8]. We have a for-
mal model of members, attachments, locations, links, ses-
sions, routes, and the forwarding protocol written in Alloy,
and have verified static consistency properties with the Al-
loy Analyzer [10]. Relatively little is included about the
algorithms that maintain these data structures.

Most of our efforts have been expended on investigating
and modeling the layer mechanisms needed for mobility. In
networking, this term refers to both a problem and its solu-
tions. As a problem, it means that a layer member is chang-
ing its attachment to lower layers of the network, in partic-
ular while using communication services. As a solution, it
means maintaining the member’s communication channels,
despite the movement.

Using the geomorphic view, we have discovered that there
are two completely distinct mechanisms for implementing
mobility. Figure 6 shows a layer with two mobile members
A and B. Both are benefiting from mobility, in the sense
that their link will be preserved as they move. The mobility
of each endpoint is provided by a different mechanism.

On the left, as the machine of A moves physically, it goes
out of range of LAN L1 and enters the range of LAN L2.

Consequently, its attachment in the lowest level changes
from al’to a2’. In the middle layer, which is implementing
mobility, this means that links to a implemented by L1 are
replaced by links to a implemented by L2. The hard work
in this layer is performed by its routing algorithm, which
must re-route to maintain the reachability of a through new
links. The parts of the layer state affected by this mecha-
nism, called attachment mobility, are its attachments, links,
and routes.

On the right, as the machine of B moves physically, it
goes out of range of LAN L2 and enters the range of LAN
L3. Consequently, its attachment in the lowest level changes
from b1’ to b2’. Although this is exactly the same at this
level as A’s mobility, it is handled by the implementing mid-
dle layer in a completely different manner.

In the middle layer, the location of B changes from mem-
ber b1 to member b2. The most common reason for this
to occur is that the implementing layer has a large, hier-
archical, topology-dependent name space (as the Internet
does). As the machine of B moves from L2 to L3, it cannot
keep the same name in the middle layer, because topolog-
ical constraints would be violated. Instead, its member b1
in the middle layer dies and is reborn as member b2. The
hard work in this layer is performed by its session protocol
and location algorithm. The location algorithm must up-
date B’s location, while the session protocol must update
distributed session state so that a sends messages to b2 in-
stead of b1. The parts of the layer state affected by this
mechanism, called location mobility, are its members, loca-
tions, and sessions.

On first hearing this explanation, most people insist that
the difference between attachment and location mobility must
be illusory, merely a difference of viewpoint. The geomor-
phic view shows, precisely and unambiguously, that the dif-
ference is real: the two mechanisms exercise disjoint pro-
tocols and algorithms in a layer, and alter disjoint data
structures. In [16] we elaborate the detailed design decisions
needed within each of the two major mechanisms, and use
these structures to categorize and explain all the well-known
implementations of mobility.

Our next step toward an abstract layer model will be to
investigate and model security mechanisms. Although some
aspects of security belong strictly in the operating system or
application, others can be provided as part of network ser-
vices (e.g., encryption and authentication) or supported by
network services (e.g., guaranteed routing through security
servers). The latter aspects can be investigated and modeled
in the same spirit as mobility.

Overall, our abstract layer model is at a very preliminary
stage—it is rudimentary or incomplete in most places. Thus
it is still too early to tell whether most of its potential ben-
efits can be realized.

4. USING THE MODEL
TO SOLVE PROBLEMS

In this section, we suggest how the previous ideas might
contribute to solving the problems introduced in Section 1.

4.1 Communication services

As previously mentioned, restrictive policies embedded in
most firewalls and NAT boxes make it very difficult to imple-
ment many applications, particularly those requiring real-

time, peer-to-peer, or server-to-client communication ser-
vices. Those restrictive policies exist because of the Inter-
net’s security crisis, but they are a blunt instrument.

With a carefully structured and articulated architecture,
it should be possible to build in higher-level security policies
that are sound and appropriate to their applications. This
work could provide the basis of an argument for bypassing
the blunt security policies enforced at lower levels of the
hierarchy.

The geomorphic view also promotes clean, well-specified
interfaces between layers. This improved understanding of
network architecture might encourage middleware designers
to offer a richer set of communication services to applica-
tion developers, and might encourage application develop-
ers to use well-engineered middleware services rather than
program their own versions.

Richer communication services might include anycast, con-
ference, and publish/subscribe channels. They might in-
clude “multihomed” channels that can take advantage of the
bandwidth of both cellular and WiFi media simultaneously.
Or they might include services based on routing through
application-specific middleboxes.

4.2 Design principles

Our work toward developing design principles breaks into
two parts. The first is concerned with solving individual
design problems. The second is concerned with composing
individual solutions into an architecture that solves many
problems simultaneously. We illustrate both parts with a
mobility example.

Imagine that we are designing a mobility service for lap-
tops. Laptops are often used on buses, because each bus
has its own LAN for the benefit of its riders. Of course, the
bus is mobile also. We might see this as breaking into two
mobility problems, one for buses and one for laptops. It is
important for scalability that solutions to the two problems
be independent. In other words, we cannot accept solutions
that require an update for every rider when a bus moves,
nor can we accept solutions that require an update for the
bus when a rider with a laptop gets on or off.

Assuming that there is already a tentative layer architec-
ture, a solution to either of the mobility problems might
be assigned to any layer, and it might be a special case of
attachment mobility or a special case of location mobility.
If a layer L is going to implement location mobility for a
layer L+ above it, then the name spaces of L and L+ can-
not be in one-to-one correspondence (see Figure 6), and L
must have an efficient location algorithm that makes the lo-
cations of mobile members of L+ available throughout the
layer. If a layer L is going to implement attachment mo-
bility, then there are quite a few choices concerning how L
will optimize the update, storage, and path-stretching costs
of dynamic routing (see [11] for an overview of these costs).
These choices constitute the design space of a mobility prob-
lem. By studying these choices further, we hope to gain more
insight into the qualitative and quantitative constraints and
trade-offs relevant to solving individual design problems.

Figure 7 shows a new solution to the joint problem, gen-
erated from the design space of mobility, that has the in-
dependence and scalability advantages explained above. In
the figure, the top layer contains a middleware process M
on a mobile laptop, with an ongoing link to a middleware
process S. In the layer below, b is the Internet interface of

® O,
! location / D
| attachment :
|

mobiliy NP Y
R

------- O—©©

\
\
. : \
- : \ \

- : \ \
®
wireless bus

LANs LAN

Figure 7: An implementation of mobile laptops on
a bus.

a bus LAN. When the laptop is on the bus, M is registered
at Internet interface mb, and b is acting as a router for mb.
Note that b and mb belong to the same block of Internet ad-
dresses, so when the laptop is taken off the bus and attached
somewhere else, it will register at a different process mn.

The big arrows indicate the processes benefiting from mo-
bility and the type of mobility, but not where it is imple-
mented. In fact, both mobility problems are solved in the
same layer. The middle layer implements location mobility
for M. This implementation must do something special to
update sessions and locations when the laptop moves on or
off the bus, but does nothing when the laptop is on the bus
and the bus is moving. The middle layer also implements
attachment mobility for b. This implementation must do
something special to restore links and routing when the bus
moves from the range of one roadside wireless LAN to an-
other, but does nothing when riders get on or off the bus.

In a network architecture, different mobility problems might
be solved in different, adjacent layers. We have used the
layer model presented in Section 3 to argue that mobil-
ity solutions in different layers are independent and non-
interfering. In other words, layer composition (in which an
overlay uses the services of an underlay) continues to work
smoothly.

In Figure 7, different mobility problems are solved by dif-
ferent mobility mechanisms in the same layer—another kind
of composition. We are currently completing a proof that
location and attachment mobility mechanisms in the same
layer are independent and non-interfering, so that they can
be composed safely.

One of the goals of composition, both inter- and intra-
layer, is more efficient architectures. For example, it has
been noted that Figure 1 appears to correspond to 7 lay-
ers in the geomorphic view. It is almost certainly possible
to implement the same functions in fewer layers, if that is
desirable for compressing headers or minimizing header pro-
cessing. For example, the purpose of IP + UDP + GTP
appears to be independent of the purpose of IP + IPsec. If
the mechanisms implementing these purposes can be shown
to be equally independent and therefore compositional, then

both can be combined in a single layer, possibly along with
other functions as well.

4.3 Software development

As indicated in Figure 4, the layer model is intended
to decompose the software structure of a layer into com-
ponents with well-understood interfaces and dependencies.
The structure in the figure is very coarse, but further work
should make it possible to refine it.

Hopefully the refined structure can serve as a framework
where specific implementations of mechanisms such as loca-
tion and attachment mobility plug in. If so, the software
framework brings us closer to being able to generate a cus-
tom layer by selecting and integrating library components.

5. REFERENCES
[1] K. Birman. The league of SuperNets. IEEE Internet

Computing, 7(5):93-96, September 2003.

[2] D. D. Clark. The design philosophy of the DARPA
Internet protocols. In Proceedings of SIGCOMM.
ACM, August 1988.

[3] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: Defining tomorrow’s
Internet. IEEE/ACM Transactions on Networking,
13(3):462-475, June 2005.

[4] J. Day. Patterns in Network Architecture: A Return to
Fundamentals. Prentice Hall, 2008.

[5] N. Feamster, L. Gao, and J. Rexford. How to lease the
Internet in your spare time. Computer
Communications Review, 37(1):61-64, January 2007.

[6] A. Feldmann. Internet clean-slate design: What and
why? Computer Communications Review, 37(3):59-64,
July 2007.

[7] M. Handley. Why the Internet only just works. BT
Technology Journal, 24(3):119-129, July 2006.

[8] G. J. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004.

[9] ITU. Information Technology—Open Systems
Interconnection—Basic Reference Model: The basic
model. ITU-T Recommendation X.200, 1994.

[10] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, 2006, 2012.

[11] J. Mysore and V. Bharghavan. A new
multicasting-based architecture for Internet host
mobility. In Proceedings of the 3rd Annual
ACM/IEEEFE International conference on Mobile
Computing and Networking. ACM, 1997.

[12] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the
narrow waist of the future Internet. In Proceedings of
the 9th Workshop on Hot Topics in Networks, 2010.

[13] T. Roscoe. The end of Internet architecture. In
Proceedings of the 5th Workshop on Hot Topics in
Networks, 2006.

[14] O. Spatscheck. Cloud computing and my worries
about the network that enables it.
http://clouds10.mytestbed.net/presentation/
oliver_clouds10v2.pdf, 2010.

[15] P. Zave. Internet evolution and the role of software
engineering. In The Future of Software Engineering,
pages 152-172. Springer, 2011.

[16] P. Zave and J. Rexford. The geomorphic view of
mobility. In submission, 2012.

