
Using Forgetful Routing to Control BGP Table Size

Elliott Karpilovsky
Computer Science Department

Princeton University

elliottk@cs.princeton.edu

Jennifer Rexford
Computer Science Department

Princeton University

jrex@cs.princeton.edu

ABSTRACT
Running the Border Gateway Protocol (BGP), the Inter-
net’s interdomain routing protocol, consumes a large amount
of memory. A BGP-speaking router typically stores one or
more routes, each with multiple attributes, for more than
170,000 address blocks, and growing. When the router does
not have enough memory to store a new route, it may crash
or enter into other unspecified behavior, causing serious dis-
ruptions for the data traffic. In this paper, we propose a new
mechanism for routers to handle memory limitations with-
out modifying the underlying routing protocol and without
negatively affecting convergence delay. Upon running out of
memory, the router simply discards information about some
alternate routes, and requests a “refresh” from its neighbors
later if necessary. We present an optimal offline algorithm
for deciding which alternate routes to evict, and explore the
trade-off between memory size and refresh overhead using
a large BGP message trace. Based on these promising re-
sults, we design and evaluate efficient online algorithms that
achieve most of the performance benefits. We believe that
our scheme can significantly improve the scalability and ro-
bustness of IP routers in the future.

Keywords
workload characterization, performance optimization, com-
munication networks

1. INTRODUCTION
The successful delivery of traffic through the Internet de-

pends on the smooth operation of the routing protocols
running in and between thousands of Autonomous Systems
(ASes). The responsibility for stitching these disparate ASes
together into a single, coherent network falls to the Border
Gateway Protocol (BGP), the Internet’s interdomain rout-
ing protocol. BGP enables routers to learn paths through
other ASes to reach remote destination address blocks, or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM 1-59593-456-1/06/0012 ...$5.00.

prefixes1. A router stores the BGP routes it learns for each
destination prefix in a routing table, known as a Routing
Information Base (RIB), and selects a single “best” route
for forwarding data traffic; all other routes are “alternates,”
used when the primary path becomes unavailable. Upon
running out of memory for storing the routing table, today’s
BGP-speaking routers crash, stop accepting new informa-
tion, or enter some indeterminate state, leading to serious
disruptions in the end-to-end delivery of data traffic [1]. In
this paper, we propose and evaluate a new technique for
containing the size of a BGP routing table, while remaining
backwards compatible with the BGP protocol.

In the remainder of this section, we discuss the memory
constraints on routers and the limitations of existing reme-
dies, and introduce the concept of forgetful routing. In Sec-
tion 2, we present a formalism for describing BGP, providing
the background knowledge needed to understand forgetful
routing; this leads directly into a discussion of forgetful rout-
ing itself. Section 3 analyzes the trade-off between memory
savings and refreshes by evaluating an optimal, offline algo-
rithm over a large BGP message trace. Section 4 proposes
and evaluates several efficient, online algorithms for decid-
ing which alternate routes to evict when the RIB memory
is full. In Section 5 we examine which ASes would most
benefit from deploying forgetful routing. We discuss related
work in Section 6, and conclude the paper in Section 7.

1.1 Memory Limits and Current Workarounds
Given the relatively low cost of memory, and the fact

that even conventional desktop PCs often have hundreds of
mega-bytes of main memory, the notion that routers would
encounter memory limits may seem surprising. Even taking
into account that today’s routers must store BGP routes for
around 170,000 prefixes, and growing [2, 3], the amount of
space needed seems small. For example, a router with 10
neighbors, with each neighbor announcing a route for each
prefix, would need approximately 130 mega-bytes of mem-
ory (assuming 80 bytes to store routing entry information).
So why the concern?

The problem with these back-of-the-envelope calculations
is that they’re a lower bound on memory, and in practice
much more memory is needed for various reasons. First,
the number of prefixes is sometimes much higher, such as
when configuration errors or malicious attacks trigger “route
leaks,” where a router receives BGP announcements for ad-

1A prefix is specified with an IP address and a mask indi-
cating the number of relevant bits, e.g., 122.43.2.1/24 rep-
resents all 256 addresses starting with 122.43.2.

dress blocks that are not normally visible. As examples:
on April 25th, 1997, AS7007 leaked 23,000 routes, causing
enough instability to create massive Internet outages [4]; on
October 3rd, 2002, 20% of WorldCom’s customers lost con-
nectivity due to a configuration error that “...propagated
more route-broadcasts than the affected routers could han-
dle” [5]; on December 24, 2004, AS9121 leaked over 100,000
prefixes [6], etc. From 1994 to 2004, there have been more
than 60 threads about route leaks on the North American
Network Operators’ Group (NANOG) mailing list alone [7].
Second, a router may learn multiple BGP routes for a pre-
fix, especially as ASes increasingly connect to the Internet in
multiple locations for better fault tolerance and more flexible
load balancing. Third, operating system upgrades generally
provide new features and consume more memory, adding to
the problem. Fourth, data structure overhead and other im-
plementation details consume additional space. Considering
all these factors, the BGP routing table can grow quite large,
up to a gigabyte in size, with the risk that an unexpected
route leak may drive the memory requirements significantly
higher.

There are many partial solutions to the memory problem,
but no panaceas, such as:

• Adding more memory. RIB memory is much more ex-
pensive than conventional SDRAM, often between one
to two orders of magnitude more in price. Moreover,
determining how much memory to add is very chal-
lenging. Thus, upgrading the memory for every router
in a large AS to some “acceptable” level is quite ex-
pensive. In other cases, such as routers deployed in a
satellite network, adding memory may be impossible.

• Using secondary storage. Swapping parts of the RIB
to secondary storage may seem appealing, but many
routers do not have disk drives; network operators are
reluctant to rely on disks, as they have relatively high
failure rates [8]. Even when secondary storage is avail-
able, excellent virtual-memory techniques need to be
used to prevent thrashing.

• Using compression. Applying compression techniques
to the RIB data may yield some memory savings, at
the expense of computational overhead in handling
new update messages. Since routers need to respond
quickly to routing changes, any compression scheme
would need to be simplistic and operate only over lo-
cal chunks of data, severely constraining any savings.

• Filtering routes. Route filters can be installed to dis-
card routes that do not meet certain criteria. In fact,
the Regional Internet Registries (RIR) publish guide-
lines for the maximum prefix lengths for various parts
of the IP address space [9]. However, these guidelines
are merely suggestions, and many ISPs ignore them.
This creates a catch-22, where ASes do not filter based
on RIR guidelines since so many ASes violate them,
leading ASes to feel little pressure to obey them.

• Enforcing prefix limits. By imposing a hard limit on
the number of prefixes accepted from each neighbor,
and tearing down the BGP session when the number
is exceeded, a router can avoid dedicating too much
memory to a single neighbor. However, unless ex-
tremely conservative limits are imposed, the router re-

mains vulnerable to learning too many routes across
all of its neighbors [6].

In sum, existing technologies that control BGP table growth
are either only applicable in specialized circumstances or are
generally ineffective.

1.2 Practical Constraints on Extending BGP
Unfortunately, devising solutions to BGP’s memory prob-

lem is not an easy feat. Since BGP is the glue that holds
the disparate parts of the Internet together, having a “flag
day” to replace BGP with a new protocol is infeasible. Any
solution must be incrementally deployable, where one AS
can upgrade the software on its routers even if other ASes
do not. In addition, upgrading the software needs to offer
clear benefits to the early adopters, rather than relying on a
large-scale deployment before any memory savings are real-
ized. We argue that a good, practical solution should have
the following three properties:

No changes in how the routers select paths. The changes
to BGP should not affect which paths the routers select for
forwarding data packets. BGP is designed to prevent for-
warding loops and unexpected loss of connectivity through
its decision process, and support flexible routing policies.
Changes to the way routers modify route attributes and se-
lect paths could lead to inconsistencies in the routing deci-
sions across the network.

Memory savings for ASes that deploy the solution. Since
interdomain routing is tied to the dynamics of businesses,
economic incentives drive the deployment of BGP modifica-
tions. Upgrading all the routers in an AS is time consuming
and expensive. An AS that deploys the new software should
see memory savings, even if no other ASes have deployed
the solution.

No significant increase in routing convergence delay. The
scheme must not significantly affect the time it takes for
routing changes to propagate across a network, also known
as convergence delay. During convergence, multiple routers
recalculate their routing tables in response to a topology or
policy change, and transient forwarding loops or blackholes
(where packets are lost) may occur. An increase in conver-
gence delay translates into additional time when data traffic
may be lost or delayed.

1.3 Our Contribution
With these constraints in mind, we propose a new ap-

proach that we dub forgetful routing. To avoid exceeding the
available memory, a forgetful router can selectively discard
one or more alternate routes. If a discarded route is needed
sometime in the future, the router requests a “refresh” from
the neighbor responsible for announcing the route.

Our solution exploits several important aspects of the
BGP routing system:

• Alternate routes are not needed while the primary route
is in use. This enables our scheme to offer significant
memory savings by potentially discarding all alternate
routes. If a router has, on average, n routes per prefix,
it can reduce its total memory usage by a factor n.

• Every alternate route is some neighbor’s best route.
Thus, every forgotten route is always available for re-
transmission later. This allows a router to always re-
construct its original routing table when needed and
thus select the same best routes as conventional BGP.

• Every alternate route is always one hop away. As a
result, total convergence delay can only ever increase
by the time of a single refresh, no matter the size of
the network.

• BGP’s route-refresh feature can be used to trigger a
refresh from a neighbor. BGP’s route-refresh capabil-
ity [10] has been a standard for many years and is
already deployed in many large ASes. Although de-
signed for a different purpose, it can be used to ask
a router to resend BGP announcements. This signifi-
cantly lowers the barrier to deploying forgetful routing.

Moreover, our solution does not require any changes to
the BGP protocol—only software upgrades on the routers
themselves; in addition, one AS could deploy forgetful rout-
ing even if other ASes do not. Even in the rare case where
none of its neighbors support the route-refresh feature, an
AS can use forgetful routing to reduce the amount of mem-
ory consumed by internally learned routes (i.e., in internal
BGP).

Forgetful routing introduces a trade-off between memory
size and refresh overhead, leading to a sort of a “cache re-
placement” problem. Our goal is to create an efficient evic-
tion algorithm that minimizes the “miss rate,” i.e., the like-
lihood that the best route for a prefix does not already re-
side in the routing table and will trigger a route refresh.
We first present an optimal offline algorithm that assumes
perfect knowledge of the future arrivals of BGP update mes-
sages. Experiments applying the optimal algorithm to BGP
message traces show that forgetful routing can achieve sub-
stantial reductions in memory usage, up to a factor of 30,
in an idealized scenario. The analysis of the measurement
data also provides important insights into the characteristics
of BGP update dynamics. We capitalize on these observa-
tions in creating two efficient online algorithms that evict
the least attractive alternate routes for prefixes that have
not changed their best routes for the longest time. Efficient
data structures enable a forgetful router to make eviction
decisions in constant time, and our experiments show that
the online algorithms perform well over actual BGP data,
reducing the memory footprint by a factor of 10 with a mod-
erate number of refresh operations.

2. FORGETFUL ROUTING
Describing all aspects of BGP would require an entire

book [11], and many of these details are irrelevant to mem-
ory management. We first present a simple formalism that
captures how BGP-speaking routers handle update messages
and select routes; this formalism is used throughout the pa-
per as a reference model. Then, we apply this model to ex-
plain forgetful routing and introduce the cache-replacement
problem that is the focus of the rest of the paper.

2.1 An Abstract Model of BGP
Initially, a router establishes a BGP session with each

neighbor. Each router then shares information about the
best routes through update messages. After learning new
information from its neighbors, the router checks if better
routes exists, and if so, uses them. Upon changing its best
route, the router must send an update message to any neigh-
bors that previously received an announcement for the re-
placed route, indicating that the old route is no longer in

132.241.0.0/16AS 1

AS 2

AS 4

AS 3

AS RIB

AS 1 (132.241.0.0/16, AS3, 1 → 3 → 4 → ...)
(132.241.0.0/16, AS2, 1 → 2 → 4 → ...)

AS 2 (132.241.0.0/16, AS4, 2 → 4 → ...)
AS 3 (132.241.0.0/16, AS4, 3 → 4 → ...)
AS 4 (132.241.0.0/16, ..., 4 → ...)

Figure 1: A hypothetical network where AS 1 can
route to 132.241.0.0/16. After AS 4 announces a
route to the prefix to its neighbors, AS 2 and AS 3
will be able to route to it. They, in turn, generate
announcements for AS 1. RIB entries for this prefix
are shown using the (p, n, r) notation. Note that AS 1
can always re-derive its RIB entries by issuing route
refreshes to its neighbors.

use; this withdraw is then followed by an announcement of
the new route2. If connectivity to a prefix is lost, only a
withdraw message is sent.

All the information about routes is stored in a Routing
Information Base (RIB). A route is a three-tuple (p, n, r)
containing a prefix, a neighbor that advertised the prefix,
and some route attributes (e.g., the number of hops required
to reach the destination, preference values, etc.). A RIB is
a set of such routes. By default, we assume that for every
prefix p, the RIB contains a null route to that destination,
i.e., the entry (p, ∅, ∅), signifying that the router cannot or
does not want to route to it.

An announcement is an update message of the form:

(“ANNOUNCE
′′
, (p, n, r))

that tells the router that neighbor n currently uses route
r to reach prefix p. The neighbor n can only advertise its
best routes, and must be using the route r to reach p. A
withdraw is an update message of the form:

(“WITHDRAW
′′
, (p, n, r))

indicating that neighbor n can no longer reach prefix p using
its previously announced route. The RIB entry correspond-
ing to (p, n, r) is removed. See Figure 1 for an example of
how the RIB becomes populated.

Once the RIB becomes populated with entries, the router
must decide how to route data to all accessible prefixes.
The decision is calculated by using a total ordering3 over

2In practice, an announcement is an implicit withdrawal of
the previous route, requiring only one update message.
3In practice, some ASes use the Multiple-Exit Discrimina-
tor (MED) attribute in a way that prevents the formation
of a total ordering [12]. This leads to other problems, such
as non-deterministic routing decisions and protocol oscilla-
tion. In our work, we assume that MED is not used, or is
configured to produce a deterministic outcome. When this
assumption does not hold, the simplest solution is to store
all routes for a prefix if any route has the MED set.

while session exists:

(m, (p, n, r)) = get_message()

oldbest = m_best(p, RIB)

if m == ‘‘ANNOUNCE’’:

RIB = RIB + (p, n, r)

if m == ‘‘WITHDRAW’’:

RIB = RIB - (p, n, r)

newbest = m_best(p, RIB)

if oldbest != newbest:

generate_withdraw(oldbest)

generate_announce(newbest)

route_data_using(newbest)

(a) Regular Router Pseudocode

while session exists:

(m, (p, n, r)) = get_message()

oldbest = m_best(p, RIB)

if m == ‘‘ANNOUNCE’’:

while no memory available:

evict_route(RIB)

RIB = RIB + (p, n, r)

if m == ‘‘WITHDRAW’’:

RIB = RIB - (p, n, r)

newbest = m_best(p, RIB)

if oldbest != newbest:

generate_withdraw(oldbest)

if is_evicted(newbest):

refresh_route(newbest)

generate_announce(newbest)

route_data_using(newbest)

(b) Forgetful Router Pseudocode

Figure 2: Pseudocode describing how a regular router and how a forgetful router would operate. These two
code pieces are space-aligned to highlight the differences.

each Rp, where Rp is the subset of RIB entries that route
to prefix p. When picking a “best” route for each prefix,
BGP relies on a combination of custom routing policies and
the BGP Decision Process [13], a universally agreed-upon
ranking function. An example of a routing policy may be,
“prefer routes learned from neighbor p over neighbor q.”
The BGP Decision Process is a multi-step procedure over
the route attributes: e.g., prefer routes with fewer AS hops
to ones that have more; if a tie exists, prefer routes that were
learned earlier than ones learned later; if another tie exists,
prefer routes learned from ASes with a lower ID number.

In general, it is possible to think of these routing policies
and the BGP decision process as being represented by a
single metric that compares all the routes. This metric uses
all the route attributes, along with these rules and policies,
to rank them in the same order as in BGP. We define mbest

to be the metric that picks the routes to use for forwarding
traffic to prefix p:

mbest : Rp → (p, n, r)

mbest(Rp) ∈ Rp

∀e ∈ Rp, e � mbest(Rp)

The first two equations state that mbest operates over Rp

and always picks a RIB entry from Rp; the last one describes
how the “best” RIB entry has the highest rank among all
entries.

When the session closes, the router withdraws all routes
advertised by the neighbor, re-computes its new set of best
routes, and sends updates as needed. As new routes are
learned and old ones are forgotten, the set of best routes will
change over time. Each time a best route changes, update
messages are generated for appropriate neighbors as long as
the BGP session continues. See Figure 2(a) for pseudocode
describing how an ideal router acts.

2.2 Evicting and Refreshing Alternate Routes
Routers have fixed amounts of memory and can only store

a limited number of RIB entries. However, the BGP spec-
ification does not define how the protocol should behave

when a router runs out of memory. Furthermore, BGP
is memory intensive. It is prefix-based , and although this
is more efficient than enumerating IP addresses, there are
many prefixes. Moreover, BGP is a path-vector protocol,
forcing routers to store the entire AS path for each router.
In addition, BGP is a policy-based protocol, with numerous
route attributes that influence the selection and propagation
of routes. Finally, BGP is an incremental protocol : upon re-
ceiving an update message, a router must compare the new
information with all previously learned routes to select the
new best route; information cannot be arbitrarily discarded,
since it may be needed at a later time.

We thus propose the following behavior whenever a router
experiences a dearth of free memory: pick a (p, n, r) that is
currently an alternate route and evict extraneous informa-
tion from r that is ignored by mbest. We define an evictor
ev with the following properties:

ev : (p, n, r) → (p, n, r
′)

sizeof r
′ ≤ sizeof r

These equations tell us that ev modifies the additional rout-
ing information to possibly consume less memory. Moreover,
modifying our RIB such that one of the entries has evicted
information does not change the BGP decision process. See
Figure 3 for an example RIB entry and how it could be
compressed.

The fact that BGP’s routing data can be compressed with-
out affecting its decision process is non-intuitive. For exam-
ple, although the decision process favors routes with fewer
hops than those with more hops, BGP stores the entire AS
path instead of the length. BGP must do this so when it
advertises a route, loop detection can occur. Thus, while
routes are not announced, they can be safely compressed;
when they are in use, all their original routing information
must be retrieved and sent to all neighbors.

Because the modified route contains enough information
to allow mbest to rank it, the routes chosen by this scheme
always match the routes chosen by an equivalent, regular
router. However, if a modified route suddenly becomes “best,”

it cannot be announced until the complete non-metric rout-
ing information is retrieved, since it might be relevant to
other routers. Retrieving this route will require a refresh.
Since routers only advertise their best routes to their neigh-
bors, every alternate route is always some neighbor’s best
route, so the additional routing information will always be
retrievable.

In order to decide which alternate routes to evict, we de-
fine an eviction mechanism mevict:

mevict : R → (p, n, r)

mevict(R) ∈ R

∀p, mevict(R) 6= mbest(p,R)

These equations state that the eviction mechanism can
choose any route in the RIB, as long as it is an alternate
and as long as it has not already had some of its routing
information evicted. Pseudocode used to describe a router’s
behavior with this extension is provided in Figure 2(b).

It is important to note that ev does not have to keep the
metric relevant information. For example, ev could sim-
ply delete all additional routing information. This would
force the router to issue a set of refreshes when it could not
identify the new best route. In fact, there is an interesting
trade-off between ambiguity introduced to the metric and
potential savings. While we do not explore this trade-off, it
holds promise for future research.

2.3 Properties of Forgetful Routing
Forgetful routing has three important properties: it does

not alter the BGP decision process, it is incrementally de-
ployable, and it does not adversely affect convergence delay.

Because compressed RIB entries keep enough information
to allow ranking, and because evicted information is always
retrievable, a forgetful router acts exactly like a regular
router after convergence. Although a network of forgetful
routers will act differently than a network of regular routers
during route exploration and route changes (due to the fact
that different routes may be announced at different times,
due to delays introduced by refreshes), the two systems will
always converge to the same steady state solution.

Moreover, it is possible for an autonomous system to de-
ploy forgetful routing and obtain significant memory sav-
ings even if no other AS uses it. Since BGP already has a
route-refresh option [10], and since forgetful routing’s only
assumption about its neighbors is that they support a form
of refreshing a route, it is incrementally deployable. It is im-
portant to note that (currently) the route-refresh message
triggers all prefixes to be re-advertised. This introduces a
considerable amount of overhead for a single prefix needing
a refresh. However, a cooperative route filtering capabil-
ity [14] is in development would allow individual prefixes to
be refreshed.

In addition, forgetful routing does not significantly affect
the propagation delay of routes; in fact, the total increase in
convergence delay over an entire network is only the time of a
single refresh. This property is best illustrated through the
following example. Imagine a network with three routers,
R1, R2, and R3, that can all route to prefix P. R1 depends
on R2 to reach P, R2 depends on R3, and R3 has some
mechanism to reach P; in other words, there is a chain of
dependency. Now imagine that all alternates are discarded
and R3 loses its primary route. While R3 is refreshing, it
simultaneously sends a withdraw message to R2, allowing

PREFIX: 4 . 2 1 . 2 5 2 . 0/23
FROM: 194 . 85 . 4 . 55 AS3277
TIME: 2004−12−31 20 : 07 : 56
TYPE: MSG TABLE DUMP/AFI IP
VIEW: 0 SEQUENCE: 440
STATUS: 1
ORIGINATED: Fr i Dec 31 06 : 26 : 51 2004
AS PATH: 3277 13062 20764 701

6389 8063 19198
NEXT HOP: 194 . 85 . 4 . 55
COMMUNITIES: 3277:13062 3277:65301

3277:65307 20764:3000
20764:3011 20764:3020
20764:3022

Figure 3: A BGP RIB entry from a RouteViews
table dump. All values other than “prefix” and
“from” are represented by r in our abstract model.
Note that while the path attributes would take at
least 50 bytes to encode, the metric-relevant at-
tributes listed here (time and AS path length) could
be encoded in about 5 bytes.

R2 to start issuing its own refreshes in parallel. Likewise,
R2 performs the same actions, allowing R1 to start issuing
its own refreshes as well. By the time R3 has recomputed its
best route and sent it out, R2 will have finished performing
its refreshes and can propagate the new routing information
instantly. The same holds true for R1. The net effect is that
the additional end-to-end delay only increases by the time
of resolving a single refresh. Given that typical convergence
delay on the Internet is on the order of minutes, and given
that a refresh may be processed in milliseconds, we feel that
the additional delay is negligible.

3. OPTIMAL OFFLINE ALGORITHM
Choosing an eviction policy for forgetful routing is a spe-

cialized instance of the cache-replacement problem. Since
an eviction policy will depend highly on the RIB entries
and update messages seen, it is important to evaluate dif-
ferent policies and their performance. In fact, some baseline
is necessary even before evaluation of policies can begin.

In order to investigate the trade-off curve and to obtain
a gold standard for comparing other routing policies, we
developed an offline algorithm that, given a RIB dump (i.e.,
a set of (p, n, r) in the RIB at a specific time) and a stream
of update messages, determines the best possible trade-off
between available memory and frequency of refreshes. For
simplicity, we assume that every eviction frees an entire RIB
entry, and that all RIB entries consume the same amount
of memory. The algorithm is offline because in order to
calculate the theoretical best trade-off, it must have foresight
of the future to influence decisions in the past.

3.1 Optimal Eviction Policy
The first step of the optimal algorithm computes the set

usage times of all routes. That is, each route is annotated
with the set of times that it will be selected as “best.” This
is calculated by performing a pass through an initial RIB
dump and a stream of update messages, maintaining a hash
table that maps from RIB entries to lists, where each RIB

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 5000 10000 15000 20000 25000

M
em

or
y

(in
 R

IB
 E

nt
rie

s)

Number of Refreshes

(a) Optimal tradeoff from 1/1/2005 to 7/1/2005

 3100

 3150

 3200

 3250

 3300

 3350

 3400

 3450

 0 50 100 150 200 250 300 350 400

Optimal Trade-off
Reference Line

(b) Close up with reference

Figure 4: The optimal tradeoff curve, with number of refreshes issued as a function of memory. The dotted
line in Figure 4(b) has a slope of -1 and is meant as reference.

entry has its associated list updated whenever it is chosen as
best. A simulated router is used for determining usage for
each RIB entry e: A simulated router is used for determining
usage for each RIB entry e:

use(e) = {t1, t2, . . . , tn}

Element ti represents the ith time that mbest chose the RIB
entry e.

Once this calculation is complete, the eviction policy is
straightforward: always choose the alternate route that will
be used last, or furthest in the future. Given that the current
time is t when an eviction is about to occur, the route that
will be needed furthest in the future can be calculated and
mevict can be implemented via the following statements:

nextuse(e, t) =

8

>

<

>

:

0 if e is best

minti>t use(e) if ∃ti > t

∞ otherwise

mevict(R) = maxarge∈R[nextuse(e, t)]

The function nextuse returns the earliest time after t when
the route will be used. Note that 0 is returned if e is cur-
rently best (ensuring the algorithm picks an alternate route),
and that routes that are never needed are given a time of
infinity, making them the best eviction candidates.

A proof of optimality has been omitted due to length con-
straints, but the intuition behind the proof can be described
concisely. By always choosing a route that is needed furthest
in the future, we can guarantee that we cannot do any worse
than if we picked any other route. This is because any route
that is needed in the future will cause an eventual refresh
and, in the interim time, lowers the total amount of memory
needed. Given that routes are independent of each other in
terms of their usage, it is not possible to pick a route that
will be needed earlier , and yet somehow causes other routes
to refresh less often; the route that is needed furthest in the
future provides the longest interval of memory relief, allow-
ing other routes to remain in memory longer before eviction.

Implementing this algorithm naively is easy: perform a
pass through the RIB dump and update stream to calculate
a list of usage times for every route, and use this informa-
tion to evict routes. Implementing this scheme efficiently,

however, is much more complex. Without going into de-
tails, lazy evaluation of evictions can be used to achieve the
same results without as much computation; that is, instead
of calculating which route needs to be evicted at the very
moment when memory capacity has been reached, the sim-
ulation can note that a route was forgotten and later deduce
the correct one by monitoring usage of alternate routes.

3.2 Evaluation on BGP Message Traces
The data set we use was obtained from RouteViews [15]

and consisted of a BGP table dump on January 1st, 2005,
and all BGP update information for six consecutive months.
RouteViews was chosen primarily because it is publicly avail-
able, while ISP feeds are proprietary and difficult to ob-
tain. There were approximately 270,000 different prefixes
announced over that period. We randomly sampled 1% of
them and their associated updates for our analysis. Our
sampling is due to the fact that these simulations take sig-
nificant computational time—on the order of years when
making multiple scans through six month’s worth of update
messages.

It is important to note that the data obtained from Route-
Views is not typical. RouteViews connects to many more
neighbors than most routers and thus has many more alter-
nate routes, upwards of 40 per prefix. Rather than filter the
RouteViews data to represent a “typical” AS, we included
all feeds to capture the dynamics of forgetful routing, as well
as quantify how much memory savings are possible. Thus,
although our estimates of the amount of memory saved may
be optimistic, RouteViews allows us to examine the general
impact of forgetful routing. We leave analysis of the gains
typical ASes would see to Section 5.

Our results show that many alternate routes are never
needed and can be safely discarded without causing refreshes.
In the best possible case, an average of one alternate route
per prefix is sufficient and will not cause any refreshes. The
algorithm’s trade-off curve can be seen in Figure 4(a). The
first important item to note is the reduction in BGP table
size. At zero refreshes, the amount of memory needed never
exceeds 3,500 RIB entries, whereas a full table would require
approximately 68,000 entries. In other words, if a router had
foresight and sufficient additional computing power, it could

reduce its memory footprint size by 95%.
The second important item to note is the initial one-to-

one trade-off between memory size and refreshes, as seen in
Figure 4(b). Initially, lowering the total amount of memory
by one unit causes one refresh. In this part of the curve, the
alternate routes that are evicted in these cases belong to very
stable prefixes, where alternates are rarely used. After total
memory has decreased by about 200 units, freeing one unit
of memory results in multiple refreshes. This occurs when
we have evicted all the alternate routes for stable prefixes
and we must start evicting routes for unstable ones. Since
these alternate routes will be refreshed into memory much
sooner, more refreshes will be needed in the same period of
time.

Even at a memory size of 2048 memory units, the number
of required refreshes is surprisingly small, given that six-
teen million RIB entries were added and removed for this
six-month interval through update messages. Furthermore,
this memory footprint is 3% of the original size. All of
these items demonstrate several important points: (i) that
tremendous memory savings are possible without significant
increases in bandwidth, (ii) that the majority of alternate
routes are not used, and (iii) that the best way to minimize
refreshes is to keep the alternate routes for unstable prefixes
“in the cache.”

4. ONLINE ALGORITHMS
Although the results of the offline analysis are promising,

the algorithm is not feasible in practice; foresight of the fu-
ture and infinite computing power are not luxuries afforded
to today’s routers. In this section, we devise efficient online
algorithms that approximate the optimal results. We evalu-
ate these online algorithms in two parts. First, we examine
all algorithms under the assumptions that RIB entries have
uniform size, that each eviction frees one RIB entry of space,
and that memory overhead from additional data structures
is negligible; this yields raw performance information for di-
rect comparison with the optimal offline algorithm. Then,
we re-examine the algorithms under realistic assumptions.

4.1 Least Recently Refreshed and Updated
When first devising an online algorithm, it is important

to see whether a very simple scheme can achieve most of the
savings. As such, our first strategy was constant-size alloca-
tion, where each prefix is given a fixed amount of memory in
advance. By varying the amount of dedicated memory per
prefix, and evicting the lowest-ranked routes for each prefix
when memory is tight, the memory-bandwidth trade-off can
be explored. We implemented such a scheme and found it to
be too simplistic; prefixes with very stable primary routes
are allocated too much space, while unstable prefixes are
allocated too little space, leading to frequent refreshes.

Our next strategy was to evaluate the canonical algo-
rithm for cache-replacement problems: Least Recently Used
(LRU). Our LRU algorithm uses a doubly-linked list, where
each cell has a RIB entry. RIB entries are added to the back
(and removed when their associated withdraw is received),
and are picked for eviction from the front. Thus, assuming
four bytes per pointer with two pointers per linked list cell,
all decisions can be made in constant time with 8nr bytes of
memory overhead, where nr is the number of RIB entries.
Unfortunately, 8nr overhead is rather steep, especially con-
sidering our goal is to save memory, not consume it!

In order to achieve most of the benefits of LRU with-
out the memory overhead, some approximation is needed.
We thus devised a variant called Least Recently Refreshed
(LRR). Under LRR, we always evict the least desirable route
of the prefix that has not needed a refresh in the longest
amount of time. In doing so, we can replace our doubly-
linked list of RIB entries with a doubly-linked list of pre-
fixes. Prefixes are put on the back of the list when they have
just been discovered by the router and when they are just
refreshed. This enables all operations to complete in con-
stant time, while reducing memory overhead to 8np, where
np is the number of prefixes.

In addition, a variant of LRR called Least Recently Up-
dated (LRUp) was implemented. This variant uses the time
since the last update message as the ranking metric, rather
than time since last refresh. It uses all the same memory
structures as the LRR algorithm and the same computa-
tional operations.

The results of fixed-size allocation, LRU, and LRR can be
seen in Figure 5(a). Although fixed size allocation performs
reasonably well when a large amount of memory is avail-
able, it quickly begins to fail as memory is driven lower and
lower. From the figure, it is clear that simple schemes can-
not capture the dynamics of routes and their refresh needs.
Both LRU and LRR, on the other hand, perform competi-
tively, within an order of magnitude of the theoretical best.
Although LRR’s data structures require much less memory,
the performance is nearly identical to LRU. For a small sac-
rifice in the number of refreshes, a significant reduction in
overhead can be achieved.

Surprisingly, LRUp performs much better than LRU or
LRR. The reason behind this phenomenon lies in the fact
that any update activity is usually a sign of route insta-
bility. By exploiting this fact, LRUp can anticipate which
prefixes will need more alternate routes available in mem-
ory. Still, a sizable gap remains between the LRUp scheme
and the optimal offline algorithm. Although some gap is
inevitable, because the offline algorithm has foresight of the
future, we wanted to explore whether a more sophisticated
eviction policy could improve the effectiveness of forgetful
routing.

4.2 Quadratic Weights
Although LRU, LRR, and LRUp perform well, they rely

on just a single variable to rank routes for eviction. More-
over, none of these schemes consider the number of alternate
routes available. Often, when a relatively stable prefix has a
routing change, the router switches from the primary route
to the first or second alternate route [16]. Keeping one or
two alternate routes in the RIB, even for the relatively sta-
ble prefixes, can help reduce the number of refreshes. At the
expense of additional computational complexity, an online
algorithm can account for both of these factors: the time
since the last refresh and the number of alternate routes.

In doing so, we devise another online algorithm which
we call quadratic weights (QW). Instead of using time to
order routes, we calculate a “goodness” value for each prefix
p, according to the formula n ∗ (n − 1) ∗ t, where n is the
number of routes to p and t is the time since the last refresh.
Note that other multiplicative factors could be used, such as
linear or cubic. Depending on the dynamics of the network,
such factors may understress or overstress the importance

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10000 20000 30000 40000 50000 60000 70000

M
em

or
y

(in
 R

IB
 E

nt
rie

s)

Number of Refreshes

Fixed Size Allocation
Least Recently Used

Least Recently Refreshed
Least Recently Updated

Quadratic Weights (Extrapolated)
Optimal Tradeoff Curve

(a) RIB Entry Comparison

 500000

 1e+006

 1.5e+006

 2e+006

 20000 40000 60000 80000 100000 120000

M
em

or
y

(in
 B

yt
es

)

Number of Refreshes

Fixed Size Allocation
Least Recently Used

Least Recently Refreshed
Least Recently Updated

Quadratic Weights (Extrapolated)

(b) Memory Usage Comparison

Figure 5: The tradeoff between refreshes and memory capacity for various online algorithms. 2684 prefixes
were used for these calculations (randomly sampled out of the 268480 total prefixes seen over a six month
period).

of alternate routes.4 After a factor is chosen, routes are
ordered by goodness and then appropriately evicted.

Although the quadratic-weights algorithm only consumes
8np bytes of memory in additional data structures, it has
O(np) computational overhead. Since each prefix’s t value
is constantly changing (even if no corresponding update mes-
sages have been received), all prefixes must have their good-
ness values re-computed during an eviction.

The results of this algorithm can be seen in figure 5(a).
Due to the computational overhead, the quadratic weights
algorithm was calculated over a 0.1% sampling and then
extrapolated for our 1% sampling. We believe this extrapo-
lation to be fairly accurate, as extrapolating the LRU algo-
rithm from the same 0.1% sampling back to a 1% sampling
resulted in an almost perfect fit. Quadratic Weights is bet-
ter than any of the online algorithms, but not considerably;
in particular, it is somewhat close to the LRUp algorithm.
Given that LRUp is very simple to implement in practice, it
is unclear that if a QW approximation algorithm would be
desirable, as it would most likely be more complicated.

4.3 Memory Usage
In order to understand how these algorithms would oper-

ate in practice, we extrapolated total memory usage for each
online algorithm. Drawing on analysis of memory usage on
several commercial routers, we assumed an average size of
45 bytes per RIB entry. Any memory overhead from the
algorithms’ data structures was taken into account. Addi-
tionally, one byte per RIB entry of overhead was added for
booking which routes were forgotten. Lastly, we assumed
that evicting a route leaves behind four bytes of metric-
relevant data.5.

The results can be seen in Figure 5(b). For reference,

4Our choice of a multiplicative, quadratic factor of n(n-1)
came from theoretical analysis that made simplifying as-
sumptions about the types of updates seen and their fre-
quency.
5Of these four bytes, one can be allocated for AS path
length, one for ranking the time the route was learned
against other routes for this prefix, and two for compactly
representing the other BGP metric variables

a regular router would need to consume approximately 353
megabytes of space to store all of the routes, or 3.53 megabytes
at a 1% sampling.

It is interesting to note that all the algorithms hardly
deviate from their relative positions. Moreover, the memory
savings are still quite substantial. Approximately 10% of the
memory savings is lost due to overhead costs, most of which
stem from the one additional byte per RIB entry and the
four bytes of metric-relevant data left behind. If one bit was
used instead of one byte (to mark whether the routing data
was represented in a compact format or not) and fewer bytes
of metric-relevant data were used, this gap could be closed
even further. Exploring the trade-off of throwing out some
metric data (and thus making it possible to have a set of
possible next best routes) and the increase in refreshes that
would be required is an area of potential future work.

5. EXPECTED MEMORY SAVINGS
Given that forgetful routing’s ability to save memory relies

on network topology, it is important to investigate how much
savings real routers might see. Moreover, observing how
these gains vary by AS provides insight into the types of
systems that would see the most benefit from our scheme.

5.1 Challenges for Realistic Evaluation
Ideally, we would like to obtain the BGP message streams

sent to a router and use them to quantify the dynamics
of forgetful routing. By sampling these feeds for routers
from ISPs, business customers, university networks, etc., we
could build an extremely accurate picture of how forgetful
routing would affect a wide range of BGP speakers, both in
terms of memory and in terms of refreshes. Unfortunately,
it is very difficult to obtain accurate information about real-
world memory savings. Knowing how ASes’ connect and
what messages they receive reveals valuable business infor-
mation. For this reason, companies do not publish their
feeds nor do they make them easily accessible.

While we do have RouteViews as a source, it is not rep-
resentative of any typical AS. This is because it connects to
over forty neighbors and receives full routes (i.e., routes for

Figure 6: Percent of ASes with a given number of
connections.

all destination prefixes) from many of them. While we can
use RouteViews to evaluate different algorithms against each
other, we cannot use it to evaluate expected gains. Since
obtaining dynamic feeds is out of the question, we cannot
deduce real world estimates of the refresh rates of forgetful
routing. However, static dumps of various RIBs are avail-
able, allowing us to quantify memory savings. First, we
analyzed the RIB of the border router that connects Prince-
ton University to the rest of the Internet. The Princeton
campus network connects to four other networks. Based on
a dump from April 6th, 2006, we observed that, on average,
the Princeton network has 2.4 alternate routes per prefix.
Thus a memory savings of nearly 70% would be achievable
for this router.

Next, we looked at BGP data from looking glass servers.
A looking glass server is a router that additionally runs a
publicly available interface (such as a website or a telnet
connection) permitting anyone to query routing informa-
tion from it. The results of analyzing five looking glass
servers [17] can be found in Table 1. For each of these ASes
except AS 7018, twenty prefixes were randomly sampled and
the average number of RIB entries calculated. For AS 7018,
the first 20,000 prefixes in its RIB table were used to com-
pute its average. All of these ASes represent domains with
high connectivity. Unfortunately, looking glass servers are
not very accurate indicators of what real routers’ RIB ta-
bles look like. Because BGP information has business value,
as describes how different competing organizations form al-
liances with each other, looking glass servers tend to omit
many RIB entries. For example, AS7018, which is AT&T,
is reported to have an average of 1.2 available routes per
prefix, a number which is absurdly low for a tier-1 provider.

5.2 Inference of BGP RIB Sizes
Looking at such a small number of static dumps is very

limiting. Without a wider breadth of routers’ RIBs, it is
difficult to quantify what typical gains an AS might see.
However, we can infer other routers’ RIBs without direct
access to them. If we know the Internet’s topology, and if
we know where prefixes originate, and if we know the routing
policies used between ASes, we can simulate the propagation
of routing information across all the unknown ASes’ routers

and calculate what their RIBs look like.
In order to infer Internet topology, all that is needed is

a RIB dump from any well-connected router. By looking
at all AS paths for all routes in the dump, one can deduce
that there exists a link between each adjacent pair of ASes
(e.g., if a router receives a route advertisement that has an
AS path of (41, 65, 45), then 41 and 65 connect to each
other, as do 65 and 45). Doing so results in a conservative
count—there may be some links that were not represented in
AS paths, depending on the reference router’s isolation from
other networks. Thus, any Internet topology inference based
on this scheme will, if anything, undercount various ASes’
RIBs in a simulation, as well as the number of alternate
routes available to prefixes.

Calculating where prefixes originate is a rather simple
task. For each RIB entry in a router dump, observe the
prefix that it routes to as well as the last AS in the AS
path. By definition of BGP’s behavior, this AS will be the
originator. Problems that may arise include undercounting
the number of prefixes available. Since these prefixes and
their origins are derived from a RIB dump, a router that is
partitioned off from a significant section of the Internet may
not know where certain prefixes originate, or may not know
that they even exist. Likewise with Internet topology, any
inference based on this scheme will undercount the number
of RIB entries in a simulation, but will not affect the count
of alternate routes available to known prefixes.

Inferring an AS’s routing policies is difficult. By observing
sets of AS paths, one can examine how they constrain the
possible relationships between organizations and attempt to
model them. A scheme that infers extremely liberal routing
policies will overcount the number of alternate routes per
prefix, while a scheme that infers extremely conservative
routing policies will undercount the number of alternates.

To derive routing policies, we used the Gao inference al-
gorithm [18] on a BGP RIB dump obtained from Route-
Views [15] on February 10th, 2005. The Gao algorithm de-
fines three different types of business relationships: provider-
customer, peer-peer, and sibling-sibling. Provider-customer
relationships represent one AS purchasing connectivity from
another AS. Providers almost always advertise all their rout-
ing information to their customers, as they typically charge
their customers for traffic that flows between them. Peer-
peer relationships represent two competing organizations
that connect to each other in order to achieve greater reacha-
bility. Peers generally only advertise their customer-learned
routes and do not re-advertise routes they learn from other
peers. By doing so, their customers have great reachabil-
ity (and thus more traffic, generating more revenue), and
they never need to transit traffic meant for another peer
(which would consume network resources without generat-
ing revenue). Sibling-sibling relationships indicate that the
two ASes are actually controlled by the same organization,
either through mergers or buyouts. In some sense, siblings
should be treated as one large AS.

The results from our analysis can be seen in Figure 6.
From this figure we can identify three different categories of
autonomous systems:

• Single-homed ASes are autonomous systems that pur-
chase their Internet connectivity from a single, up-
stream provider. Based on our data, about 30% of all
ASes fall into this category. Because they only have
one provider, they never have alternate routes. For

 0

 20

 40

 60

 80

 100

 1 10 100

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 A

S
es

Average Number of Routes per Prefix

Figure 7: Percent of ASes with a given average num-
ber of routes per prefix.

these systems, forgetful routing offers no benefits.

• Multi-homed ASes are autonomous systems that pur-
chase their Internet connectivity from two or more
upstream providers. Approximately 40% of all au-
tonomous systems belong to this labeling, including
the Princeton network mentioned earlier. The up-
stream providers are used either as an emergency back-
ups or for load balancing. Multi-homed ASes are thus
candidates for forgetful routing.

• Providers are autonomous systems that have excel-
lent connectivity and typically sell their reachability
to single-homed or multi-homed customers. Some of
these providers may themselves be customers of larger
ISPs. Approximately 30% of all ASes fall into this cat-
egory. For these systems, forgetful routing could offer
an order of magnitude of memory saved, or more.

Additionally, by analyzing the business relationships be-
tween ASes, we inferred the number of alternate routes avail-
able to each autonomous system for each prefix. Using the
business relationship data obtained from the Gao algorithm,
along with the BGP RIB data from RouteViews to deter-
mine prefix origins, we simulated BGP announcements over
the derived topology. We assumed that providers always
advertise information to their customers, that customers do
not advertise information to their providers (unless they are
originating a prefix), that peers only advertise their cus-
tomer learned routes, and that sibling ASes advertise all
their information to each other. Figure 7 shows the results.
This CDF plot has three key areas:

• The No-Savings Zone. The first area contains all the
single-homed ASes mentioned earlier, which never have
any alternate routes. This explains the large vertical
offset of 30% in the graph. We also see that there are
a few autonomous systems that connect to multiple
ASes, but have virtually no alternate routes to choose
from.

• The Savings Zone. The second area consists of the
large spike from 2 to 20 on the x-axis. The immediate

AS Looking Glass

AS 3333 9.0
AS 6395 1.7
AS 6461 5.7
AS 7018 1.2
AS 9607 4.0

Table 1: A comparison of the number of RIB entries
per prefix.

jump at 2 represents multi-homed ASes, which have
alternate routing information for backup connectivity.
Onward until 20 we see a spectrum of values, repre-
senting other multi-homed ASes and providers.

• The Overestimated Zone. After 20 we see that there
are a small number of ASes which appear to have ex-
treme numbers of alternate routes. This part of the
graph, from 20 onward on the x-axis, is actually an ar-
tifact of our simplistic assumptions about routing poli-
cies. Many of these ASes in this region of the graph
connect to peering points, where hundreds of other or-
ganizations also connect. Using the RIPE [19] Whois
database, we discovered that many of these peers have
extremely strict import and export policies to avoid
the RIB table explosion as seen in the graph.

5.3 Discussion of Potential Savings
While the gains can vary from as low as nothing to as high

as an order of magnitude, it is important to evaluate these
gains in the context of the likelihood of deploying forgetful
routing. Single-homed stub ASes only connect to one up-
stream provider and receive all routes from their provider;
since they have no alternates, they derive no benefit from
forgetful routing and would thus not deploy it. Multi-homed
stub ASes, like Princeton, generally have low connectivity,
but receive almost all routing information from every con-
nection. Thus, these ASes may see a reduction in RIB size
from 33% to 75%. These ASes are likely to have older routers
with smaller amounts of fixed memory. Moreover, since
their ISPs would most likely have the route-refresh capa-
bility, they could deploy forgetful routing and obtain these
memory savings.

It is also important to note that, for stub networks, forget-
ful routing has no side-effects. Performance is unchanged, as
well as convergence delay, as stubs never re-transmit routing
information. For these networks, forgetful routing can truly
be transparently deployed.

Transit providers generally have high connectivity, but do
not always receive all routing information from every con-
nection. Our analysis estimates that providers could see a
reduction in RIB size of 75% to 95%. Moreover, if forgetful
routing is deployed, incentives will then exist for increasing
connectivity further, allowing for greater reliability without
significant increases to memory usage. In fact, many of those
ASes who peer with 100+ neighbors, but currently use ex-
tremely strict filters to avoid RIB table explosion, could use
forgetful routing to regain the lost connectivity at a mere
fraction of the memory cost.

It is important to note that providers may see additional
gains not presented in this analysis if they run forgetful rout-
ing inside the AS. Many ASes use a popular variant of BGP

called IBGP to internally store routes learned from their
neighbors. Under IBGP, every router within a single AS has
a BGP session with every other router and all information
is shared between all routers, providing a global view of the
network. However, IBGP’s memory requirements grow very
quickly; for n routers in a network, each one would need up
to n times more memory. Several solutions have been pro-
posed to scale back on the burdens IBGP introduces, with
the most notable being Route Reflectors and AS Confeder-
ations [20, 21]. Route reflectors operate by dividing routers
into two subsets: route reflectors and route reflector clients.
Clients connect to reflectors and rely on them to re-advertise
their routes, as well as to learn new routes [11]. However, re-
flectors make networks more vulnerable to point failures and
can cause a inconsistent routing decisions, persistent loops,
and route oscillations [22, 23]. AS Confederations partition
an AS into sub-ASes, where each sub-AS maintains a full
mesh within itself, with BGP sessions the between border
routers of each sub-AS. However, not only do AS Confed-
erations make networks less robust, they can also lead to
instances of sub-optimal routing [23]. With forgetful rout-
ing, it could be possible to maintain full IBGP connectivity
without inflating the memory requirements.

The most important insight from our analysis can be summed
up in one statement: having n neighbors does not always
imply a factor of n savings. The type of network, such as
multi-homed stub, provider, etc., greatly affects the total
amount of savings. However, in most cases, our results in-
dicate that significant savings are possible. It is difficult to
say whether our estimates for memory savings are high or
low. On the one hand, our topology is almost certainly in-
complete, undercounting total savings. On the other hand,
our inferred routing policies are liberal, overcounting total
savings. Because of the difficult nature of inference, covert
policies and routing data, etc., this area is one of potential
future work.

6. RELATED WORK
CRIO [24] is a mechanism which uses IP tunneling to

reduce the memory needed by BGP significantly, at the ex-
pense of longer paths. It operates by having tier-1 ISPs
announce “virtual prefixes” that are very large (e.g., /8’s),
and using tunnels to directly connect routers as they forward
packets. However, CRIO requires a globally deployed sys-
tem to operate and changes the way BGP functions. Our
method is incrementally deployable on a per-router basis
and can be completely implemented using the BGP route-
refresh option. Additionally, CRIO sometimes reduces path
diversity and increases path lengths, while our mechanism
does not reduce the resilience and natural efficiency of BGP.

A similar endeavor is the atomized routing project by
Caida [25]. Atomized routing groups prefixes together into
units called ‘atoms’ if they share the same AS path in all
their routes through any router in a network. These atoms
are globally computed and used to route packets. Studies
have found that up to 78% of memory can be saved using
this technique. However, atomized routing has the same is-
sues as tunneled-BGP—it is not incrementally deployable
and it requires modification to BGP.

Draves et al. worked on a similar problem of reducing
the Forwarding Information Base (FIB) size of routers [26].
The FIB stores forwarding information for each prefix and is
usually installed on fast line cards, unlike the main memory

used by the RIB. Draves et al. proposed an algorithm that
constructs optimal trees to store this information, guaran-
teeing maximal FIB savings. This work, however, is vastly
different from ours. It focuses on an entirely different mem-
ory system where all information is local and operates using
prefix aggregation. Unlike the FIB, the RIB’s information
may need to propagate to others and thus cannot be aggre-
gated.

Research on shifting the burden of memory and compu-
tation to centralized servers has been proposed by Caesar
et al. in the development of a Routing Control Platform
(RCP) [27]. The RCP acts as a central server that collects
BGP data from all neighboring routes in the same AS. The
RCP then has access to global information and can make
global routing decisions. It sends forwarding information
back to each router, moving the RIB memory burden and
computation to a single machine. While this can allow for
different compression mechanisms (such as storing all unique
AS path tags across all routers in a single table, eliminat-
ing duplicates), such schemes have not been fully developed
yet. It is also important to note that a system such as an
RCP may run into memory problems itself if it attempts to
store all routes for an entire AS. Thus, a system such as the
RCP may benefit from schemes like forgetful routing that
are modified for RCP to RCP communication.

Finally, earlier work on the EIGRP protocol [28] is related
to Forgetful Routing. EIGRP uses distance-vector routing
along with a query/reply system to ensure loop-free rout-
ing. For every route, each router stores each neighbor’s
metric associated with that route. The “best” route cho-
sen is the one with the lowest metric. Whenever that route
becomes unavailable, the router checks if an alternate ex-
ists with the same metric, and if so, uses it. Otherwise,
it propagates a query message to all its neighbors and re-
computes its best route after it has heard back from all of
them. Although EIGRP has a similar “refresh” mechanism
like forgetful routing, it has two distinct differences. First,
since EIGRP is a distance-vector protocol, it suffers from the
“count to infinity” problem that must be resolved by setting
a maximum hop count. Second, unlike forgetful routing’s re-
fresh mechanism, EIGRP’s refreshes are executed in series
rather than in parallel, resulting in convergence delays that
increase linearly with network size.

7. CONCLUSION
Today’s routers are susceptible to a wide range of memory

problems. When a routing table overflows, the router may
enter unspecified behavior, including freezing, rejecting new
routes, or entering into an infinite loop. It is not always
possible to upgrade router memory, due either to costs or
limited access to the machines. Furthermore, best common
practices used by network operators only partially protect
routers from memory overflow, as they must often sacrifice
safety for operability.

Our proposal of forgetful routing offers a unique solution
to the problem without modification to BGP. As memory is
needed, alternate routes are forgotten and requested back as
needed. Since best routes are never forgotten, and an alter-
nate route is some neighbor’s best route, the route refresh
option in BGP can be used to implement this mechanism.
An offline analysis of BGP data shows that there is much
memory that can be saved; most alternate routes are never
used. This analysis motivated the development of an online

algorithm that runs in constant time for each message and
approximates the optimal solution well. We believe that our
scheme can significantly improve the scalability and robust-
ness of IP routers in the future.

Acknowledgments
The authors would like to thank Nick Feamster, Anja Feld-
mann, Randy Bush, Changhoon Kim, and the anonymous
reviewers for their feedback and comments. This work was
supported by HSARPA grant 1756303, and a URP grant
from Cisco.

8. REFERENCES
[1] D.-F. Chang, R. Govindan, and J. Heidemann, “An

empirical study of router response to large BGP
routing table load,” in Proc. Internet Measurement
Workshop, 2002.

[2] T. Bu, L. Gao, and D. Towsley, “IPv4 address
allocation and the BGP routing table evolution,”
ACM Computer Communication Review, vol. 35,
pp. 71–80, January 2005.

[3] G. Huston, “CIDR report.” Web site,
http://www.cidr-report.org/.

[4] V. Bono, “7007 explanation and apology.”
http://www.merit.edu/mail.archives/nanog/

1997-04/msg00444.html.

[5] W. F. Slater III, “The Internet Outage and Attacks of
October 2002.” Chicago Chapter of the Internet
Society, November 2002.
www.isoc-chicago.org/internetoutage.pdf.

[6] A. Popescu, B. Premore, and T. Underwood, “The
anatomy of a leak: AS9121,” May 2005. NANOG
presentation, http:
//www.nanog.org/mtg-0505/pdf/underwood.pdf.

[7] N. Feamster, “Interdomain routing correctness and
stability.” nms.csail.mit.edu/6.829-f05/lectures/

L5-rtg correctness slides.ppt.

[8] R. Bush. Email conversation, April 2006.

[9] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg,
and J. Postel, “Internet registry IP allocation
guidelines,” November 1996. RFC 2050.

[10] E. Chen, “Route refresh capability for BGP-4,”
September 2000. RRC 2918.

[11] J. W. Stewart, BGP4 Inter-Domain Routing in the
Internet. Addison-Wesley, 1998.

[12] “How BGP Routers Use the Multi-Exit Discriminator
for Best Path Selection.”
http://www.cisco.com/warp/public/459/37.html.

[13] Cisco, “BGP best path selection algorithm.”
http://www.cisco.com/en/US/tech/tk365/

technologies tech note09186a0080094431.shtml,
August 2005.

[14] E. Chen, “Cooperative route filtering capability for
BGP-4.” http://www.ietf.org/internet-drafts/

draft-ietf-idr-route-filter-13.txt. IETF
Internet Draft, expires September 2006.

[15] U. of Oregon, “RouteViews Project.”
http://www.routeviews.org.

[16] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP
routing stability of popular destinations,” in Proc.
Internet Measurement Workshop, November 2002.

[17] NANOG, “Looking glass sites.”
http://www.nanog.org/lookingglass.html.

[18] L. Gao, “On inferring autonomous system
relationships in the Internet,” IEEE/ACM Trans.
Networking, vol. 9, pp. 733–745, 2001.

[19] “RIPE network coordination centre.”
http://www.ripe.net.

[20] T. Bates, R. Chandra, and E. Chen, “BGP route
reflection - an alternative to full mesh IBGP,” April
2000. RFC 2796.

[21] P. Traina and D. McPherson, “Autonomous system
confederations for BGP,” February 2001. RFC 3065.

[22] A. Basu, C. Ong, F. Rasala, B. Shepherd, and
G. Wilfong, “Route oscillations in IBGP with route
reflection,” in Proc. ACM SIGCOMM, August 2002.

[23] R. Dube, “A comparison of scaling techniques for
BGP,” in ACM Computer Communication Review,
vol. 29, July 1999.

[24] X. Zhang, P. Francis, J. Wang, and K. Yoshida,
“Scaling IP routing with the core router-integrated
overlay,” in Proc. International Conference on
Network Protocols, November 2006.

[25] “Atoms - atomised routing.”
http://www.caida.org/projects/routing/atoms/.

[26] R. Draves, C. King, S. Venkatachary, and B. Zill,
“Constructing optimal IP routing tables,” in Proc.
IEEE INFOCOM, March 1999.

[27] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe, “Design and
implementation of a routing control platform,” in
Proc. USENIX/ACM Symposium on Networked
Systems Design and Implementation, June 2005.

[28] “Enhanced interior gateway routing protocol.” http:

//www.cisco.com/warp/public/103/eigrp-toc.html.

