A Fair Leaky-Bucket Traffic Shaper for ATM Networks

Jennifer L. Rexford Albert G. Greenberg
University of Michigan” AT&T Bell Laboratories

Flavio G. Bonomi

AT&T Platform Organization, AT&T Network Systems

Abstract

ATM network performance hinges on user sessions, or wvirtual connections, adhering to the
traffic contracts established by the admission control policy. This paper considers efficient
mechanisms for enforcing these contracts by shaping the incoming cell streams. While shap-
ing effectively accommodates variation in a connection’s traffic flow, this smoothing function
introduces implementation complexity, since the shaper must buffer violating cells and schedule
them for later transmission. Conflicts arise when multiple cells, from different connections, be-
come eligible for transmission at the same time. This paper presents a fair leaky-bucket (FLB)
shaper that minimizes the traffic distortions caused by these cell collisions. A theorem shows
that FLB shaping, based on weighted fair queueing, closely preserves connection leaky-bucket
parameters and bounds cell shaping delay. The paper also presents an efficient implementation
of self-clocked fair queueing, which reduces the complexity of the FLB architecture. Finally, sim-
ulation experiments demonstrate how FLB shaping mitigates the harmful effects of collisions
between competing cells.

1 Introduction

Emerging high-speed Asynchronous Transfer Mode (ATM) networks must support a wide range of
applications with different traffic characteristics and performance requirements. Admission control
policies govern whether the network can accommodate a new session, or virtual connection, based
on its traffic descriptors and quality-of-service requirements. Network performance strongly de-
pends on the characteristics of the traffic being multiplexed on the links. Consequently, admission
control policies for ATM networks rely on the admitted connections complying with their traffic
contract as their cells enter and travel through a network. Also, compliance with traffic contracts
is fundamental whenever cells from a single connection are routed through switches with possi-
bly different performance characteristics, or when cells cross the boundaries of network domains
belonging to different service providers.

Three types of mechanisms have been proposed to administer such contracts:

" Jennifer Rexford’s work on this project was supported by the AT&T Graduate Research Program for Women.

e mechanisms for enforcing a connection’s traffic agreements by policing or shaping its traffic
at the ingress of a network;

o fair scheduling mechanisms which preserve, to the extent possible, a connection’s traffic de-
scriptors, as its cells travel through a network;

e mechanisms for shaping a connection’s traffic at the egress of a network to enforce compliance
with a traffic contract with a downstream network.

To support their implementation at high speed, the mechanisms must incur a small amount of work
per cell. In this paper, we propose a fair shaping mechanism which combines the actions of shaping
and fair scheduling. This mechanism can efficiently provide policing and shaping at ATM switch
ingress ports, as well as fair scheduling and shaping at switch egress ports.

A network can employ traffic policing to monitor and regulate accepted connections (see Figure
1). When an arriving cell violates its connection’s contract, a network policer either discards the
“non-conforming” cell or marks the cell so as to assign it to a low priority class. This prevents
malicious or heavily-loaded connections from compromising the performance of other connections,

and significantly improves the network’s ability to predict and guarantee each connection’s quality

of service.
POLICER SHAPER
— conforming — conforming
—_— —_—
incoming . céls _ incoming . gells
cells * cells *
] _ > = .
non-conforming non-conforming

cellslost cells buffered

Figure 1: Policer and Shaper Multiplexors. Cells that do not violate a connection’s contract are
termed “conforming” and can depart immediately; other cells are termed “non-conforming.”

If a connection momentarily exceeds its traffic parameters, a policer may drop or mark several
cells, even if the connection obeys its traffic contract over a larger time interval. Instead of dropping
or marking non-conforming traffic, a shaper delays cells until they conform to the connection’s traffic
descriptors, which typically prescribe burst and bandwidth restrictions. Shaping accommodates
variation in traffic flow by smoothing the incoming cell stream. Without such buffering, the network
must book more resources to accommodate bursts or the session must suffer loss or settle for a lower

rate connection. In addition, a shaper can smooth traffic traveling between networks, which may

operate with different switches, possibly at different link speeds. Although traffic shaping can reduce
cell loss, the smoothing function introduces additional delay and implementation complexity, since
the shaper must buffer non-conforming cells and schedule them for later transmission. A single
network-access point often services thousands of connections, with different traffic parameters,
requiring efficient and scalable techniques for buffering and scheduling cells.

Many existing shapers and policers employ some version of leaky-bucket control to enforce burst
and bandwidth restrictions on the incoming cell stream [1-3]. A leaky-bucket controller generates
credit tokens at rate p, where the token bucket holds at most o credits; an arriving cell must claim
a token before entering the network. Given the status of the token bucket for each connection,
the shaper can determine the conformance time of an arriving cell. A connection is said to be
(o, p)-compliant if all of its cells are conforming [4].

Though appropriate leaky-bucket type controls can ensure stable behavior over a long time
scale, these controls do not in themselves mitigate critical conflicts that may arise over quite short
time intervals. Ideally, the shaper transmits a cell as soon as it conforms to the connection traffic
descriptors. Conflicts occur when multiple cells, from different connections, become eligible for
transmission during the same time slot. Depending on how the shaper arbitrates amongst competing
cells, these collisions can distort the leaky-bucket parameters and increase cell shaping delays, even
for conforming traffic. These traffic distortions violate the expectations of downstream nodes in
the network, possibly increasing cell loss rates and end-to-end delay. As shown in the next section,
FIFO servicing of conforming traffic cannot prevent these harmful interactions.

Fair queueing schemes, such as weighted fair queueing [5-7] and self-clocked fair queueing [8,9],
guarantee that each connection receives its share of the link bandwidth on a small time scale. Parekh
and Gallager [6] have shown that if a fair queueing server handles traffic that is already leaky-bucket
compliant, the fair arbitration can closely preserve connections’ o and p parameters. However, if
the traffic may be non-compliant and non-conforming cells are buffered, then new challenges arise in
designing a mechanism, scalable to thousands of sessions, that integrates centralized leaky-bucket
controls with fair queueing.

The first design that comes to mind might consist of a staging area for non-conforming traffic,
followed by a fair queueing server that arbitrates among cells that have reached their conformance
times. However, it appears very difficult to scale this design to accommodate thousands of sessions.
As illustrated below, a very large number buffered cells can become conforming simultaneously, and
it is problematic how to shift this mass of cells to the fair queueing server while maintaining fair
treatment of future arrivals. In the fair leaky bucket (F1.B) shaper proposed here, this implemen-
tation complexity is avoided by allowing all arriving cells to proceed directly to the fair queueing
server; if the server selects a non-conforming cell for transmission, the shaper reschedules the cell
for later service.

The remainder of the paper is organized as follows. Section 2 discusses shaper architectures

and motivates fair traffic shaping. In Section 3, we prove that FLB shaping, based on weighted
fair queueing, closely preserves connection leaky-bucket descriptors as long as connections do not
have widely different bandwidth requirements. Section 4 describes an efficient implementation of
the FLB shaper, based on self-clocked fair queueing. In Section 5, we present simulation results
that show how the FLB shaper bounds traffic distortions. Section 6 concludes the paper with a
discussion of future research directions in fair traffic shaping.

The FLB shaper complements related research on architectures for traffic shaping in ATM
networks [10-15], discussed further in Section 2. Parekh and Gallager’s analysis [6, 7] of weighted
fair queueing, also known as packet-by-packet generalized processor sharing, provides the theoretical
underpinning for the theorem in Section 3. They show that weighted fair queueing closely preserves
the traffic descriptors of connections that are already leaky-bucket compliant; the FLB shaper
extends these results to efficiently convert non-conforming traffic into a compliant output stream.
The implementation approach in Section 4 relates to other mechanisms for efficient rate control in
high-speed networks [16-19,15].

2 Motivation

2.1 Shaper Implementation

An efficient shaper architecture must scale well with the number and type of connections. A shaper
can maintain a separate controller and buffer for each connection, but a scalable implementation
requires a more integrated approach. Scalable architectures typically maintain a table that holds
the shaping status of each connection [11-13]. When a new cell arrives, the shaper identifies the
appropriate connection and updates its state, based on the elapsed time since the last update.
(To avoid clock wrap-around errors, the shaper can periodically update each connection’s state,
independent of cell arrivals [13].) The shaper uses this state to determine the time an arriving cell
first conforms to its connection’s traffic descriptors. The shaper uses these conformance times to
schedule cells for transmission.

Traffic shapers in high-speed ATM networks necessitate simple and efficient techniques for
recognizing when cells conform to their traffic descriptors. The most general approach uses a
hardware priority queue to rank the cells in order of increasing conformance times [11,10]; during
each transmission slot, the shaper transmits the queue’s head cell, if its conformance time has
been reached. To avoid the implementation complexity of a hardware priority queue, the Spacer-
Controller dynamically builds a link transmission schedule using a large collection of bins, with one
bin for each time slot [12]; an arriving cell locates the first empty bin at or after its conformance
time.

An alternate implementation constructs a linked list of cells in each bin; the shaper transmits

all cells in one list before proceeding to the next non-empty list in the schedule [14]. Although these

CONFORMANCE TIME

100 101 102

103 104 105 106
a M U Q
ooe ¢

SERVER REAL TIME

Figure 2: Example of cell collisions in a traffic shaper

discrete-time bins obviate the need for a hardware priority queue, a shaper implementation requires
a large number of these bins to handle cells with conformance times far into the future. The shaper
can reduce the number of bins by having each bin represent a range of conformance times [15],
but such coarse-grain scheduling can distort the outgoing traffic, particularly for high-bandwidth

connections.

2.2 Traffic Distortions

When multiple cells become conforming at the same time, a shaper architecture must arbitrate
amongst the backlogged conforming cells. Figure 2 illustrates a class of examples, where shaping
can lead to an egregious burst of cells, and an important associated scheduling problem. It is
not difficult to construct such examples even for ingress shaping, where the number of input lines
into the shaper is limited and the speed of the shaper’s output line equals the sum of the speeds
of its input lines. In the example, a backlog of cells accumulates over time due to the arrival of
non-conforming cells (from connections 3, v, p, w,...); these backlogged cells all become conforming
nearby in time (times 100,101). Suppose further that other connections (connection «) submit
conforming cells near the conformance times for the backlogged connections (time 102,104, 106, .. .).

Since the link transmits at most one cell in each time slot, the shaper falls behind in servicing
the backlogged traffic. Thus, real time advances far beyond time 100 while the shaper drains
the traffic from times 100 and 101. By the time the shaper finishes sending these cells, a high-
bandwidth connection @ may have several conforming cells awaiting service, causing the link to
transmit a large burst of traffic from this connection. Though connection a’s cells may have
arrived beautifully spaced, the shaper essentially slams them together on the output link. FIFO
service of conforming cells cannot avoid this problem. Instead, a fair shaper could transmit some
of the cells from connection a before sending all of the cells that reached their conformance times
earlier. This would avoid producing an excessive burst of connection a’s cells by interleaving this

traffic with cells from other connections.

2.3 Fair Queueing

Collisions between conforming cells arise because multiple connections compete for access to the
outgoing link. A shaper could preserve connection leaky-bucket parameters if each connection «
had access to a private link of rate at least p,, its average bandwidth requirement, instead of sharing
a link with other traffic. While this is not practically feasible, it provides a useful paradigm for gov-
erning the interaction between competing connections. Generalized processor sharing (GPS) models
this abstraction by continuously dividing link bandwidth amongst the backlogged connections, in
proportion to their weights 7, [5,6]. If these weights are chosen as r, x py, and Y p, < 1, the
link can continuously serve connection a cells at rate p,, or faster. This ensures that GPS preserves
the leaky-bucket parameters for each connection [6,7].

GPS cannot be directly implemented, since it requires preemption of the link resource on an
arbitrarily small time scale. However, packetized versions retain the fairness properties of this
idealized multiplexing model. Weighted fair queueing (WFQ) approximates the fluid model by
ranking cells by the time they would complete service under GPS [5]. In effect, then, a WFQ server
simulates GPS to order the cells awaiting access to the link. WF(Q simulates GPS by maintaining
a virtual time R(t) such that R(0) =0 and

-1
— Pl —

7 R'(t) = WEZ:B(t) T,
where B(t) is the set of busy connections in the GPS simulation at time ¢. The logical clock R(t)
represents the GPS server’s progress in servicing the backlogged connections, while R'(t) is the
normalized service rate.

Maintaining R(t) allows the GPS simulation to determine the virtual starting and finishing
times for an incoming cell, independent of future arrivals to the system [5]. If cell £ of connection

a enters the system at time ¢, its virtual starting and finishing times under GPS service are

Sk = max{FLy, R(1)}
Fg o= S5+ 1/ra,

assuming a common cell length 1, as in ATM. If cell £ arrives to an empty connection queue, GPS
begins serving the cell as soon as it arrives (at virtual time R(t)); otherwise, the cell enters service
when GPS finishes transmitting the previous cell from the connection (at virtual time F ;). The
1/r, term represents the normalized work required to service the new cell. When WFQ must select
a cell for transmission, the server picks the cell with the smallest virtual finishing time F, among
the cells already queued for service (breaking ties arbitrarily).

Computing R(?) is complex, and indeed is similar to simulating multiple GPS service events

between consecutive cell departures [20,21]. Self-clocked fair queueing (SCFQ) [8,9] uses the virtual

finishing time F*¢"V of the cell currently in service as an estimate of current virtual time, thereby
avoiding the burden of computing R'(¢). Analysis [9] and simulation [8] suggest that SCFQ retains
the throughput fairness properties of GPS and WFQ, while simplifying the assignment of virtual
finishing times. In addition, a SCFQ server can postpone assigning a cell’s I’ value until the cell
reaches the head of its connection’s queue, since virtual finishing times do not depend on the status
of an underlying GPS queue; when a cell becomes the head of its connection queue, its virtual
finishing time is £’ = F**"V + 1/r,, whether the cell arrives to an idle connection or ascends to the
head position when the previous cell departs. The FLB architecture capitalizes on these properties

to efficiently shape traffic in ATM networks.

3 Fair Leaky-Bucket Shaping

WFQ and SCFQ closely preserve connection leaky-bucket descriptors by arbitrating fairly amongst
competing connections. These properties suggest that fair queueing algorithms can also play a

useful role in shaping non-conforming incoming traffic into a compliant output stream.

3.1 Fair Shaping

The fair leaky-bucket (FLB) shaper combines leaky-bucket control with fair queueing algorithms
to smooth the incoming traffic and limit distortion in the resulting output streams. The FLB
shaper reduces implementation complexity by allowing all arriving cells to proceed directly to the
fair queueing server. Admitting non-conforming traffic to the fair queue avoids complex hardware
mechanisms for detecting newly conforming cells and submitting them to the server. Hence, the
FLB shaper optimistically assigns a virtual finishing time to a connection’s head-of-line cell, even
if this cell has not reached its conformance time yet. Although this significantly reduces imple-
mentation complexity, it could cause the fair queueing arbiter to select a non-conforming cell for
service.

Figure 3 shows how the FLB shaper handles cell arrivals and cell selection by the fair queueing
server. When cell k£ arrives to connection a, the FLB shaper determines the cell’s conformance time
t%* and appends this cell to the connection a queue, as shown in Figure 3(a). If this connection
was previously idle, the server assigns the cell’s virtual finishing time F®. At the start of each
transmission slot, the fair queueing server selects the cell with the smallest virtual finishing time,
as shown in Figure 3(b). While the link can service a conforming cell, transmitting non-conforming
traffic would violate connection leaky-bucket parameters. Instead, the FLB shaper treats this non-
conforming cell as a new arrival to the head of its connection queue by assigning it a new virtual
finishing time. In effect, the server reschedules the non-conforming cell, after accounting for the
link bandwidth the cell would have consumed.

This ensures that resubmitting a non-conforming cell does not penalize the traffic in other

connections. Although rescheduling the cell consumes a transmission slot, even if other connections
await service, WFQ and SCFQ guarantee that each connection receives sufficient link bandwidth,
independent of other traffic. A resubmission can only occur when a connection has no leaky-bucket
tokens and no conforming cells awaiting service. Hence, the affected connection has been receiving
good service from the shaper, since this non-conforming cell has not become conforming since the

transmission of the connection’s previous cell.

3.2 Preservation of Leaky-Bucket Parameters

Theorem 2 below provides a worst-case bound on the distortion to the burstiness parameter o of a
(o, p)-compliant session brought on by rescheduling non-conforming cells. Asnoted in Section 1, this
theorem assumes weighted fair queueing arbitration in the FLB shaper; we expect a similar result to
hold for self-clocked fair queueing. Extending the argument to other fair queueing schemes requires
counterparts to (2) and (3), below, which provide upper and lower bounds for the throughput
discrepancy between generalized processor sharing and the packetized fair queueing scheme.

As a first step, we adapt a basic result of Parekh and Gallager [6] on leaky-bucket control.

Lemma 1 Consider a system of connections arriving to a multiplezor with an unbounded buffer,
where connection o has leaky-bucket parameters (0,,p.). While connection a’s cells need not

conform to the leaky-bucket descriptors on arrival, the multiplexor transmits only conforming traffic.

out

out pa)-compliant where

Connection o’s output stream is (o
ait < g3, (1)
where ¢, is the mazimum possible backlog of conforming cells for connection a.

Proof. Let ¢,(t) denote the amount of conforming traffic from connection a that is buffered
at time ¢; the connection may also have other, non-conforming traffic awaiting service. Also, let

£, (1) denote the number of connection « tokens available at time ¢. For any time interval [s,?), let

Cell %k arrives for connection a; Find connection « with smallest F'¢;
Determine conformance time t%*; if (12F <)
if (connection a queue is empty) transmit cell;
FO=F*" 4+ 1/ry; if (connection a queue is non-empty)
Add cell k to connection a queue; Fo = F5™ 4 1/r,;
(a) Cell arrival (b) Cell selection

Figure 3: Fair leaky-bucket algorithm under self-clocked fair queueing

a,(s,1) denote the number of connection a cells that become conforming during [s,), including any
conforming traffic that arrives during the interval. Let w,(s,?) denote the number of connection «
cells transmitted during this interval. (These quantities may be fractional.) Since the multiplexor

transmits only conforming traffic, conservation of cells requires

Wy (8,1) = aa(8,1) + ¢als) — qa(l).

The leaky-bucket parameters (o4, po) ensure that a,(s,t) < £,(s) + pal(t — s), so
0a(5,1) < (a(5) + 0a(5) — @al0)) + palt — 9),

which implies that 02" < £,(5) + ¢a(8) — qu(t) < €4(3) + ¢o(s). Finally, note that £,(s) + q.(s)
cannot exceed ¢, since this would allow the connection to instantaneously increase ¢ by consuming

all £,(s) remaining tokens at time s.]

To analyze the FLB shaper, we draw on two results relating the throughputs of WFQ and GPS
systems, for connections with arbitrary traffic characteristics. Consider a system of N connections
flowing into a multiplexor with an unbounded cell buffer, where each connection w has positive
weight r,,. Let WYWF@(s,t) denote the amount of connection o traffic served during interval [s,)
by a WFQ server; similarly, let W&P5(s,t) denote the total service given by a GPS server. In
particular, under FLB shaping, W, refers to all work performed in connection a’s behalf, including
any time slots spent rescheduling non-conforming cells. Parekh and Gallager [6] proved that WFQ

lags at most one cell behind GPS in serving a connection. That is, for all a, s, and t > s,
WS (s,8) = W9 (s, 1) < 1. (2)

The performance of the FLB shaper depends on this bound, as well as a new throughput bound in

the reverse direction, proven in Appendix A. In particular, for all a, s, and t > s,
WWEQ (5. 4) —WEPS (s,4) < min{N — 1,74/"min}, (3)

where rmin = ming{r,} denotes the smallest weight. It can be shown that both (2) and (3) are
tight bounds. Now, we are in position to prove the main result on the performance of the FLB

shaper.

Theorem 2 Consider a system of multiple connections, where connection a traffic is shaped using

leaky-bucket parameters (04, ps), and Y., po < 1. FLB shaping, with WFQ arbitration and weights

out

o po), where

To X po, guarantees that the corresponding output stream satisfies (o

o2 < max{o, + 1L, min{N + 1,2+ po/Pmin} }-

Proof. The proof employs a reference GPS system that sees the same traffic as the FLB WFQ
system. As constructed below, this reference system sees the same arrivals as the underlying GPS
simulation that determines virtual finishing times, up to a renaming of non-conforming cells that
are rescheduled. For each cell that arrives to the FLB shaper, a copy of the cell arrives to the GPS
system at the same time. Moreover, for each non-conforming cell that the FLB shaper reschedules
at a given time ¢, a copy of that cell also arrives to the GPS system at time ¢. Thus, the GPS system
is driven by the original arrivals and the rescheduling actions of the FLB shaper, and attempts no
rescheduling itself. To construct the arrival sequence for GPS, we can imagine running the FLB
system from time 0 to oo, and marking all of the arrival and rescheduling events for each connection.
All these events are arrival events for the GPS system. Let us refer to the rescheduling events as
clone arrivals.

These arrivals to the GPS server determine the sequence of virtual finishing times for each
connection. However, FLB shaping schedules clone arrivals at the head of the connection queue.
Still, this does not alter the sequence of virtual finishing times generated by the underlying GPS
simulation. Hence, the FLB WIF(Q) server uses these sequences of virtual finishing times to arbitrate
amongst competing connection, but services the cells from an individual connection in order of
conformance times. Focus on one connection a. At a given time ¢, let QS75(¢) denote the amount
of traffic (including non-conforming and clone cells) buffered for connection o in the GPS system;
similarly, let QELB(t) denote the number of buffered cells in the FLB WIFQ system. It follows from
the construction of the arrival sequence and the throughput bounds of (2) and (3) that, for all ¢,

QLP () = 1< Q™ (1) < QIFP(1) + 7o/ ramin:
A similar result holds for the conforming traffic,

quB(t) -1 S qGPS(t) S qFLB(t) + Toz/rminy (4)

o3 o3

since the two systems experience the same cell arrival times (including clone arrivals) and serve
connection a’s cells in the same order (based on their conformance times).

We argue below that, for all ¢,

qus(t) < max{o,, min{N, 1+ r,/"min}}, (5)

implying ¢f7B(t) < max{o, + 1,min{N + 1,2 + r,/Tmin}} for all . Applying Lemma 1 then

completes the proof; this finite bound on queue length also implies that rescheduling non-conforming
cells does not violate system stability. Hence, it remains then to prove (5) for the GPS system.

Initially the system is empty; i.e., ¢¢F%(0) = 0. We show that the bound of (5) holds until a time
GPS GPS

o 77 returns to zero, then the same argument and

where ¢ reaches zero again; however, if ¢
bound applies to its next excursion from zero. By a straightforward induction, the bound must

always hold.

10

Consider the connection « cells arriving to the GPS system. Until the first clone arrives, the
GPS

system serves only (04, ps)-conforming cells from connection a; thus, ¢, () < o, in this interval,
since GPS continuously serves connection a at a rate of at least p, (since r, x p, for all w) [7].
Now, consider the first clone arrival. Under FLB shaping, connection a’s cell is rescheduled only if
the connection’s token bucket is empty, ¢£*P = 0, and the WFQ server elects to serve connection
a. The shaper may resubmit this cell one or more times, until the cell finally becomes conforming
at time #2.

At t2, then, ¢f' P increases to 1, since connection a now has one conforming cell awaiting service.
By (4), this implies that ¢G5 < min{N, 14 r,/rmin}, where the GPS server’s buffered traffic may
include clones that have not been served yet. Under GPS, the server will now continuously service
the backlogged connection a at a rate of at least p,, while the connection generates new conforming

cells at a rate of at most p,. Hence, GPS never has a backlog of more than min{N, 1+ r,/rmin}
GPS

o ~ returns to zero. a

conforming cells, until ¢

This bound on queue length also implies a bound on cell shaping delay for conforming traffic.
When cell k£ from connection a becomes conforming at time ¢, any previous cells from that con-
nection are also conforming. Hence, connection a will not experience any new clone arrivals before
cell £ departs the shaper, and any backlogged clone cells have become conforming. At time ¢, there
are a bounded number of conforming cells (including clones) ahead of cell £ in the underlying GPS
queue, due to (5). GPS serves this connection at a rate of at least p,, so cell k£ incurs at delay of

at most

max{o,, min{N,1 4+ 7, /"min}}

Pao ’
once it becomes conforming. Parekh and Gallager proved that a cell departs a WFQ server at most
one time slot later than it departs the underlying GPS server [6]. Consequently, FLB shaping,

based on weighted fair queueing, bounds shaping delay to

max{o,, min{N,1 4+ 74 /"min}} T
Pa

bl

once a cell conforms to its connection’s leaky-bucket parameters. Although rescheduling non-
conforming cells can increase average cell shaping latency, the FLB shaper enforces tight bounds on
worst-case delay and traffic distortions, independent of the conformance times of other connections’

cells.

4 Self-Clocked Implementation

Rescheduling non-conforming cells simplifies the FLLB shaper implementation without significantly

distorting the leaky-bucket parameters of the resulting output streams. When a new cell arrives,

11

the shaper identifies the appropriate connection and computes the cell’s conformance time; later,
when the fair queueing server selects the cell, this conformance timestamp determines whether the
shaper transmits the cell or reschedules it for later service. As a result, the FLB shaper ranks cells
by their virtual finishing times in the fair queueing system, instead of sorting cells by conformance
times. Although fair queueing implementations typically require a priority queue to sort cells by
virtual finishing times [20], the FLB shaper implements self-clocked fair queueing using two sets of
FIFO queues.

4.1 Per-Connection Queueing

Traffic shapers in high-speed networks require efficient hardware mechanisms for arbitrating amongst
competing cells. A shaper can reduce sorting complexity by considering only the head-of-line cell
from each active connection, while holding the remaining cells in per-connection queues. These
queues can consist of logical FIFOs in a common shared memory, with an idle-address pool main-
taining a list of available buffer slots. When the shaper ranks cells by conformance times, per-
connection queueing reduces the number of cells and the range of conformance times that the
sorting mechanism must handle. Similarly, per-connection FIFOs can reduce sorting complexity in
the FLB shaper by limiting the range of virtual finishing times.

Under self-clocked fair queueing, if connection a is backlogged at time ¢, its head-of-line cell
satisfies §¢ < F#¢™ < I, since the cell has reached the head of its queue but has not completed

service. Since S¢ = F'* — 1/r,,
oY < Fo< P 4 1 r, Ya € B().

Hence, at time ¢ all virtual finishing times fall in the range [F*¢"Y, F*¢™" + 1/rpn|, where rpi, =
ming{r,} and F?*"" is the virtual finishing time of the cell currently in service. This range of
virtual finishing times becomes a finite set under some practical restrictions on connection weights.
If a SCFQ server has integer 1/r, values for all connections «, then F' values are also integers; this
property does not hold for WFQ servers, since R(t) is a continuous function under weighted fair
queueing. With integer virtual finishing times, a SCFQ server handles head-of-line cells with at

most 1 + 1/rmin different F' values, independent of the number of connections.

4.2 Sorting by Virtual Finishing Times

Under this finite set of virtual finishing times, a SCFQ implementation can consist of a small collec-
tion of FIFOs, with one queue for each F’ value, as shown in Figure 4. The server arbitrates fairly
amongst competing connections by sequencing through these FIFOs, draining one bin completely
before proceeding to the next non-empty queue. The bin in service represents the current value

of F***¥. When connection a has a new head-of-line cell, the server implicitly assigns a virtual

12

finishing time by placing the cell (or a pointer to the cell) in the queue 1/r, away from the FIFO
currently in service. This ensures that connections receive service in proportion to their bandwidth

requirements 7, X pPq-

B mt TTT -
MR e | e TR ﬂ@ N
Table H :

e TTTH

Connection FIFOs Self-clocked fair queue

Figure 4: Self-clocked FLB architecture

In effect, the SCFQ implementation dynamically creates a fair schedule for the active connec-
tions, with each new head-of-line cell joining a FIFO based on its connection’s weight; in this sense,
the SCFQ implementation is similar to rate-based scheduling [16], although the SCFQ architecture
is work-conserving and does not restrict the depth of the FIFO queues. For example, if all connec-
tions have equal weights r, = 1, then each head-of-line cell has a virtual finishing time of either
F#e or I 4+ 1. Thus, the SCFQ server can simply toggle between two FIFO queues, with the
link serving one FIFO, while new head-of-line cells join the other; actually, a single FIFO queue
suffices, since all new head-of-line cells have virtual finishing time F**" 4+ 1 and can be served after
any traffic already in the FIFO. In this case, we recognize SCF(Q as a well known scheduling method
that toggles between two waiting rooms, with the room in service closed to newcomers, who then
enter the other room [22]. By ranking cells according to virtual finishing times, the FLB shaper
avoids sorting across a wide range of cell conformance times; even with per-connection queueing,
head-of-line cells can have arbitrary conformance times up to 1/pmi, into the future, requiring a
large number of sorting FIFOs to distinguish between competing cells.

Since fair queueing defines connection bandwidths as ratios of weights, limiting these weights
to the inverse of integers does not impose a significant restriction. The required number of FIFOs
increases as the SCFQ server incorporates a wider range and granularity of connection weights.

Suppose the server imposes Tmax/Tmin = 7, With a granularity of m connection weights between

1 1

preil oS %}, for example, if n = 2 and m = 3, the server could

Tmin and Tmax, by using weights
allow weights {1/2,1/3,1/4}. As a result, the SCFQ implementation requires at most nm + 1
FIFOs to sort fairly amongst the competing connections. This significantly reduces the implemen-
tation complexity of self-clocked fair queueing and FLB shaping, particularly for a small range of
connection bandwidth requirements.

The FLB shaper can efficiently support a finer grain of connection rates through an approzi-

13

mate implementation of self-clocked fair queueing. In this approach, the shaper permits arbitrary
connection weights r, and associates each FIFO queue with a range of virtual finishing times; the
server implicitly rounds each cell’s I value to select the appropriate FIFO in the calendar queue.
Each connection a can maintain its full, non-integer virtual finishing time to correctly assign the
F* value for the next head-of-line cell. We are currently analyzing and evaluating the fairness
properties of this approximate SCFQ scheme; other possible extensions address efficient support
for a wider range of connection weights. These generalizations of the SCF(Q implementation will
be presented in a forthcoming paper.

By combining leaky-bucket control and a SCFQ server, the FLB shaper can perform traffic
policing, traffic shaping, and fair queueing, as shown in Table 1. If non-conforming cells are
dropped (or marked) on arrival, the FLB architecture implements traffic policing. For ingress
policing, the aggregate rate of the input links does not exceed the transmission rate, so conforming
cells proceed directly to the output link. With egress policing, however, the outgoing link transmits
at a slower rate than the peak incoming traffic, so the SCFQ server plays a useful role in preserving
connection leaky-bucket parameters. The FLB architecture can also implement fair traffic shaping
by permitting non-conforming arrivals and transmitting only conforming cells. When rescheduling
is disabled, the FLB architecture implements fair queueing without any restrictions on the arriving

traffic streams.

Function Admit non-conforming cells | Allow rescheduling in SCFQ
Traffic policing No —
Traffic shaping Yes Yes
Fair queueing Yes No

Table 1: Options in FLB implementation

5 Performance Evaluation

This section evaluates the FLB shaper’s effectiveness at limiting interference between ATM con-
nections at network ingress and egress points. The simulation experiments compare the FLB
architecture with a shaper that transmits conforming cells in order of their conformance times,
breaking ties in FIFO order. The two schemes are compared based on the burstiness ¢°“* of their
resulting output streams; if a connection requests shaping with leaky-bucket parameters (o, p), then

out

0% is the smallest value such that the resulting output stream is (¢°*!, p)-compliant.

14

5.1 Ingress Shaping

The ingress simulation model consists of a single input link that operates at the same rate as the
output port, with most one cell arriving in each time slot. To evaluate the two shaping schemes on
a challenging traffic pattern, the ingress experiments consider a scenario similar to Figure 2. The
experiment generates a large number of cells with conformance time T by having each connection 1,
with o; = 1, p; = 1/(T — 2i), submit two cells at 2¢ and 2¢ 4 1, where i = 1,2,..., N — 1. Although
connection ¢’s first cell is conforming on arrival, the second cell does not become conforming until
time T'. As soon as these low-bandwidth connections finish submitting their two-cell packets, a

high-rate connection begins periodically transmitting conforming cells, as shown in Figure 5.

0O 2 4 (XX T t;
2 [
N-1 .Dj |
N DD...DDDD...

Figure 5: Ingress traffic arrival pattern

Figure 6(a) shows ¢°* for the high-bandwidth connection with leaky-bucket parameters (1,0.109),
with 200 low-rate connections and 7" = 480. FIFO scheduling of conforming cells significantly dis-
torts the connection leaky-bucket parameters, particularly when the high-bandwidth connection
submits cells at a high rate, close to its shaping rate p. This occurs because, starting at time T, the
FIFO shaper consumes 200 consecutive time slots serving the newly-conforming cells from the low-
bandwidth connections, allowing the high-rate connection to accumulate a large burst of backlogged
traffic. Even though the high-bandwidth connection complies with its leaky-bucket parameters at
the input port, the shaper significantly distorts the resulting output stream. In contrast, FLB
shaping closely preserves connection traffic descriptors by interleaving the high-bandwidth traffic
with the newly-conforming cells from the low-rate connections. The low-bandwidth connections do
not experience any traffic distortions under either shaper model.

The next experiment considers a similar traffic pattern, with 1000 low-rate connections and
T =10,000. While the high-rate connection has leaky-bucket parameters (1,0.88), the experiment
varies the connection’s cell arrival rate, as shown in Figure 6(b). As in Figure 6(a), FIFO scheduling
permits low-rate connections to deny service to the conforming cells from the high-bandwidth
connection. This effect becomes more pronounced as the high-bandwidth connection submits cells

at a higher rate, closer to its average sustainable rate. However, in this experiment, the wider range

15

o
N
[To R o
= S
- - N
> >
o o
]] T
E 3 £
=) =) o
7 n & A
—
A Q
Q|
1 1 1
L1 1 o1 1 1 1
0.02 0.04 0.06 0.08 0.10 0.2 0.3 0.4 0.5 0.6 0.7
arrival rate arrival rate
(a) With 200 low-bandwidth connections (b) With 1000 low-bandwidth connections

Figure 6: Performance of high-bandwidth connection under ingress shaping (“1” indicates results
for the FLB shaper, while “2” denotes the FIFO shaper model).

of connection p values causes both shaping schemes to distort the high-bandwidth connection’s o°%¢
parameter, although the FLB shaper introduces significantly less distortion. To accommodate a
broader spectrum of p values, the FLB architecture can group connections with similar bandwidth

requirements and arbitrate fairly amongst the competing groups.

5.2 Egress Shaping

To evaluate traffic shaping at the network egress, the simulation model has an input port that
operates T times faster than the output link, although the aggregate mean rate of the connections
does not exceed the speed of the output port. In general, demultiplexing to lower-speed links
amplifies the effects of traffic collisions, since transient input load can generate a large backlog of
conforming cells in the shaper buffer. This experiment consists of 10 compliant connections with
shaping rates p = 0.05; each incoming stream consists of a 20-cell burst, at the rate of the input
link, with one connection’s burst following another. At the same time, a high-rate connection has
periodic cell arrivals at rate 0.4, with leaky-bucket parameters (1,0.5).

As T increases, this high-rate connection must endure more interference from the bursty low-
rate connections, as shown in Figure 7. Fairness plays a crucial role in this context. The network
can shape a connection’s traffic at the network entry point, then closely preserve the leaky-bucket

descriptors throughout the connection’s route, but then ultimately disrupt these traffic parameters

16

sigma out
10 20 30 40 50 60

1 1
o q‘ T \1 T ?‘
2 3 4 5 6

tau

Figure 7: Performance of high-bandwidth connection under egress shaping (“1” indicates results
for the FLB shaper, while “2” denotes the FIFO shaper model).

at the egress port. This port may feed an end host or even another subnetwork with lower speed
links. Fair shaping at the egress port can accommodate variations in traffic flow and prepare the

connection for the end host or the next subnetwork in the route.

6 Conclusion

Traffic shaping and fair queueing both regulate the interaction between competing connections in
an ATM network. While shaping enforces connection traffic descriptors, fair queueing ensures that
each connection receives its share of the link bandwidth on a fine time-scale. Combining leaky-
bucket shaping and fair queueing produces a shaper architecture that preserves connection traffic
descriptors and facilitates an efficient implementation. The FLB shaper limits the pernicious effects
of collisions between competing cells.

Ultimately, fair queueing algorithms require compromises between implementation complexity
and the accuracy in approximating generalized processor sharing. As an extension of the results
presented here, we are studying architectures that guarantee efficient shaping of a broader spectrum
of connection weights, facilitate more diverse link-sharing policies in ATM networks, and use ap-
proximate implementations of self-clocked fair queueing to support a finer granularity of connection
bandwidth requirements without increasing hardware complexity.

In addition to investigating efficient implementations of fair queueing, we are considering op-
timizations for rescheduling non-conforming cells in the FLB shaper. The shaper can improve

performance by considering alternate cells for transmission when a non-conforming cell has the

17

smallest virtual finishing time. With a moderate increase in server speed, the shaper can reduce
the likelihood of generating idle transmission slots when conforming cells await service. In addition,
if some connections do not request traffic shaping, the server can fill output slots with cells from
these connections. The combination of leaky-bucket control, fair queueing, and rescheduling results

in an effective and efficient shaper implementation.

Appendix A Throughput Discrepancy Bound
Theorem 3 For all times t and connections a,
WIFR(0,1) = WEPS(0,1) < min{N — 1,70 /Tmin} Lmax;

where N is the number of connections, rmin = ming{ry}, and Lmax s the mazimum packet (cell)

length.

Proof. Since WFQ and GPS are both work-conserving, they provide the same total service

over any time interval. That is,
D WEPS0,0) = Y WiTR(0,1)

for all . GPS cannot lag far behind WIFQ for any connection a, since WFQ lags at most Lax
behind GPS for each of the N connections. Since WST5(0,¢) < WWFQ(0,1) 4+ Liyax for all N
connections w [6], WWER(0,1) - WEPS(0,1) < (N — 1) Liax-

To prove the r, /Tmin portion of the throughput bound, we consider the transmission of cell & of
connection a that enters service at time ¢; under WFQ. The difference WY ¥®@(0,¢) - WEFS(0,¢)
reaches its largest value when some connection a cell completes service under WFQ. Hence, it
suffices to prove the throughput discrepancy bound at time t5, when WFQ finishes transmitting
the cell. Two possibilities emerge at time ¢;. FEither WFQ is already ahead of GPS in serving
connection a or GPS does not yet lag behind WEFQ. If GPS does not lag behind WFQ at ¢;, then
WWEQ(0,¢,) < WEPS(0,¢,). This implies:

WWERQ(0,1,) WWEQ (0, 4) 4+ Lk

< wWoPS0,t)+ Lk
< WEPS(0,ty) + LE
< WSPS(Ov t2) + Lmax(roz/""min)

The equality holds because WFQ serves cell k£ of connection a for the entire interval (1,72). The first

inequality holds because WYWF?(0,4,) < WEP5(0,1,), while the second inequality is a consequence

18

of t1 < t9. Since Lpax > Lfy and r4 > Tmin, the discrepancy bound holds when VV(EVFQ (0,t1) <
WEPS(0,11).

Suppose, instead, that W/WF@(0,¢;) > WFP5(0,#1). Since both GPS and WFQ are work
conserving, WFQ must lag behind GPS for at least one connection at time ¢;. Let cell j be the
head cell of this connection 8 at time #; under WFQ service. Since WFQ lags behind GPS in

serving connection [, Sjﬁ < R(t1); similarly, since GPS lags WFQ for connection a, S¢ > R(t1).
However, WFQ still selects connection a for service at time 1, instead of choosing connection 3,
so I < Fjﬁ. When WFQ finishes serving cell k£ of connection a at time ¢3, the underlying GPS

server still has (F — R(t2)) virtual time remaining before this cell completes service. So, GPS
must perform r, (£} — R(%2)) additional work for connection o to complete the transmission of cell
k. Thus,

WWFR(0,15) - WEPS(0,15) = ra(FY — R(t2))
< ro(F - R(1y))
< ra(FY - 87)
= ro(Lf/7p)
< ro(Lmax/Tmin)

The first inequality holds because Fjﬁ > Fy, while the second inequality stems from Sjﬁ < R(th) <
R(t3); the identity Fjﬁ = Sjﬁ + L?/rg simplifies the expression. Since Ly ax > Lf and rg > Tmin, the

discrepancy bound holds at time 5 when WJVFQ(O, 1) > WSPS(O, t1). Thus, the bound holds for
all ¢. O

Previously proven for the special case of equal weights r, [21], this theorem complements the
relation WEPS(0,t) — WIVFQ(0,1) < Luayx [6]. It can be shown that both of these throughput

discrepancy bounds are tight.

19

References

[1] J. Turner, “New directions in communications, or which way to the information age?,” IFEF

Communication Magazine, vol. 24, pp. 8-15, Oct. 1986.

[2] I. Cidon and I. S. Gopal, “PARIS: An approach to integrated high-speed private networks,”
Intl. Journal of Digital and Analog Cabled Systems, vol. 1, pp. 77-86, Apr. 1988.

[3] M. Sidi, W.-Z. Liu, I. Cidon, and I. Gopal, “Congestion control through input-rate regulation,”
IEFFE Trans. Communications, vol. 41, pp. 471-477, Mar. 1993.

[4] R. L. Cruz, “A calculus for network delay, part I: Network elements in isolation,” IFEFE Trans.
Information Theory, vol. 37, pp. 114-131, Jan. 1991.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorthm,”
Proc. of ACM SIGCOMM, pp. 3-12, 1989. (Also J. Internetworking: Research and Ezperience,
pp. 3-26, September 1990).

[6] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in
integrated services networks — the single node case,” in Proc. IEFE INFOCOM, pp. 915-924,
1992. (Also IFEFE/ACM Trans. Networking, pp. 344-357, June 1993).

[7] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in
integrated services networks — the multiple node case,” in Proc. IEFE INFOCOM, pp. 521-530,
1993. (Also IFEE/ACM Trans. Networking, pp. 137-150, April 1994).

[8] J. R. Davin and A. T. Heybey, “A simulation study of fair queueing and policy enforcement,”
Computer Communication Review, pp. 23-29, Oct. 1990.

[9] S. J. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in Proc.
IEFE INFOCOM, pp. 636-646, 1994.

[10] H. J. Chao and N. Uzun, “A VLSI sequencer chip for ATM traffic shaper and queue manager,”
IEFEFE J. of Solid-State Circuits, vol. 27, pp. 1634-1643, Nov. 1992.

[11] H. J. Chao, “Design of leaky bucket access control schemes in ATM networks,” in Proc.

International Conference on Communications, pp. 180-187, June 1991.

[12] P. E. Boyer, F. M. Guillemin, M. J. Servel, and J.-P. Coudreuse, “Spacing cells protects and
enhances utilization of ATM network links,” IEFFFE Network Magazine, pp. 38-49, Sept. 1992.

[13] K. van der Wal, M. Dirksen, and D. Brandt, “Implementation of a police criterion calcu-
lator based on the leaky bucket algorithm,” in Proc. GLOBECOM, pp. 713-718, Novem-
ber/December 1993.

20

[14]

[15]

[16]

[17]

[22]

E. Wallmeier and T. Worster, “A cell spacing and policing device for multiple virtual con-
nections on one ATM pipe,” in Proc. RACE Workshop on Network Planning and Fvaluation,
Apr. 1991.

H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” in Proc. IEEE INFOCOM,
pp- 227-236, June 1993.

C. R. Kalmanek, H. Kanakia, and 5. Keshav, “Rate controlled servers for very high-speed
networks,” in Proc. GLOBECOM, Dec. 1990.

H. Zhang and S. Keshav, “Comparison of rate-based service disciplines,” in Proc. of ACM
SIGCOMM, pp. 113-121, Sept. 1991.

L. Zhang, “Virtual Clock: A new traffic control algorithm for packet-switched networks,” ACM
Trans. Computer Systems, vol. 9, no. 2, pp. 101-124, 1991.

S. J. Golestani, “Congestion-free communication in high-speed packet networks,” IFEF Trans.
Communications, vol. 39, pp. 1802-1812, Dec. 1991.

S. Keshav, “On the efficient implementation of fair queueing,” J. Internetworking: Research
and Fzperience, vol. 2, pp. 157-173, Sept. 1991.

A. G. Greenberg and N. Madras, “How fair is fair queueing?,” J. of the ACM, vol. 39, pp. 568—
598, July 1992.

A. Fraser, “Group contention on a demand-shared bus,” Feb. 1977. Bell Laboratories internal

memorandum.

21

