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Abstract—The memory Internet routers use to store paths to
destinations is expensive, and must be continually upgraded in
the face of steadily increasing routing table size. Unfortunately,
routing protocols are not designed to gracefully handle cases
where memory becomes full, which arises increasingly often due
to misconfigurations and routing table growth. Hence router
memory must typically be heavily overprovisioned by network
operators, inflating operating costs and administrative effort.
The research community has primarily focused on clean-slate
solutions that cannot interoperate with the deployed base of
protocols.

This paper presents an incrementally-deployable Memory
Management System (MMS) that reduces associated router state
by up to 70%. The MMS coalesces prefixes to reduce memory
consumption and can be deployed locally on each router or
centrally on a route server. The system can operate transparently,
without requiring changes in other ASes. Our memory manager
can extend router lifetimes up to seven years, given current prefix
growth trends.

Index Terms—Network architecture and design, network pro-
tocols, network management.

I. INTRODUCTION

THE rapid and sustained growth of the Internet over the
past several decades has resulted in large state require-

ments for IP routers. In recent years, these requirements
are continuing to worsen, due to increased deaggregation
(advertising more-specific routes) arising from load balancing
and security concerns [1], [2], the fact that routers run multiple
routing protocols simultaneously (each with their own routing
state), and increasing demand for Virtual Private Networks,
which requires multiple routing tables.

Memory growth occurs in two different data structures
located on routers, known as the RIB and FIB. The Routing
Information Base (RIB) stores the set of routes advertised from
neighboring routers. The RIB must store a copy of attributes
and reachability information for hundreds of thousands of
prefixes, which must be kept up-to-date in the presence of
failures and network churn. The Forwarding Information Base
(FIB) contains entries that map incoming packets to outgoing
links. In the FIB, state must be stored in very fast (and
typically very expensive and power-hungry [3], [4], [5], [6])
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memory for packet lookups; even though it is much smaller
in size than the RIB, the cost per megabyte is considerably
higher. RIB and FIB sizes are determined by many factors,
but are both impacted by the number of routable prefixes (i.e.,
sets of reachable IP addresses).

Growth of memory requirements presents a serious problem
to ISP operators. Routing protocols are not designed to handle
scenarios where memory is exhausted, leading to incorrect
behavior when this occurs. Memory exhaustion leads to highly
serious failure modes, such as route oscillations and incorrect
forwarding decisions [7]. To protect against this, network
operators are forced to repeatedly upgrade their equipment
at enormous expense due to the large cost of doing an in-
field deployment of new hardware. To avoid repeated field de-
ployments, network operators can aggressively over-provision
memory on routers. However, provisioning is itself a highly
challenging problem because memory requirements depend on
external factors outside the ISP’s control. In addition, mis-
configurations such as “route-leaks” cause temporary spikes
in the number of advertised routes and are hard to predict.
When faced with overload conditions, operators can employ
route filters to restrict the amount of information learned by
a router, but these filters may disrupt connectivity.

There have been many proposals in the research community
to solve this problem, but unfortunately these techniques have
not been deployed. Many of these solutions are not back-
wards compatible with current protocols, hindering deploy-
ment. While clean-slate design proposals are interesting and
worthy of consideration, they often require massive structural
changes and new protocols, which may limit their usage for
the foreseeable future. As an alternative, our work consid-
ers incrementally deployable solutions, Our solutions can be
deployed in isolation as a single Autonomous System (AS),
without requiring changes to router hardware or software, and
without requiring cooperation from neighboring ASes.

One work that serves as our inspiration is Optimal Route
Table Construction (ORTC) [8]. The ORTC algorithm operates
only on FIB memory, taking a FIB as input and producing a
more compact FIB as output. It guarantees that the compact
FIB has the exact same forwarding behavior as the input,
and given that constraint, that the output FIB has a provably
minimal number of entries. Experimental tests conducted in
1998 have shown that it can reduce the number of FIB entries
by up to 50%. Despite this benefit, ORTC has not been adopted
in practice, as it suffers from several major drawbacks. First,
it is computationally expensive: the original implementation
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takes approximately 500 milliseconds1 to run for every routing
update received; in modern networks routers must process
tens of updates per second on average and tens of thousands
of updates per second during spikes [9], making it difficult
to use this algorithm in practice. Moreover, it is inflexible;
it must always produce an output that forwards exactly the
same as the input. However, there may be times when even a
“compressed” FIB will not fit in memory. In this case, it may
be preferable to alter forwarding behavior to allow further
compression instead of allowing the router to crash. If these
two problems were fixed, ORTC could be a useful building
block in a larger system that managed memory.

A. Managing ISP Memory with an MMS

The focus of our research is to improve performance of
the ORTC algorithm to enable its use in practical settings,
to measure its use in modern networks, and to leverage it
to design a generic memory management system (MMS) to
manage the memory usage in the routers of an ISP’s network.
We apply several techniques to greatly boost the runtime speed
of the algorithm (the vast majority of updates from a tier-1 ISP
network are processed in less than a millisecond). Moreover,
the MMS provides multiple levels of compression, allowing
for a trade-off between unaltered routing and “maximal mem-
ory compression.”

The MMS can be deployed either locally on each router or
in a logically-centralized system that monitors and compresses
state at all routers in the AS-wide network. In a local deploy-
ment, each router independently performs the operations of
an MMS over its own local routing state. This enables our
system to run in a completely distributed fashion. However,
this does have some drawbacks. It requires router software
upgrades and possible hardware upgrades (if CPU power is
lacking). Moreover, there are limitations to the potential
memory savings, as routers still need to maintain BGP control
sessions (and hence cannot compress RIBs, only FIBs) with
neighboring routers, and also because each router only has a
local view of the network and acts independently.

To circumvent these problems, the MMS can also be
deployed in an AS-wide setting, where it runs on a set of
servers that collectively assume responsibility for the routing
interaction of an AS with neighboring ASes [10], [11], [12].
The MMS receives routing updates from neighboring ASes,
preprocesses these updates before sending routes to routers
within the MMS-enabled network, and communicates selected
routes to neighboring ASes. Neighboring ASes can be config-
ured to send updates directly to the MMS, rather than to the
border routers. If neighboring ASes do not wish to perform any
re-configuration, border routers can act as proxies and relay
BGP messages between the MMS and neighboring ASes. Not
only does this deployment enable extra compression, but this
approach allows for additional amortization techniques to be
applied.

B. The Benefits of the MMS

Our design has several benefits:

1We verified this number by running our own experiments on a Pentium-IV,
3.6GHz processor (comparable to control-plane processors in modern routers).

Flexibility: By default, MMS operates in a transparent fash-
ion, with absolutely no changes to the way routes are chosen
and packets are forwarded. In this “transparent mode” external
networks (e.g., other ASes) need not be aware that an MMS
has been deployed. In such a situation, the MMS can still
provide about a 50% reduction in router memory across the
entire network, without altering forwarding behavior. If more
memory savings are desired, the MMS can shift paths to attain
additional memory reduction, up to 70%. However, routes
selected for forwarding may differ from the “transparent”
case. We provide algorithms to automatically perform a small
set of routing changes that increase compressibility without
operator involvement. It is important to note that even if paths
are shifted, the system remains inter-operable with routing
protocols and does not introduce any routing loops.

Reduced Operational Cost: The MMS can simplify capacity
planning and extend the lifetimes of older routers. We demon-
strate this through experimental results conducted within a
large tier-1 ISP backbone: using local-mode, FIB memory
usage is reduced between 50% to 70%, the rate of increase of
table growth is decreased by a factor of 2.2, and variation in
table size is reduced by a factor of 2.6 (reducing variability
increases the accuracy of future provisioning predictions).
Given current levels of routing table growth [13], these reduc-
tions can be expected to increase lifetimes of routers needing
immediate replacement by up to seven years. In particular,
our results collected on the tier-1 ISP backbone indicate an
increase in table growth by a factor of roughly 2.2 per year.
If we measure the rate of growth of an uncompressed router’s
FIB, and compared that to a compressed router’s FIB, given
current routing table sizes and growth rates, it currently takes
about 4 years for the size of a routing table to increase by
50%, while it takes 11 years for compressed FIBs to grow the
same amount. Moreover, since the MMS can operate in the
form of a logically-centralized cluster (or a small redundant
set of clusters), it can form a small set of locations where
resources may be upgraded, reducing expenses associated with
field deployment.

Safety: Routers near their memory limits can use the MMS to
increase the amount of available resources. This improves re-
silience to misconfigurations in neighboring networks. More-
over, given that our compression techniques perform better
with increased levels of deaggregation, our approach could
enable interdomain routing on fully-deaggregated /24 prefixes,
which has benefits in terms of routing flexibility and mitigating
hijacking attacks. Use of the MMS can guarantee that routers
will not reach overload conditions (which can trigger reboots)
by selectively filtering new prefix advertisements before over-
load is reached.

Incrementally Deployable: A single ISP can deploy an
MMS while maintaining interoperability with existing pro-
tocols, and without requiring cooperation from neighboring
ASes, in both local and AS-wide deployment modes. In AS-
wide deployment mode, our MMS design requires no changes
to existing router hardware or software. Furthermore, this
deployment may proceed in an incremental fashion (e.g., over
a period of time),even within a single AS, by having the MMS
only control a limited subset of routers within the ISP. In
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Fig. 1. BGP update message from Route Views on August 27, 2009,
announcing that two prefixes are reachable through the same next-hop.

local deployment mode, the MMS can be loaded as a protocol
daemon update to route software, so this deployment approach
does not require changes to router hardware (aside from
CPU upgrades, which our results on computational overheads
indicate should rarely be needed). In this case, the MMS
can deployed at a single router, with no changes required to
external protocols or neighboring routers.

II. MEMORY SAVING APPROACHES AND LIMITATIONS

The primary goal of the MMS is to reduce router memory
usage within an ISP. To do this reduction, the MMS performs
route coalescing, i.e., replacing groups of routes sharing the
same next-hop with smaller, equivalent sets. Although this
seems like a simple procedure, several operational challenges
of ISPs make this process quite complex. In this section we
describe the challenges in route coalescing through several
examples. We show that naı̈ve approaches can introduce
inconsistencies in packet forwarding, and we motivate why
our design decisions are necessary.

A. Routing across ISPs

The Internet is composed of a collection of Autonomous
Systems (ASes), each of which corresponds to a single ISP,
enterprise network, or other organizational entity. Each AS has
a set of border routers which communicate to border routers of
adjacent ASes through the use of the Border Gateway Protocol
(BGP). BGP communicates information about routes and con-
structs forwarding paths to allow data packets to flow across
ASes. Paths are newly advertised or withdrawn by exchanging
update messages containing reachability information (shown
in Figure 1). The updated routing information replaces old
information and is used for forwarding data packets. After
processing an update, the router notifies its neighbors if any
routing changes occurred.

BGP is a path vector protocol, where routers exchange the
entire AS-level path they use to reach the destination. Each AS
has a globally unique AS number. When routes are propagated,
the current AS adds its AS number to the head of the AS path
contained in the routing update. This allows other networks to
quickly detect if the path contains routing loops (by scanning
for their own AS number in the list) as well as providing a
simple metric for determining which routes are shorter than
others (by preferring routes with fewer AS-level hops).

BGP propagates routes for prefixes, which denote a col-
lection of host addresses immediately adjacent in the IP

namespace. Prefixes are represented by an IP address followed
by a mask. For example, the prefix 12.1.0.0/16 represents
all IP addresses whose first 16 bits match 12.1. Prefixes
specify reachability on multiple levels of granularity, creating
ambiguity in reachability information. For example, a route
to 12.0.0.0/8 could have a next-hop of 1.1.1.1, while a route
to 12.0.0.0/9 could use 2.2.2.2. To eliminate this ambiguity,
routers select the longest matching prefix when there are mul-
tiple choices. However, longest prefix matching significantly
complicates aggregation, i.e., the ability to take two prefixes
with the same next-hop information and combine them into
a single, larger prefix. An example of such a complication
with aggregation is shown in Figure 2. To avoid introducing
such difficult-to-predict side effects, ISPs are constrained in
the types of aggregation they can perform.

Although ISPs cannot aggregate advertised routes (RIB),
they can aggregate forwarding entries (FIB). As previously
shown, even if two prefixes have the same next-hop, an ISP
cannot announce an aggregate route, as it causes problems
for other ASes. However, in the case of forwarding, there
are no negative effects from such aggregation. Aggregating
FIB entries is completely transparent to other routers; an
aggregated FIB forwards exactly the same as a deaggregated
one. Moreover, if we choose routes from the RIB that have the
same next-hop, we can aggregate these entries in the FIB. In
other words, our choices of routes in the RIB will determine
the compressibility of the FIB.

To summarize, Autonomous Systems cannot advertise com-
pressed routes to neighboring ASes. While forwarding entries
can be coalesced, routing entries cannot.

B. Routing within an ISP

ISP networks earn revenue by providing transit service,
i.e., by forwarding traffic between their neighbors. Hence,
ISPs must share reachability information received from one
neighbor with the others. This is often done by establishing
BGP sessions between border routers (when BGP is run
within an ISP, it is referred to as iBGP). Internal reachability
between border routers is provided by an intra-domain routing
protocol such as OSPF [14] or IS-IS [15]. iBGP sessions
are sometimes established in a full-mesh configuration, where
each border router maintains a session to every other border
router. However, since routers must maintain routing state
separately for each iBGP session, full-mesh configurations can
have very large RIB memory requirements. For example, if
there are n border routers, then each border router may need
to store and maintain up to n− 1 internal routes for each of
the hundreds of thousands of prefixes in the routing table.

To circumvent this problem, larger networks often deploy
route reflectors [16] at strategic locations within their network.
Route reflectors act as internal accumulation points, which
collect routing updates from a subset of border routers, and
only advertise the most preferred route to their iBGP neigh-
bors; as such, border routers only receive the most preferred
routes from their associated route reflectors. Unfortunately,
the use of route reflectors introduces a set of problems. They
can induce persistent forwarding loops and oscillations if
deployed improperly [17]. They require additional work for
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Fig. 2. Aggregation can have unintended consequences: (a) Suppose AS 1 originates 12.0.0.0/16 and AS 2 originates 12.1.0.0/16. When no ASes perform
aggregation, AS 5 can route traffic to 12.1.0.0/16 via AS 3, and traffic to 12.0.0.0/16 to AS 4. (b) However, if AS 3 decides to aggregate 12.1.0.0/16 and
12.0.0.0/16 into 12.0.0.0/15, AS 5 can no longer use the route via AS3. The reason is that all of 12.0.0.0/15 is covered by more specific prefixes that are
reachable via alternate exit points, and Internet routing always prefers more-specific prefixes.

network operators to maintain, as they must be reconfigured
to match changes in the underlying network topology. While
route reflectors reduce memory usage, they do not reduce the
number of prefixes in the routing table. Hence route reflectors
do not reduce the size of the router’s forwarding table (which
is commonly stored in expensive, fast memory).

C. Router-Level Routing

Routers are logically divided into a control plane, which
contains the RIB, and a data plane, which contains the FIB.
The goal of the control plane is to compute the set of routes
the router should use locally, and of these, which should
be advertised to neighboring routers. The goal of the data
plane is to forward data packets, by selecting from a set
of next-hops computed by the control plane. In addition
to storing the next-hop and prefix information, the RIB also
stores a set of attributes that define properties of the route
(e.g., the AS-path, cost metrics, where the route was learned
from). The RIB also stores multiple routes per prefix—this
is done so that if the currently-used route fails, the router
may use an alternative route through a different neighbor to
circumvent the failure. Unfortunately, when routers run out
of memory, they can continuously reboot, crash, or begin
behaving incorrectly [7]. Reducing RIB memory is quite
difficult. RIB entries contain routing information that may be
vital when primary links fail and backup routes are needed.
Moreover, routing information is often exchanged between
routers and used to determine forwarding paths. As such, care
must be taken when attempting to reduce RIB memory – data
cannot be simply discarded.

The FIB stores the set of routes which will be used to
forward packets to individual prefixes. The FIB must perform
forwarding lookups very quickly and are hence typically
implemented in fast memory with low access times, such
as SRAM or TCAM. There are two restrictions regarding
FIB memory reduction. First, the contents of the FIB must
“match” the RIB (each entry in the FIB should be the most-
preferred route in the RIB) to prevent routing loops. Therefore,
prefixes can be coalesced if such actions do not change

Fig. 3. Example of prefix coalescing over tries. Both FIBs forward packets
in the same way, but FIB (a) needs to store three prefixes, while FIB (b) only
needs to store two.

the forwarding behavior advertised by the router. Figure 3
provides an example. Second, FIB reduction techniques must
be extremely fast. If an algorithm is too slow, a router may not
be able to handle the high rates of updates present in modern
networks.

III. THE MMS IN LOCAL DEPLOYMENT

There are fundamental problems with trying to compress
routes: prefixes cannot be coalesced when announced, FIB
compression is limited by RIB decisions, compression al-
gorithms must be fast, etc. In this section, we discuss how
our Memory Management System can circumvent some of
these problems when deployed in “local mode” on indi-
vidual routers. We demonstrate how the MMS can provide
flexibility in aggregation for the FIB without introducing
network problems. Moreover, we show how techniques such
as parallelization and incremental computation can be used to
significantly speed-up the ORTC algorithm, which is used as
a building block for the MMS. The local mode MMS also
serves as a basis for the AS-wide MMS, which is discussed
in the next section.

Although the MMS can be used to reduce FIB memory
consumption, the RIB cannot be easily compressed in “local
mode.” A router may need backup routes in case of primary
route failure, and may need to advertise information about
them to neighboring ASes in such a situation. As such,
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we focus on FIB compression. Later, during the discussion
of “AS-wide mode,” we demonstrate how the RIB can be
compressed.

Algorithm 1 Pseudo-code for the ORTC algorithm. Each node
represents a different prefix. rib info represents the chosen
route for a prefix (as dictated by the RIB). NULL next-hop
indicates no FIB entry needed for that prefix.

// Normalization: all nodes to have 0 or 2 children.
for node N in t in preorder traversal:

if N has one child:
create missing child for N
child inherits N.rib info

// Prevalent hop calculation: find the set of
// maximally coalescable next-hops.
for node N in t in postorder traversal:

if N has no children:
N.prev set = {N.rib info}

else:
N.prev set is the intersection of its
children’s prev sets

if N.prev set == ∅:
N.prev set is the union of its
children’s prev sets

// Next-hop selection.
for node N in t in preorder traversal:

if N is root of t:
N.next hop = arbitrary element
of N.prev set

else:
clst = closest ancestor of N with
non-NULL next-hop
if clst.next hop ∈ N.prev set:

N.next hop = NULL
else:

N.next hop = arbitrary elem
in N.prev set

A. A Fast FIB Compression Implementation

Draves et al. [8] previously proposed an Optimal Routing
Table Construction (ORTC) algorithm, which takes a forward-
ing table as input, and computes the provably smallest 2

forwarding table that performs forwarding in an equivalent
manner. Algorithm 1 outlines their algorithm, which assumes
a binary tree representation known as a trie data structure.
ORTC works by making three passes over the trie, in steps
known as normalization, prevalent hop set calculation, and
next-hop selection. The normalization step enlarges the binary
tree representing the routing table such that every node has
zero or two children. It does this by adding new leaf nodes as
necessary, and setting the next hop for new nodes with the next

2With respect to the number of prefix/next-hop pairs.

hop of its nearest ancestor. The prevalent hop set calculation
step then determines the set of next hops that occur most
commonly in the tree, and labels each internal node with the
set of possible next hops it could be labeled with. The idea
here is that if a next hop occurs very commonly in a particular
branch of a tree, we may be able to reorganize that branch such
that the most popular next hop appears closer to the root,
reducing the size of that branch. This is what the next-hop
selection step does. This step moves down the tree selecting
next hops for each internal node, eliminating redundant routes
along the way. A more detailed description of this approach is
given in [8]. The authors of [8] provide several optimizations
to speed up this computation. They also extend the algorithm
to deal with multiple next-hops per prefix and default routes.

Unfortunately, even with optimizations, ORTC is too slow
to use online in modern networks. While the authors were able
to optimize run time down to several hundred milliseconds for
the smaller forwarding tables that existed when their paper
was published, these run times remain too slow in modern
networks which can burst to tens of thousands of updates
per second. We leverage the techniques of parallelization and
incremental updates to augment this algorithm, speeding it up
so it can be used with the MMS.

1) Parallelization: Parallel algorithms are becoming in-
creasingly important as chip manufacturers move to multicore
designs. Conventional wisdom is now to double the number
of cores on a chip with each silicon generation, while the
speed of each core grows much more slowly or remains
constant [18]. As commercial routers typically use com-
modity CPUs for control-plane processors, this provides the
opportunity to leverage this increased parallelization in our
design. Such trends in processor design can be exploited
to help compression algorithms keep pace with the increased
computational load associated with the growth and churn of
Internet routing tables.

There has been substantial previous work on parallel al-
gorithms for graph structures [19]. Our design (Algorithm 2
is loosely based on these techniques and consists of two
stages. In the first stage, all nodes associated with /8 prefixes
are added to a queue. When a thread becomes available to
perform work, it selects a node from the head of the queue,
and performs compression on the sub-trie rooted at that node.
To ensure correctness, it is important that no other threads
concurrently process any nodes in that sub-trie. As a result, a
thread locks all descendants of that node. In the second stage,
a single thread performs the rest of the remaining compression
for the nodes that have not been processed. Note that the
second stage could be parallelized as well to further decrease
computational time.

2) Incremental Computation: The ability to incrementally
update data structures is crucial for speed. The benefit of an
incremental approach is that changes to a single prefix do not
require recomputing the router’s entire FIB. However, with
ORTC compression, this is no longer true – changing a single
prefix may trigger other routes to become coalesced (or to
uncoalesce). The naı̈ve way to deal with this would be to
rerun ORTC after every received update. However, doing this
would be wasteful, as the vast majority of routes would not
change after a particular update is received. Furthermore, some
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Algorithm 2 Pseudo-code for parallel execution.
// Build a queue of all /8 prefixes
Q = {∀ /8 nodes in tree}
while Q.size > 0:

curr=Q.head
// block until next thread is available
T=get next thread()
// traverse curr’s subtree, locking all nodes
// starting at and including curr
for node n in sub-trie rooted at curr

lock(n)
T.execute:

// run Algorithm 3 (compression algorithm) on
// subtree rooted at curr, in newly available thread
compress(sub-trie rooted at curr)

updates do not require any recomputation (for example, an
update that removes a route that is not used by any routers in
the network). An alternate way to deal with this would be to
periodically process batches of updates at fixed intervals [8].
However, such an approach increases the amount of time
needed before a router can respond to a chance in the network.
For example, if a new BGP update arrives, we need to wait
until the next processing time of updates occurs before the new
path advertised in the update can be used by the protocol.

To address this challenge, we developed an incremental
algorithm, which only processes the portion of the ORTC
trie that is affected by a received update. Pseudocode for this
algorithm is shown in Algorithm 3. The idea behind this code
is the following. When a new update is received, only a subset
of the trie needs to be updated. Instead of recomputing the
entire trie from scratch, if we can determine the subset of the
trie that needs to be recomputed, we can reduce computation
time by only recomputing that subset of the trie. Luckily, it
turns out that figuring out which subset of the trie is affected is
possible to do: we simply need to find the location where the
update’s prefix would be placed in the trie, and “trace back”
all affected nodes in the trie.

To clarify this process, let us walk through the pseu-
docode in Algorithm 3. This code calls four subroutines.
First, mod normalize performs the normalization step, which
enlarges the binary trie so that every leaf has either zero or two
children, creating new leaf nodes as necessary. This process
is the same as normalization in ORTC, except that if a node
is not modified by normalization, children of that node are
not normalized. Second, mod calc prev set computes the set
of prevalent next hops (the set of next hops that are most
commonly used in the trie, in preparation for moving the
most prevalent hops closer to the root of the trie). This step
is the same as the prevalent hop calculation step in ORTC,
except that if a node N has no children, N.prev set is set
equal to N.rib info. Third, all affected ancestors of N are
normalized using mod ancestor normalize. Here, ancestors
are processed in ascending order. If a node was not modified
by normalization, its ancestors are not normalized. The highest
variable is updated to refer the highest ancestor normalized.
Finally, the mod select next hop function computes new next

hops as needed. This is the same as the next-hop selection
procedure in ORTC, except that if the next hop of a node is
unchanged, that node’s children are not processed.

To clarify operation of Algorithm 3, we next give an
example of its operation. Consider a trie with two (prefix, next-
hop) pairs: (0.0.0.0/0, 1.1.1.1), and (0.0.0.0/1, 1.1.1.1). This
trie can be compressed to a single (prefix, next-hop) entry:
(0.0.0.0/0, 1.1.1.1). Now consider the announcement of a
new route: (128.0.0.0/1, 2.2.2.2). Adding this new route does
not change forwarding behavior of 0.0.0.0/1. The forwarding
behavior does change for 0.0.0.0/0, though, and it (along
with new nodes) will need to be re-evaluated for compression
gains. 0.0.0.0/1, however, can be unaware of any such com-
putations, as long as 0.0.0.0/0 still “covers” it by forwarding
toward 1.1.1.1. The new compressed trie, (0.0.0.0/0, 1.1.1.1),
(128.0.0.0/1, 2.2.2.2), is optimal and does not require a full
computation.

While parallelization and incremental updates could be
combined, it is unclear how well they would work together.
Parallel algorithms work best with large sets of data that can
be processed independently, while the incremental algorithm
attempts to operate over small sets of nodes that may have
inter-dependencies. As such, the overhead from thread locks
may outweigh the amount of possible parallelization savings.
Thus, we consider these techniques to be complementary and
useful for different situations. For example, if an operator
enabled compression, a parallelized full computation would be
faster than the incremental algorithm (since a full computation
is needed anyway, and a parallelized version has additional
opportunity for speedups). However, if a router is simply
processing updates received in normal BGP communication,
the incremental version would most likely be the fastest
algorithm to use.

Algorithm 3 Pseudo-code for the incremental update algo-
rithm. rib info represents the set of routes passed to a prefix
from the RIB. Incrementally update a trie t with an update u
from neighboring router u.neighbor.

// Update the node with the new routing information.
N = node in t associated with u.prefix
if u is an announcement:

N.rib info -= {old next hop of u.neighbor}
N.rib info += {u.next hop}

else:
N.rib info -= {old next hop of u.neighbor}

// Normalize all affected children of N.
mod normalize(sub-trie rooted at N)

// Calculate the prevalent hop set.
mod calc prev set(sub-trie rooted at N)

// Normalize all affected ancestors of N.
highest = N
mod ancestor normalize(N, highest)

// Compute new next-hops as needed.
mod select next hop(sub-trie rooted at highest)
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B. Selecting Routes to Improve Compression

Although ORTC coalesces the prefixes in a FIB, it is bound
by the requirement that the forwarding behavior is unchanged.
In this section, we demonstrate how it is possible to further
improve the compression results by allowing the MMS to
modify the forwarding behavior.

As previously mentioned, the BGP decision process, shown
in Figure 4, is run over the RIB to select the route to populate
into the FIB. This decision process uses a series of rules to
pick routes. Each rule eliminates a subset of routes, and rules
are applied until a single route remains [20]. The router (1)
first chooses the routes with the highest LocalPref (a numeric
value assigned by the operator to indicate which next-hops
are most preferred), then (2) the routes with shortest AS-path
length (the routing update contains the AS-path, which is the
sequence of AS-level hops to the destination), then (3) the
routes with the lowest origin type (a flag indicating whether
the route originated internally or externally to the ISP), then
(4) routes with the lowest MED (a numeric value advertised
by a neighboring ISP, to indicate which entry point should be
used, when the two ISPs peer in multiple locations), then (5)
routes learned through eBGP (BGP sessions with neighboring
ASes) are preferred over iBGP routes (routes learned through
other border routers in the local AS), then (6) the router
chooses the closest exit point (or shortest internal route) to
reach the destination prefix, then (7) to break ties, if multiple
options still exist, the router chooses the route advertised
by the router with the smallest router ID. The process is
designed around several goals, such as maximizing revenue
(through local preference settings), attempting to minimize
latency (through shortest AS paths), load balancing (through
IGP metrics), and so on.

The BGP decision process constrains the level of compres-
sion achievable, as it places constraints on the set of routes that
are populated into the FIB. To improve compression further,
the MMS allows the operator to select sets of routes that are
acceptable for use. By allowing the compression algorithms
flexibility to choose amongst this set, additional compression
can be achieved. In particular, an operator configures the
MMS with a threshold level. The threshold level determines
how many steps of the BGP decision process to execute. All
routes that are equally good at a particular level are considered
possible routes for the FIB. A route coalescing algorithm is
then computed over these possibilities. For example, a “level
0” setting would not run any steps of the decision process, and
use all possible routes in the coalescing algorithm. A “level
1” setting would select all routes that remain after applying
step 1 of the decision process; a “level 2” setting would select
all routes that remain after applying steps 1 and steps 2; and
so on.

It is important to note that such flexibility requires the use
of tunnels between border routers. Without tunnels, packets
may be forwarded in a different manner than expected. For
example, consider the network depicted in Figure 5a. Routers
A and B both use their external links to reach 1.2.0.0/16. It is
possible for router D to choose A for forwarding to this prefix,
while router E chooses B. However, both D and E must
go through C. If C decides to forward traffic to 1.2.0.0/16

Router Invariant

⎧⎪⎪⎨
⎪⎪⎩

1. Highest local pref
2. Shortest AS path
3. Lowest origin type
4. Lowest MED

Router Specific

⎧⎨
⎩

5. eBGP over iBGP learned
6. Lowest IGP metric
7. Lowest router ID

Fig. 4. The BGP decision process.

through A, then router E’s choice is invalidated. Since BGP
specifies a single next-hop for a given prefix, this problem is
unavoidable. To overcome it, tunnels between border routers
can be used. Tunnels have the additional benefit of freeing
memory in the core of the network. Such BGP-free cores are
feasible to implement (e.g., using GRE or MPLS tunnels) and
are often used in practice.

Flexibility in route selection may cause routes to change
from the original forwarding behavior; however, such de-
viation may be tolerable. If a router is at risk of mem-
ory exhaustion, higher levels of compressibility can ensure
reachability information is not discarded, even if routing to
those destinations is suboptimal. Moreover, the amount of
differentiation can be tweaked, offering more differentiation
and savings in some situations and less differentiation and
savings in others. In addition, this approach can be used as a
fallback mechanism that is enabled only if the level 7 (i.e., no
differentiation) compressed routing table size would exceed
router capacity.

C. Limitations on Route Selection

Care must be taken whenever deviating from the BGP
decision process, as routing loops or oscillations could occur.
These problems can occur at either the inter-AS level or intra-
AS level.

At the inter-AS level, due to the relationships that exist
between Autonomous Systems, such problems can be avoided
at the inter-AS level as long as step 1 of the BGP decision
process is always applied. This is because step 1 is primarily
used by ISPs to encode relationships, with customers often
receiving higher local preference values than peers, and peers
receiving higher local preference values over providers. As
long as ASes are routing according to economic incentives,
loops and oscillations should not happen [21]. However,
sibling ASes (that is, ASes that appear to be separate but
are actually owned by the same organization) may not be
able to use route selection, depending on their setup. This
problem arises because the MMS assumes a BGP-free core,
and sibling ASes would need to use BGP to communicate
between themselves; since sibling ASes are owned by the
same organization, they can be thought of combining to form
a super-AS, and the inter-connections of the siblings would
require BGP in the “core” of the super-AS.

At the intra-AS level (in local deployment mode), the MMS
cannot be overly aggressive with route selection. Oscillations
can occur if we are not careful and routers act independently.
For example consider router A and router B in a network
that both have external routes to the same prefix. If enough
BGP decision steps are ignored, router A might decide that it
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should simply forward everything to B. In this case, it would
withdraw its reachability information from B, since it is using
B for routing. Likewise, B would do the same thing for
A. If the events are synchronized, the routers may oscillate
between using their externally learned routes (and thus re-
announcing them) and each other (and thus withdrawing
them). Although such oscillations may not be common in
practice, it is nonetheless noteworthy.

To solve the oscillation problem, each MMS should be
configured so that step 5 (eBGP preferred over iBGP) is
always some part of the decision process. This configuration
prevents oscillation because, due to the dynamics of iBGP,
iBGP learned routes always point to a router that has an eBGP
learned route. Thus, all routers in a network fall into one of
two cases:

• The router has at least one eBGP-learned route to choose
from after applying the modified BGP decision process.
In this case, the MMS forces the router to pick an external
route, preventing intra-AS problems.

• The router has all iBGP-learned routes after applying
the modified BGP decision process. Using any of these
routes will send packets to a router that has at least one
eBGP-learned route. The previous case applies to that
router, and packets will be forwarded using the eBGP
route, preventing intra-AS problems.

In summary, as long as the modified BGP decision process
includes step 5 (the eBGP comparison), intra-AS oscillation
can be avoided. For example, applying steps 1 through 3 and
5 (while ignoring 4) would be sufficient, but applying steps
1 through 4 would not. The increased flexibility can lead to
better compression. In the next section, we discuss AS-wide
deployment of the MMS, and discuss a different mechanism
to solve this problem.

IV. OPTIMIZATIONS IN AS-WIDE DEPLOYMENT

As an alternative to being deployed at a single router, the
MMS may be deployed across an AS. The overall archi-
tecture of an AS-wide MMS is shown in Figure 5b. It can
be implemented through a logically-centralized architecture
which offloads memory management functionality to a small
set of servers. These servers are completely responsible for
disseminating routing information to routers within the ISP.
The MMS directly maintains peering sessions with neigh-
boring ASes, offloading the responsibility from its associated
border routers. The Memory Management System maintains
a network-wide view including the routing preferences of and
routing updates received by all border routers. Thus, the MMS
can locally maintain a routing table on behalf of each BGP-
speaking router in the network. The MMS can compress the
routes and send the compressed information to the border
routers (while sending the uncompressed information to other
autonomous systems). To design the server infrastructure for
the MMS, we rely on previous work that shows offloading
routing can be deployed at scale and with resilience [10], [11],
[12]. For example, when deployed across an AS, the MMS
should be replicated to improve fault tolerance. We use an
approach similar to a Routing Control Platform (RCP) [10],
having one server act as a primary in charge of distributing

routes throughout the network, with the rest of servers acting
as backups.

This approach has several benefits. First, our centralized
approach offloads computation from routers, freeing up com-
putational resources for other protocols or for speeding con-
vergence. Second, as opposed to the local deployment mode,
this approach requires minimal changes to existing routers
(no changes to protocols or router software is required).
Third, common computations across routing tables could be
amortized to yield further computational savings.

A. Compressing FIB Entries

In AS-wide deployment mode, the MMS obtains all the
FIB compression benefits from the local deployment mode.
In its simplest setting, the AS-wide MMS runs an instance of
a local MMS for each router, performing all the computation
on behalf of the routers. Moreover, because the AS-wide MMS
has a complete view of the network, it avoids the problem of
routing loops caused by incomplete routing information. The
MMS dictates all forwarding decisions such that no routing
loops occur.

In addition, the MMS amortizes some of the computational
steps across the network by performing them once instead
of repeating them for each router. For example, before step
5 of the decision process, all routers with the same routing
information will make the exact same decisions regarding
“equally good” routing sets. This phenomenon occurs because
the first four BGP decision process steps are always the same
for every router, if given the same set of routes. However,
not every router will have the same set. For example, if
router 1.1.1.1 has an eBGP learned route r with next-hop
2.2.2.2 and advertises it, all other routers will see r as having
next-hop 1.1.1.1. However, if routers share similar sets, the
computations can be amortized.

To efficiently compute compressed FIBs (and RIBs) in an
amortized fashion, the MMS first computes sets of routes that
are equally good according to the first N steps of the BGP
decision process, where N is the threshold level. All routers
in the network must select a route from this set. A smaller
computation is then done to further select routes on a per-
router basis (that deviate from this “common” case). This
approach consists of two separate stages:

Stage 1, compute common FIB: First, the MMS computes
a compressed FIB that all routers in the network share. In
particular, the MMS logically creates a virtual internal router,
which receives all routes from every border router in the
network. The MMS then constructs a compressed FIB for this
router.

Stage 2, compute router-specific differences: At first glance,
it appears that every router in the network should use the
common FIB computed in stage one. However, this is not
the case. For example, consider a network that picks next-
hop 1.1.1.1 for prefix p. If 1.1.1.1 is a border-router in
the network, then everyone can route successfully except for
1.1.1.1. Since 1.1.1.1’s forwarding table would state that the
next-hop is 1.1.1.1, the router would forward packets to itself.
To avoid this scenario, the MMS computes, on behalf of each

router in the network, which outgoing link is best suited to
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(a)

(b)

Fig. 5. (a) An example network with four border routers and one internal router. Dashed lines represent AS boundaries, solid lines indicate links, and dotted
lines represent paths to the AS that owns 1.2.0.0/16. (b) An example network showing peering with neighboring domains. Note for backwards-compatibility
reasons, the MMS uses BGP to communicate routes to routers (hence routers only need to store a single RIB corresponding to their session to the MMS).
Border routers at other autonomous systems speak directly to the MMS, which is permissible as BGP is run over the TCP/IP protocol. The MMS then sends
coalesced information to its own routers for forwarding.

TABLE I
TIER-1 RESULTS FOR A SINGLE ROUTER ON A SINGLE DAY. RESULTS

WERE SIMILAR FOR OTHER ROUTERS IN THE NETWORK.

Threshold Level FIB Entries % of original size
1 110890 35.6%
2 119150 38.3%
7 130842 42.0%
Uncompressed 311466 100.0%

forward traffic for each prefix in its routing table. For example,
in the example above, the MMS computes (on behalf of
1.1.1.1) which one of 1.1.1.1’s outgoing links is best suited for
forwarding traffic to p, and sends that information to 1.1.1.1.

It is important to note that this amortization resolves the
oscillation problem mentioned above, since the MMS ensures
that the border router responsible for a prefix picks an eBGP
route. Further, two separate compression steps do not nec-
essarily produce the smallest possible FIB for each router
(unlike ORTC, which is provably minimal in the number of
prefixes it produces). However, our results indicate that the
MMS compresses well.

B. Compressing RIB Entries

The AS-wide MMS has the opportunity to reduce the
amount of redundant routing state in a network. First, in-
stead of maintaining multiple iBGP sessions, each router
only maintains one (with the MMS), reducing the number
of RIBs that need to be maintained. Second, every time a
route is announced and propagated, it may be stored on
every router that receives it. Individually, each router may
not be able to remove RIB entries, since it may need to
transmit the information to neighboring ASes; thus, reducing
the redundancy may be difficult. However, the MMS can act
as a central database to store all such routes. Only one copy
of the route need be stored in this case.

Moreover, if the AS-wide MMS is responsible for routing
advertisement, prefixes can be coalesced and supernetted for
both the RIB and the FIB. Since routers are no longer
advertising information, they can compress their RIBs through
the same mechanism that FIBs are compressed. Attributes

can be stripped (except for prefix and next-hop information),
as the MMS would retain an original copy. For example,
information such as AS path and community attributes can
be removed, both of which have the potential to consume
significant amounts of memory relative to the other attributes.

V. EVALUATION

Data used to evaluate the MMS comes from a tier-1 ISP’s
BGP feeds from January of 2008 to June of 2008. These feeds
are live traces, containing failures, configuration changes,
and other network events, including effects from both inter-
and intra-domain events. These feeds are input into our
implementation of the MMS. In order to evaluate how other
ASes might benefit from the MMS, and in order to perform
a longitudinal study on how compression results may change
over time, a public feed from RouteViews [22] is also used
from 2002 to 2008. Unfortunately, because the public feed is
from a single aggregation point, the data does not indicate
network topology or router configuration in the considered
ASes. ISPs today are often (understandably) unwilling to share
such information due to privacy issues. Hence, we attempt to
infer such information from the Route Views feed. We do this
by applying the Gao-Rexford rules [21] to compute routes
to each prefix from each AS (treating each AS as if it were
a single router). While this inference greatly oversimplifies
how actual networks operate, the method represents a “best
effort” attempt to evaluate the MMS on alternate Autonomous
Systems, given the limited source of data. Unless otherwise
mentioned, results are for FIB compression, under local-mode,
and with threshold 7.

A. Compression Ratio

Table I shows compression achieved across a router within
the ISP. Here, the compression techniques were run over a
routing table snapshot that was collected on June 1, 2008.
The compression gains of this routing table snapshot were
compared with other routers in the network; no significance
difference was seen. Moreover, the router’s compression gains
were studied over a two month period from April 15, 2008 to
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Fig. 6. Internet simulation results: AS relationships are inferred, routes are propagated, and compression ratios are calculated, with flexibility level set to
“local-preference.” Figure (a) shows compression ratios across fifty randomly sampled ASes from each tier, and Figure (b) shows compression ratios over
time for a subset of ASes.

June 15, 2008; no significant variance was seen. As such, the
data from Table I can be considered representative. With Level
7 compression, routing table size is 42% of its original size,
without causing any changes in forwarding behavior. Lower
levels increase compression. Finally, additional compression
may extend lifetimes of deployed routers, by reducing the need
to deploy new hardware to meet increasing table sizes. To
study this, we measured the rate of growth of an uncompressed
router’s FIB, and compared that to rate of growth of the
router’s FIB if it were compressed in local-mode. We repeated
this over all routers in the ISP, and found that router lifetimes
could be extended by over 7 years on average, assuming the
current rate of growth continues. We repeated this study on
the AS-level data and found a similar amount of lifetime
extension.

Figure 6a shows a CDF of the compression ratio (com-
pressed size divided by uncompressed size) achieved for each
of the 28335 ASes present in the Route Views snapshot
collected on June 1, 2008. The algorithm given in [23] is
used to classify ISPs into tiers within the AS hierarchy. In
this simulation, the MMS reduces routing table size of most
tier 1 ISPs to roughly 35% of their original size. Interestingly,
lower tier ISPs achieve a greater benefit with our approach,
for example 90% of tier 2 ISPs (the customers of tier 1 ISPs)
achieve a compression ratio of 25% or better, with 50% of
ISPs attaining a compressed routing table only 17% of the
original size.

Figure 6b shows the compression ratio for a representative
subset of ISPs, sampled monthly from November 1, 2001,
to June 1, 2008. The compression ratio for ISPs steadily
improves over time. One possible explanation is that ISPs
increasingly employ deaggregation to simplify multihoming
and to improve load balancing. Route Views traces indicate
that the number of more-specific prefixes is increasing at a
faster rate than less-specific prefixes, as shown in Figure 7a.
For example, between November 1 2001 and June 1 2008, the
number of /8s in routing tables did not significantly change,
the number of /16s increased by 42%, and the number of /24s
increased by 127%.

The variability in routing table size over time was also
studied. Router table sizes associated with the tier-1 ISP
were studied over a period from May 1, 2008 to June 7,
2008. Both compressed and uncompressed versions of the
routing table were analyzed. Overall, route table compression
reduced table size variability by an average factor of 2.6.
Figure 7b shows table size, sampled after every update, for
a 2.5 hour window containing a sudden increase in table size.
Compression reduces magnitude of the spike by a factor of
2.1.

B. Runtime

Next, we evaluated the run time behavior of our MMS
implementation, executing on a 2004-era Pentium IV 3.6GHz
processor with 1GB RAM. Figure 8a shows the speed
up results from parallelization. In this experiment, a single
threaded version of ORTC was run, and timing information
was recorded for processing each node. These results were
fed to a simulator that simulated a multithreaded version of
the ORTC algorithm. For simplicity, we assumed that the
underlying parallelization of the hardware was equal to the
number of threads that was run. The simulator used the results
from the single threaded run to estimate the time that each
thread spends when it processes a node. Based on these
results, significant speed up can occur. However, after about
20 threads, speed up becomes negligible. It is important to
note that a speedup of up to a factor of 8 (with approximately
20 threads) is significant (current commodity CPUs commonly
have 4 cores, with projected doubling every 18 months [18]).

As the number of threads is increased past 20, speedup
worsens, due to threading overheads (e.g., locking).

Figure 8b demonstrates the benefits from incremental com-
putation, i.e., only recomputing the portion of the routing table
that is affected by a received update. The figure shows a time-
series plot of update processing time, for both the incremental
algorithm and the traditional non-incremental ORTC algo-
rithm. The incremental computation significantly improves
update processing time, both in terms of absolute magnitude,
as well as in terms of absolute variance. For example, over
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Fig. 7. (a) Number of prefixes making up Internet routing tables, as observed from Route Views. Increasing deaggregation leads to larger numbers of more
specific prefixes; (b) compression savings over time during spike in routing table size.
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Fig. 8. (a) Parallelization and its effects on speed up; (b) overall run time with incremental computation. The vast majority of updates are processed in less
than a millisecond.

the one month period from June 15, 2008, to July 15, 2008,
the computation time decreased by a factor of 9344 on
average, and the standard deviation in update computation time
decreased by a factor of 194. The incremental computation
time is a function of the portion of the trie affected by the
update, and queuing (as several updates arriving close together
in time have to be processed sequentially, as the parallelization
optimization was disabled for this test). The trace shown in
the figure had a maximum incremental computation time of
33ms (standard deviation of 1.29ms). In practice, overheads
greater than update exchange periods (which can be several
seconds, for example in the event of a session failure) are not
visible, as computation is done at the same time as update
exchange.

Lastly, Figure 9 demonstrates how the AS-wide deployed
MMS can save additional computational resources through
amortization. The MMS can leverage this by performing
compression-related computations once for parts of the routing
table that are common across routers. The figure shows a
CDF, over all 40 border routers in the tier-1 ISP network, of
the relative speedup gained by amortization as compared to

running ORTC once per router. On average, this simulation
indicates that amortization reduces computation time by a
factor of 12 on average. Overall, it appears that the run time
to compute all 40 FIBs in the network was only three times
larger than running ORTC for a single FIB.

VI. RELATED WORK

Improving network scalability by reducing router memory
usage has been widely studied in previous work. Hierarchical
routing [14], [24], landmark routing [25], [26], and geographic
routing [27] embed topological information in addresses, so as
to reduce the number of routes required to be stored at routers.
Alternatively, DHTs [28] work by reducing the number of
routes maintained by each participant in the system. These
techniques are more formally studied by compact routing [29],
which provides theoretical bounds on the amount of memory
that can be saved for a given degree of suboptimal routing.
Commonly, such work focuses on minimizing routing table
size or control overhead while bounding path inflation. The
MMS architecture differs from previous work in these areas,
in that it aims to operate within the confines of existing IP
routing protocols, rather than replacing them.
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One way to reduce memory usage is to use MPLS tunneling
in an ISP’s core, while deploying route reflectors to exchange
routes amongst the edge routers, to construct a “BGP-free
core”. While this helps the memory requirements for both
border routers and ISP’s cores, it does require the deployment
of route reflectors. As previously mentioned in Section II,
route reflectors have their own set of problems and limitations.
Alternatively, instead of storing an entire routing table itself,

a router may instead use default routes to forward traffic to
another router that contains the routes. Unfortunately, default
routes often require manual effort to construct, and can lead
to unexpected behavior during link failures. Moreover, default
routes can only be used for routes that can be statically pinned
to a certain egress, limiting their applicability in non-stub ISP
networks.

There has been other recent research in reducing memory
consumption while remaining backwards compatible. The
ViAggre [30] work demonstrates how routers can be re-
configured to store a smaller subset of the routing table.
ViAggre works by aggregating prefixes into super-prefixes and
assigning routers to be responsible for certain super-prefixes.
By adding indirection, the BGP table can be effectively split
between a set of routers. As compared to our work, Viaggre
achieves its memory reduction from a different source, and
is hence complementary and orthogonal to our work. Viaggre
suffers from additional stretch (increasing worst-case stretch
by a factor of four to achieve the 60% gain we acquire
in this work), and requires modification to the way routing
protocols are configured to operate correctly. Moreover, while
ViAggre requires the reconfiguration of multiple routers in
a network, the MMS (in local mode) can be deployed on as
little as a single router and still provide memory savings. Since
our techniques are complementary, they may be applied to a
ViAggre router to further increase memory savings. More
recently, SMALTA introduced a compression algorithm for
FIBs [31]. However, SMALTA does not perform optimization
in an AS-wide fashion, and modifies different parts of the FIB
tree. That said, it may be possible to incorporate SMALTA’s
FIB compression algorithm into our MMS (or incorporate the
MMS’s FIB compression algorithm into SMALTA) if desired.

Another piece of work known as Route Relaying [32]
demonstrated a similar technique in the VPN setting, where
edge routers forward to traffic to a collection of “hub” nodes
that store the full routing table. However, it is worth noting
that such deflection techniques can interfere with traffic engi-
neering. In contrast, the MMS can be configured to use IGP
weights in the decision process, which are typically used for
traffic engineering.

The Routing Research Group (RRG) has also explored the
scalability issue with respect to memory [33]. In particular, the
work on Locator / ID splitting (LISP) has gathered attention,
where the IP address space is divided into separate spaces for
end-hosts and for organizations. Substantial memory savings
are possible under this scheme [34]. However, this scheme
has a deployment problem. A single ISP cannot deploy it and
realize the savings unless other ISPs cooperate. This is because
LISP uses IP-in-IP tunneling that requires encapsulator and
decapsulator routers positioned in each ISP. While it may be
considered “incrementally deployable” from the perspective
that it builds on top of existing infrastructure, it does require
some coordination between ASes. As such, we consider this
work complementary to the MMS.

There has also been work on several technologies that
enable the MMS design. The Routing Control Platform (RCP),
NOX, and 4D [10], [12], [11], [35] provided an architecture for
logically centralizing route selection within an RCP. The pro-
totypes in [10], [35], [36] demonstrated that this architecture
can scale to the size of a tier-1 ISP backbone, and deal with
failure and consistency issues when operating at scale. The
RCP aimed to compute and distribute BGP routes to routers
within an ISP, and did not aim to reduce table sizes at routers.
However, the MMS algorithms may be deployed on top of an
RCP-like infrastructure.

Other related work includes Verkaik et. al.’s BGP
Atoms [37], Forgetful Routing [38], and Draves et. al.’s
Optimal Routing Table Constructor [8]. BGP Atoms can
be used to reduce memory overhead by clustering prefixes
based on policy, rather than supernets. Forgetful Routing
enables routers to share their RIBs in a distributed fashion,
reducing redundancy in a network. The work by Draves et. al.
served as a primary inspiration for our work. The algorithmic
contributions, architecture, and deployment strategies used in
the MMS can be viewed as a way to make ORTC practical in
a modern-day network environment. Our work also measures
compression benefits over modern workloads and a range of of
topologies and environments, including a tier-1 ISP network.

VII. CONCLUSIONS

Deploying an MMS within an ISP has several benefits.
An MMS can prevent router memory requirements from
exceeding capacity, as well as extend the lifetime of routers.
Moreover, experimental results show substantial reduction
of routers’ FIBs. Reducing these requirements and safely
preventing routers from becoming overloaded reduces the need
to upgrade them as often, decreasing operational costs and
administrative work. The MMS is designed to be practical
and also amenable to partial deployment.

For future work, several items may be interesting to in-
vestigate. While the threshold levels are assumed to be fairly
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static, a fully-automated “adaptive mode” could be developed;
the algorithm would automatically adjust the threshold level
to stay within memory bounds while deviating from the
BGP decision process as little as possible. Additional savings
might be possible by developing protocols to perform memory
management across ISPs. Finally, if memory is still scarce
after compression, the memory management system could be
used to selectively filter less popular routes to ensure that the
most popular ones remain available.
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