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ABSTRACT
Mechanisms for measuring data-path quality and identifying
locations where packets were dropped are crucial for inform-
ing routing decisions and enforcing network accountability.
If such mechanisms are to be reliable, they must be designed
to prevent ASes from ‘gaming’ measurements to their ad-
vantage (e.g., by hiding packet loss or by blaming packet
loss on innocent ASes). In this paper, we explore mech-
anisms for accurately detecting and localizing packet loss
events on a data path in the presence of both benign loss
(congestion, link failure) and active adversaries (ASes moti-
vated by malice or greed). We do not advocate a specific net-
work architecture. Instead, we use rigorous techniques from
theoretical cryptography to present new protocols and nega-
tive results that can guide the placement of measurement and
security mechanisms in future networks.

Our major contributions are: (1) Negative results that prove
that any detection or localization mechanism requires secret
keys, cryptography and storage at every participating node.
(2) Pepper Probing and Salt Probing, two efficient pro-
tocols for accurate end-to-end detection of packet loss on a
path, even in the presence of adversaries. (3) A new protocol
for accurately localizing packet loss to specific links along a
path, even in the presence of adversaries.

1. INTRODUCTION
The Internet’s best-effort service model provides nei-

ther a priori guarantees of packet delivery nor post hoc
information about the fate of dropped packets. How-
ever, tools for measuring data-path quality and iden-
tifying locations where packets were dropped are cru-
cial for informing routing decisions at the edge of the
network (e.g., in source routing, intelligent route con-
trol, and multipath routing). Moreover, [16] recently
argued that the Internet industry’s resistance to evo-
lution cannot be overcome without an accountability
framework that measures path quality and then holds
ISPs responsible for poor path performance. The com-
bination of an accountability framework and tools for
intelligent routing could counter the growing trend of
commoditization on the Internet by giving ISPs an eco-
nomic incentive to upgrade their networks in order to

attract customers [2, 8, 16].
In this paper we explore methods that empower the

edge of the network to measure data path quality. Be-
cause the network layer is typically responsible for mak-
ing routing decisions, we focus specifically on tools that
source edge networks (i.e., stub ASes or edge routers)
can use to perform the following two types of measure-
ments: fault detection (FD) to detect faults on a data
path, and fault localization (FL) to localize the links at
which the faults occurred. We say that a fault occurs
when a packet sent by a source edge network fails to
arrive unaltered at its destination edge network within
a reasonable amount of time.

The presence of adversaries: The design of ro-
bust measurement schemes is complicated by the pres-
ence of parties on the network that have a strong incen-
tive to bias path quality measurements. Consider these
natural scenarios:

• ISPs may provide poor service to selected classes
of traffic in order to cut costs. ISPs have an eco-
nomic incentive to prevent their customers from
taking their business elsewhere or from demanding
accountability for service level agreement (SLA)
violations. As such, greedy ISPs may attempt to
bias measurements to prevent edge networks from
detecting degraded path quality, or even to blame
degraded service on an innocent ISP.

• A malicious router or AS, corrupted by a remote
attacker or disgruntled network operator, may ad-
vertise routes through himself so that he can se-
lectively block or tamper with certain flows. For
example, a remote attacker may tamper with pack-
ets containing information about a corporation’s
stock price, sent by a website like CNN.com. The
hacked router has a strong incentive to bias mea-
surements so that his malicious behavior can con-
tinue undetected, or is attributed to an innocent
router.

• A router may ‘benignly’ drop packets due to mal-
function, misconfiguration or excessive congestion.
For example, an MTU (Maximum Transmission
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Unit) mismatch along the path might cause a router
to drop large packets, while continuing to forward
small packets (e.g., from ping and traceroute). Rather
than making assumptions about the nature of packet
loss events, we can instead assume that packet loss
occurs in the “worst possible way”, i.e., according
to a pattern that introduces bias in our measure-
ments.

As such, we avoid making ad hoc assumptions about the
good behaviour of ASes or routers on the data path. In-
stead, we assume that a source edge-network can trust
only the destination edge-network at the end of the data
path she is measuring, while the intermediate nodes on
the path may adversarially affect her measurements. We
focus on finding efficient protocols and minimal resource
requirements for fault detection and localization; to avoid
burdening our schemes with extra machinery, our model
does not consider traditional security issues like pre-
venting faults, providing confidentiality, or protecting
against traffic analysis or denial-of-service attacks.

Accountability, Security and Measurement: Our
work lies at the intersection of the literature on network
accountability, data-plane security, and path-quality mea-
surement. The literature on accountability [2, 16] fo-
cuses on ASes’ economic motivations for making deci-
sions, but it does not explicitly consider mechanisms
to prevent ASes from ‘gaming’ an accountability frame-
work to their economic advantage. On the other hand,
much of the work [3,5,12,18,21,22] on data-plane secu-
rity implicitly assumes that faults caused by adversar-
ial nodes should be detected on a per-packet basis (i.e.,
when just one packet is dropped [3, 5, 12, 22] ). Here
we consider benign faults (i.e., congestion, link or node
failures) alongside adversarial behaviour, which makes
our models simultaneously more realistic and more dif-
ficult to analyze. Moreover, in addition to consider-
ing the per-packet approach, we also explore statistical
approaches for estimating average fault rate (i.e., the
fraction of packets that experienced faults) on the data
path. Finally, our approach can be seen as a secure ana-
logue of the statistical path-quality measurement tech-
niques designed by the Internet measurement commu-
nity [9, 10, 13, 17, 24] for the adversarial setting. Our
work is most closely related to that of Stealth Prob-
ing [4], a statistical fault detection protocol designed
for a similar adversarial setting.

Techniques from theoretical cryptography: In
contrast to previous work, in this paper we use a rigor-
ous theoretical framework to explore a wider space of so-
lutions for the adversarial setting; we consider both per-
packet and statistical approaches for performing fault
detection (FD) and fault localization (FL). In fact, by
working within the framework of theoretical cryptogra-
phy to precisely define security for our adversarial set-
ting, we have exposed security vulnerabilities of other

FD and FL protocols [2, 5, 10, 21, 25] (we discuss these
in the body and footnotes of the paper). Furthermore,
our rigorous approach has allowed us to prove the se-
curity of our FD and FL measurement protocols, and
to use the techniques of [14, 15, 19] to present a set of
negative results that determine the minimum resources
necessary to build any FD or FL protocol that is robust
to adversaries. Though our security definitions consider
active adversaries with extensive powers (Section 2, 3.1
and 4.1), many of our negative results hold even in a
weaker adversarial setting (see Sections 3.2 and 4.2).

Cast of characters: We begin by introducing the
reader to Alice, a source edge network, (edge router or
stub AS), who sends data packets to Bob, a destination
edge network. Eve, the adversary, occupies some subset
of intermediate nodes on the path. In this paper, a node
can be either an AS or an individual router.

Results on fault detection (FD): We present neg-
ative results (Section 3.2) that prove that any secure
per-packet or statistical FD protocol requires (1) a key
infrastructure, (2) cryptographic operations at Alice/Bob,
and (3) dedicated storage at Alice. Our results im-
ply that any scheme that does not make use of these
resources cannot be secure in the adversarial setting.
Next, we present a simple secure per-packet FD pro-
tocol, Per-Packet Ack, and two novel secure statisti-
cal FD protocols, Pepper Probing and Salt Prob-
ing. In Per-Packet Ack, Bob acknowledges each packet
that Alice sends with an authenticated ack packet (Sec-
tion 3.3). Pepper Probing and Salt Probing are effi-
cient protocols that allow Alice to estimate the average
fault rate, up to an arbitrary level of accuracy, without
requiring any modifications to Alice’s traffic. In Pep-
per Probing (Section 3.5), Alice and Bob sample pack-
ets in a coordinated manner with a cryptographic hash
function, similar to the approach of Trajectory Sam-
pling [10]. Salt Probing (Section 3.6) extends Pepper
Probing to the public-key setting via a timing strategy
similar to that of TESLA [23].

Results on fault localization (FL): We present
a set of negative results that prove that any secure per-
packet FL protocol requires all the resources required
for secure per-packet FD and in addition, each interme-
diate node must (1) share keys with Alice, (2) perform
cryptographic operations, and (3) keep dedicated stor-
age (Section 4.2). Next, we limit ourselves to the setting
of source routing with symmetric paths and present an
Optimistic Protocol for per-packet FL (Section 4.3),
and a composition technique for constructing a se-
cure statistical FL protocol by having each intermediate
node simultaneously run Pepper or Salt Probing to the
destination edge network (Section 4.5). Our FL pro-
tocols can guide future designs of FL protocols outside
the source-routing setting.

Technical highlights: This paper is a rigorous
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theoretical exploration of solution space for FD and
FL; rather than advocating a specific network archi-
tecture, we present new protocols and negative results
that can be used to guide the placement of measurement
and security functions in future networks (Section 5).
Our protocols leverage a variety of useful cryptographic
techniques, including: (1) using randomly-selected salt
values to run symmetric cryptographic operations in the
public-key setting (Section 3.6), (2) using onion reports
to prevent an adversary from blaming bad behaviour on
an innocent node (Section 4.3), and (3) using a compo-
sition technique to construct a statistical FL protocol
out of statistical FD protocols (Section 4.5). Moreover,
while some of our proofs follow quite simply from our
security definitions, many of our proofs are more in-
volved (e.g., the necessity of cryptography for FD and
FL). Because we choose to present the entire breadth of
our results, in this paper we provide only proof sketches
and defer full proofs to our technical report [1].

2. OUR SETTING
Goals and non-goals: When considering path qual-

ity we focus on both availability (path delivers packets
to the correct destination) and integrity (packets ar-
rive unaltered). Therefore, we say that a fault occurs
when a packet sent by Alice fails to arrive unmodified
at Bob within a reasonable amount of time. Our tech-
niques can be extended to obtain finer measurements,
such as calculating the average round-trip time (RTT);
however, to simplify the presentation we do not dis-
cuss RTT measurements here. In this paper, we do not
study techniques to prevent an adversary from adding
packets to the data path or from (selectively or fully)
causing faults, nor do we consider techniques that guar-
antee confidentiality or protect against traffic-analysis
attacks. Moreover, our protocols are not designed to di-
agnose the cause of a fault. In the adversarial setting it
is extremely difficult to accurately distinguish between
benign and adversarial behaviour because an adversary
can always drop packets in a way that ‘looks like con-
gestion’. As such, we do not distinguish between faults
caused by benign causes (e.g., congestion, node failure),
malicious behaviour, or even increased congestion on a
link during a denial-of-service (DoS) attack. Finally, for
lack of space, we do not explicitly address the problem
of protecting our FD and FL protocols themselves from
DoS attacks (e.g., an adversary crashes an FD monitor
by flooding it with messages that require verification
of a digital signature); however, standard rate-limiting
techniques can mitigate these attacks.

Adversary model: We consider both benign faults
(due to congestion or node failure) and malicious faults
(caused by an active adversary). We assume that Alice
cannot trust any intermediate node along the data path,
except for Bob. One (or more) nodes on the data path

may be controlled by an active adversary, Eve, with
extensive powers: she may add, drop, or modify traffic
on the data path; she may observe the traffic on the
data path and use any observations, including timing
information, to learn how to bias Alice’s measurements;
she may attempt to blame her own malicious behaviour
on innocent nodes, e.g., by simulating the behavior of
the system during past instances of congestion-related
loss, as in Section 3.2; she may share information with
other adversarial nodes on the data path or collude with
those nodes (e.g., by tunnelling packets).

Per-packet vs. statistical approaches: In per-
packet schemes, Alice learns if a fault occurred for each
packet that she sends to Bob. To reduce the over-
head of per-packet schemes, we also consider statisti-
cal schemes, where Alice instead estimates the average
fault rate on the data path. We believe that statistical
schemes are sufficient for most situations; because it is
natural that some packets are dropped due to conges-
tion, we argue that the network layer neither cares nor
expects to know the fate of every single packet sent.
On the other hand, if the network layer wants to detect
small transient problems which selectively harm specific
end-hosts (i.e., drops of one or two TCP SYN packets),
then per-packet approaches are more appropriate.

Resources and Evaluation Criteria: We shall
evaluate our protocols based on how efficiently they use
the following five resources: We prefer protocols that
minimize (1) communication overhead, (2) computation
of cryptographic operations, and (3) use of dedicated
storage in the router. Furthermore, the difficulty of
building up and maintaining a (4) key infrastructure for
the Internet is well known. As such, we prefer schemes
that require few keys; public-key schemes, where each
node has only a single key, are preferred over schemes
where each pair of nodes share a symmetric secret key.
Finally, we prefer protocols that (5) do not affect the
router’s internal packet-processing path. In fact, all our
protocols do not modify any packets sent by the source
edge-network, so that they can implemented in a mon-
itor located off the critical path in the router. This
approach has the additional advantage of minimizing
latency in the router, not increasing packet size, and al-
lowing Alice to turn measurements on and off without
having to coordinate with Bob.

3. FAULT DETECTION
Secure fault detection (FD) is an end-to-end tech-

nique that allows Alice to detect whether or not her
traffic arrived unaltered at Bob, in the presence of ad-
versaries on the data path. In this section, we start
by defining security for per-packet FD, present a set of
negative results that shows the resources required for
any secure FD protocol, and then present a simple se-
cure per-packet FD protocol. We then define security
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Figure 1: FD security game.

for statistical FD and present two novel statistical FD
protocols, Pepper Probing and Salt Probing.

We focus on FD protocols with the simple structure
shown in Figure 1: for each data packet d generated by
an end-host, Alice optionally stores information about
d in memory and then sends d to Bob. Bob optionally
replies with an ack a = Ackk(d). (In practice, many
acks a may be batched together and sent in a single
packet.) We say an exchange is all the communication
associated with transmitting a single data packet d.

3.1 Per-packet FD: Security Definition
In theoretical cryptography, game-based definitions

are used to obtain precise guarantees of security [11].
We now present a game-based definition for secure per-
packet FD, consisting of a description of the game set-
ting, followed by correctness and security conditions.

Definition 3.1 (Secure per-packet FD). The game set-
ting for per-packet FD, shown in Figure 1, defines the
power of the adversary (Eve) and models how she inter-
acts with the honest parties (Alice, Bob). Because Eve
is a node on the data path between Alice and Bob, we
assume that all communication between Alice and Bob
is controlled by Eve. Eve can do whatever she wants to
the packets she receives from Alice and Bob; of course,
if she was behaving honestly, she would forward packets
along unmodified. We use the ‘Source’ entity in Figure 1
to model the end-hosts that generate the data packets d
that Alice sends Bob. We assume that the data packets
generated by Source are unique.1 The game consists
of Source repeatedly sending packets and Eve playing
with the packets she gets from Alice and Bob until Eve
decides to stop the game.
Correctness condition: Here we define what should
happen when there is no adversarial behaviour We say
that an FD protocol is correct if when Alice and Bob
interact, Bob always receives the packet d sent by Alice,
and Alice never detects a fault.
Security condition: Here we define what the adver-
sary needs to do in order to break the security of an
1We make this assumption to prevent Eve from trivially
winning the FD game using a replay attack ; suppose Source
sends the same data packet d twice. The first time, Eve for-
wards d to Bob and gets valid ack a. The second time she
drops d but responds to Alice with the valid ack a. In prac-
tice, we can prevent replay attacks by timestamping Bob’s
acks with an expiry time, such that no repeated packets are
sent, (e.g., due to natural entropy in packet contents, TCP
sequence numbers, and IP ID fields) for the duration of the
time interval for which Bob’s acks are valid.

FD protocol. We say that Eve wins the per-packet FD
game if, during the course of the game, she manages
to drop or modify a single packet while still convincing
Alice that no fault occurred (i.e., because Alice saw a
valid ack for each packet that she sent).

A per-packet FD scheme is secure if no efficient ad-
versary Eve is able to win the per-packet FD game with
non-negligible probability.

Monotonicity: Our security definition is monotone
in that it protects not only against adversaries like Eve
in Figure 1, but also against adversaries like Helen (a
node off the data path monitored by Alice who attempts
to trick Alice into detecting faults on the path to Bob so
that Alice will switch her traffic to a path through He-
len). We assume that Helen can only add packets to the
data path between Alice and Bob. Observe that Helen
could potentially trick Alice into detecting a fault (when
no fault occurred) by sending Alice invalid ack packets
spoofed to look like they came from Bob. However, our
definition protects against attacks by Helen because the
definition is monotone: as long as Alice receives a valid
ack for every packet she sends, she will never declare a
fault, even if she receives additional nonsense packets.

Congestion: Our definition does not explicitly
model congestion. FD is an end-to-end measurement;
as such, it is sufficient to detect the total fault rate over
an entire path, without distinguishing between faults
caused by normal congestion or adversarial behaviour.

Faulty forward or reverse path? Collecting
one-way measurements of a path is notoriously difficult,
since a sender cannot easily differentiate between faults
on the forward path (from Alice to Bob) and faults on
the reverse path (from Bob to Alice). As such, we de-
fine our FD protocols so that Alice always obtains a
conservative estimate, i.e., a lower bound, on the fault
rate on her forward path. This definition works best
in the setting of symmetric paths, where the forward
and reverse paths are identical, since here Eve has no
incentive to drop the acks on the reverse path. (If she
does, she simply makes the path look worse). In con-
trast, in the setting of asymmetric paths, it is useful
to distinguish between faults that occur on the forward
path and faults that occur on the reverse path. In this
setting, Eve occupying only the reverse path may have
an incentive to drop acks, perhaps to confuse Alice into
thinking that the forward path is faulty.

We argue that any FD protocol that distinguishes
between faults on the forward vs the reverse path must
also include a coordinated path-switching mechanism
between Alice and Bob, even in the benign setting. To
see why, observe that Alice cannot distinguish between
(a) the forward path failing and (b) the reverse path
failing. In both situations, Alice cannot communicate
with Bob. However, to learn why communication failed,
in case (a) the forward path must be switched, while in
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case (b) the reverse path must be switched. Because
path-switching mechanisms are outside our scope, in
this paper we do not construct FD protocols that ex-
plicitly distinguish between faults on the forward vs the
reverse path. While we leave this interesting problem
to future work, we note that such FD protocols are still
subject to our negative results, and they could be de-
signed using our simpler (Per-Packet Ack, Pepper and
Salt Probing) FD protocols as building blocks.

3.2 Negative Results
Here we show that any FD scheme that is secure

according to the per-packet definition in Sections 3.1
(1) requires shared keys between Alice and Bob,
(2) requires Alice/Bob to perform some cryptographic
operations,2 and (3) requires Alice to modify her mem-
ory for each packet that she monitors. All these re-
sults hold even in the statistical FD model of Section
3.4, and even if the FD protocol is allowed to mod-
ify Alice’s traffic or has a more general structure than
the simple two-message structure of Figure 1. Further-
more, while our results about the necessity of keys and
cryptography rely on the assumption that Eve actively
forges acks, our result about the necessity of storage
holds even when Eve’s adversarial powers are limited
to dropping packets. Our negative results imply that
the resource overhead of our Per-Packet-Ack, Pepper
and Salt Probing protocols (Sections 3.3, 3.5 and 3.6)
are unavoidable in the sense that we could not have
designed them without keys, cryptography and storage.

Keys are necessary: We prove this in the contra-
positive. Assume that Alice and Bob have no shared
secret key. It follows that Eve knows everything that
Bob knows, so that Eve can construct Bob’s acks on
her own. Therefore, Eve could then drop all the pack-
ets going to Bob, while convincing Alice that nothing is
wrong, and the FD scheme cannot be secure.

Cryptography is necessary: We now prove that
the keys must be used in a ‘cryptographically-strong’
manner by showing that any secure FD protocol is at
least as complex as a secure keyed identification scheme
(KIS). In KIS, Alice and Bob share a secret key, and
Alice wants to ascertain Bob’s identity. She achieves
this by asking him to solve a riddle that can only be
solved by someone who knows the secret key. A KIS is
secure if an impersonator who does not know the key
can’t solve the riddle with better success than by just
guessing a random answer. To prove that any secure
FD scheme is at least as complex as a secure KIS, we
show that any secure FD scheme can be used to con-
struct a secure KIS. The construction is simple: the
riddle in our new KIS is a randomly chosen packet d

2Listen [25] is an FD protocol that does not require Alice or
Bob to perform cryptographic operations. Our results imply
that Listen is insecure in our adversarial setting.

Alice

k

d

Storage

z = h(d)

Bob

k

[ B , z ]
k

d

Figure 2: Per-Packet Ack protocol.

(in the FD scheme). The correct answer to the riddle
in our new KIS is the ack a = Ackk(d) (from the FD
scheme). We complete the proof in [1] with a reduction
that proves that if the FD scheme used in the above
construction is secure, then our new KIS construction
is also secure. Our proof implies that secure identifica-
tion is an unavoidable part of secure FD. That is, any
secure FD protocol must ensure that Alice can distin-
guish between acks sent by Bob, and acks sent by an ad-
versary impersonating Bob. Furthermore because KIS
is known to be at least as complex as symmetric-key
encryption [14, 19], our proof implies that one cannot
expect to design secure FD protocols that run blazingly
faster than symmetric-key encryption protocols.

Alice must modify memory for each monitored
packet : This is easily proved in the contrapositive. As-
sume that Alice stores no information (i.e., does not
modify her memory) about a packet d for which she is
expecting an ack. It follows that Eve can simply drop
d after Alice sends it, and Alice won’t notice (because
Alice immediately forgets about d after she sends it),
and the FD scheme cannot be secure.

3.3 Per-Packet-Ack: A Simple FD Protocol
Per-Packet Ack is a simple secure per-packet FD pro-

tocol, where Bob securely acknowledges receipt of every
packet he sees. Despite the simplicity of the protocol,
shown in Figure 2, we explain it here in some detail in
order to introduce the reader to some of the cryptogra-
phy we use in later parts of the paper.

The protocol is built from two cryptographic primi-
tives: A collision-resistant hash function (CRH)
[11], which we denote by h, is a hash function for which
it is computationally infeasible to find two inputs x 6= x′

that map to the same output h(x) = h(x′). In practice
h can be implemented with a function such as SHA-
2 [20]. A secure deterministic message authentica-
tion code (MAC) [11] protects a message’s integrity
and authenticity by allowing a receiver, who shares a se-
cret key k with the sender, to detect any changes made
to the sender’s message. A MAC is secure if no efficient
adversary can forge a valid signature on any arbitrary
message (with non-negligible probability). We use the
notation [m]k to denote message m MAC’d with key k.

Details of protocol: In the Per-Packet-Ack, Al-
ice and Bob share a symmetric secret key k. For each
packet d that Alice sends, she stores a packet digest3

3Packet digests must be computed only on immutable fields
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p: Fraction of packets acknowledged by Bob.
α: False alarm threshold. Alice avoids raising an

alarm when the fault rate is below α.
β: Detection threshold. Alice raises an alarm

when the fault rate exceed β.

Table 1: Parameters for statistical FD.

z = h(d) along with a time-out (we say that a fault oc-
curs if the time-out expires before Alice receives an ack
for that packet). When Bob receives the packet d, he
computes the packet digest z = h(d) and sends an ack
of the form a = [B, z]k where B is a public unique iden-
tifier for Bob’s identity. Alice removes a packet digest
z from storage when she receives an acknowledgment a
containing a matching packet digest z and a valid MAC.
Periodically, Alice checks her storage to see if any pack-
ets awaiting acknowledgment have timed out; if so she
raises an alarm and declares that a fault occurred.

Security: Notice that in this protocol, acks are
unambiguous:4 they specifically depend on the contents
of the packet d that Bob receives. It follows that if
Eve wants to create a valid ack to a packet d that was
dropped before it reached Bob, she either has (i) to find
a collision d′ in the CRH h, so that h(d) = h(d′), and
ask Bob to generate an ack for d′, or (ii) she has to
forge the MAC signature on an ack (B, h(d)) without
Bob’s help. By the security of the CRH and the MAC,
both (i) and (ii) occur with negligible probability, so
Per-Packet-Ack is secure.

3.4 Statistical FD: Security Definition
The per-packet FD protocol of Section 3.3 required

acks and memory modifications every packet sent. To
reduce the high overhead required for per-packet pro-
tocols, we now study techniques that require only an
accurate measurement of the average fault rate. We
will focus on schemes that use sampling.

Sampling: Instead of acknowledging every packet,
as in Per-Packet Ack, in sampling schemes we randomly
select a p fraction of the packets to monitor in order to
obtain an estimate of average behavior. Our estimate
becomes accurate if we obtain a sufficient number of
samples. We let probing schemes denote statistical FD
schemes that use sampling, and probes denote pack-
ets that require acks, and p < 1 denote the fraction of
packets sent by Alice that are acknowledged by Bob.
Security in the statistical setting guarantees that Eve
cannot bias Alice’s estimate of the average fault rate.

of the packet, that are unchanged as the packet traverses
the data path. See [10] for immutable fields in an IP packet.
4We note that because the security of the scheme relies on
acks being unambiguous, a protocol in which Bob sends back
a count of the number of packets received (e.g., as suggested
in one version of Fatih [18]) is not secure in our setting.

Ack Ack
Alice Bob

Probe packetEve allows
packet through

Data packet

AckAckAck

Figure 3: Attack on active measurement.

Probe Indistinguishability: Any probing scheme
that is secure in the adversarial setting requires a prop-
erty called probe indistinguishability [2, 4]. That is,
to prevent Eve from biasing Alice’s measurements by
treating probe packets preferentially (while, say, drop-
ping all other packets), Eve must not be able to dis-
tinguish probe packets from non-probe packets. In [1]
we discuss why timing attacks make it difficult to en-
sure probe indistinguishability in FD protocols based
on active measurement (e.g., ping, traceroute, and the
approaches of [13, 17, 24]). In active measurement, Al-
ice injects new, specially-crafted probe packets into her
traffic stream. To illustrate these timing attacks, con-
sider an extreme example where probes are injected ac-
cording to a periodic arrival process as in Figure 3. Eve
can easily learn how to distinguish probes from exist-
ing traffic by observing when Bob sends ack packets.
Eve can then drop all packets sent outside a small time
window around the beginning of the probe period. As
such, we avoid schemes based on active measurement,
and instead focus on passive sampling protocols that
sample from existing traffic.

Definition 3.2 ((α, β)-Statistical FD Security). α de-
notes a fault rate that gives acceptable network per-
formance, while β is the fault rate above which Alice
decides that a path is unacceptable. The game setting
is the same as Definition 3.1 with the two modifications:
First, Source must send at at least T packets. Second,
at the end of the game, Alice either raises an alarm if
she decides that Eve caused the fault rate to exceed a
detection threshold β ∈ [0, 1], or Alice does not raise an
alarm if she decides the fault rate was below a false-
alarm threshold α ∈ [0, 1]. 5

Correctness condition: A statistical FD protocol is
correct if, with probability greater than 99%, Alice does
not raise an alarm when less than an α-fraction of ex-
changes contain faults (due to Eve or congestion).
Security condition: A statistical FD protocol is secure
if, with probability greater than 99%, Alice raises an
alarm when Eve causes faults for more than a
β-fraction of exchanges.

5In this paper we discuss only (α, β)-security, where Alice
raises an alarm when the fault rate exceeds a threshold.
In [1] we use a more precise definition where Alice also gets
a sufficiently accurate estimate of the fault rate on the path.
Pepper and Salt Probing satisfy both definitions.
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Figure 4: Pepper Probing.

Duration of the game: Notice that our definition
explicitly puts a lower bound on T , number of exchanges
for which the security game is played. This bound on
T is essential because a statistical scheme only mea-
sures behaviour on average; Alice can only have high
confidence in her measurements when her sample size
is sufficiently large.

3.5 Pepper Probing: Statistical FD
Pepper Probing extends the Per-Packet Ack protocol

of Section 3.3 to the statistical setting by allowing Alice
and Bob to sample packets in a coordinated way by
computing a ‘cryptographic hash’ over packet contents
(similar to Trajectory Sampling [10]’s approach).

Details of protocol: As shown in Figure 4, Alice
and Bob share a secret k = (k1, k2). For each packet
sent, they use k1 to compute a function Probe that de-
termines whether or not a packet d is a probe and should
therefore be digested z = h(d), stored, and acknowl-
edged. To acknowledge a probe, Bob sends Alice an ack
that is MAC’d using k2 to key a secure MAC, as in Per-
Packet Ack (Section 3.3). The Probe function is imple-
mented using a pseudo-random function (PRF)6.
A PRF [11] is a keyed function that cannot be dis-
tinguished by any computationally-efficient algorithm
from a truly random function. (A truly random function
maps each distinct input to a truly random output.) We
can think of a PRF as a keyed hash function (keyed here
with k1) that takes in an input (here, the data packet
d), and outputs a number fk1(d) ∈ {1, . . . , 2n}. We let

Probek(x) = Yes if fk1 (d)

2n < p
Probek(x) = No otherwise

(1)

At the end of the probing session, Alice computes an
estimate F of the fault rate of the game by comput-
ing the fraction of the probe packets that experienced
faults (i.e., were not properly acknowledged by Bob). If
F > α+β

2 she raises an alarm, while if F < α+β
2 she de-

cides that everything was normal.
Security: First, observe that as in the Per-Packet

Ack protocol (see Section 3.3), (i) Eve cannot forge
a valid ack with non-negligible probability. Next, we
argue that Probe(d) satisfies probe indistinguishability.
Recall that we assume that all the data packets in the
security game are distinct (Section 3.1) and that PRFs
6The high-throughput PRF we require here can be efficiently
implemented in hardware with pipelined AES in CBC-mode
or with a cryptographic hash function [20].

are indistinguishable from truly random functions. It
follows that the Probe function will select an (approx-
imately) random p-fraction of data packets as probes.
It follows that (ii) no efficient adversary Eve who sees
(or even chooses) the data can predict whether or not
a packet is a probe with better probability than just
guessing randomly with probability p. Now, (i) and (ii)
imply that the probability that Alice detects each fault
is very close to p. Using a Chernoff bound [11] (which
tells us the estimated fault rate should be close to true
fault rate if the number of exchanges sampled T is suf-
ficiently large), we can show that (iii) when the actual
fault rate is below the false-alarm threshold α, the prob-
ability that Alice’s estimate of the fault rate F exceeds

threshold α+β
2 is at most e

−p(β−α)2T
12α , and (iv) when the

actual fault rate is above the detection threshold β, the
probability that Alice’s estimate of the fault rate F is

below α+β
2 is also at most e

−p(β−α)2T
12β . It follows from

(iii), (iv) and Definition 3.2 that Pepper Probing is both
correct and secure when the protocol is run on at least
T packets where

T >
64β

p(β − α)2
(2)

Security fails without pseudo-randomness: Sup-
pose that the Probe function of Equation 1 was imple-
mented using a CRC keyed with a secret modulus, as
in [10], instead of a PRF. Model the CRC function as
fk(x) = x mod k, and consider the following attack:
Eve starts by observing the interaction between Alice
and Bob, and recording a list of packets that were not
acknowledged by Bob. Then, whenever she sees a new
packet that is within a small additive distance of old
packet that was not acknowledged, she drops the packet.
Thus, Eve can drop non-probe packets with high prob-
ability, and she can bias Alice’s estimate F below the
true fault rate. This attack is possible because the CRC
does not use its ‘secret key’ in ‘cryptographically-strong’
manner (c.f., our result on the necessity of cryptogra-
phy, Section 3.2).

Efficiency: For a reasonable set of parameters, say
overhead p = 0.02, false-alarm threshold α = 0.005, and
detection threshold β = 0.01, it follows from Equation
2 that Pepper Probing is (α, β)-secure when the pro-
tocol runs for at least T > 1.3 × 106 packets. If each
packet digest is 128 bits long, it follows that Alice needs
about pT ×128 = 3.3 Mbits of storage. (While Alice re-
quires this much storage for each Bob network, she can
choose to run Pepper Probing with only a small num-
ber of Bob networks at a time by ignoring all the acks
sent by all other Bob networks.) Pepper Probing incurs
only a small communication overhead of p (due only to
to acks; Alice’s traffic is unmodified). Consider now the
Stealth Probing protocol of [4], another secure statisti-
cal FD protocol which also uses passive sampling and
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Figure 5: Timing for Salt Probing.

authenticated acks for a p-fraction of packets. Whereas
Stealth Probing requires Alice to authenticate and en-
crypt all of her traffic, Pepper Probing does not require
any modifications to Alice’s traffic.

3.6 Salt Probing: Public-Key Statistical FD
While Pepper Probing requires pairwise symmetric

keys between each Alice-Bob pair, Salt Probing requires
fewer keys by operating in the public-key setting. While
known public-key cryptographic primitives are too com-
putationally expensive to execute at line rate, we by-
pass this problem by using techniques reminiscent of
TESLA7 [23], so that public-key operations are used
very infrequently. Hence, the computational overhead
of Salt Probing is almost identical to that of Pepper
Probing. Like TESLA, Salt Probing requires that Alice
and Bob coarsely synchronize their clocks. Time is di-
vided into salt intervals. In each interval Bob uses the
same salt value to key each probing session with each
Alice network.

Setup: Alice has some local secret key kA, which
is not shared with anyone; she uses this key to verify
data that she sends to Bob and then is sent back to
her. Bob has a public key PKB that is known to Alice,
and he keeps secret the corresponding secret key SKB .
Alice and Bob also know a fixed time constant a, which
approximately equals 1.5 round trip times (RTT) (e.g.,
a = 150 ms). Before the protocol begins, Alice synchro-
nizes her clock so that it lags Bob’s clock by at most a
seconds as follows: At time tA (on Alice’s clock) Alice
sends Bob a message [A, tA]kA

MAC’d using her local
secret key. Bob receives this message at time tB (on
Bob’s clock) and responds with digitally signed mes-
sage [B, tB , [A, tA]kA ]SKB . (Note that a digital sig-
nature performs the same function as a MAC, but in
the public-key setting; here the key SK used to sign a
message is secret while the key PK used for verification
is publicly known.) Alice will accept Bob’s time tB as
long as his message is validly signed, contains a valid
copy of Alice’s message [A, tA]kA

, and arrives within a
seconds of time tA (on Alice’s clock). Then, at time
tA + a Alice synchronizes her clock to Bob’s time tB .

7TESLA uses only symmetric-key operations (except if a
PKI is used for key exchange). Salt Probing could also
be adapted to TESLA’s symmetric key setting by adopting
TESLA’s use of one-way chains [23].

packet digest ack Probe
z1 = h(d1) Yes
z2 = h(d2) [B, z2, u, ]s2(u) Yes
z3 = h(d3) No
z4 = h(d4) No
z5 = h(d5) No
z6 = h(d6) No
z7 = h(d7) No
z8 = h(d8) [B, z8, u]s2(u) Yes
z9 = h(d9) No

z10 = h(d10) No
z11 = h(d11) [B, z11, u]s2(u) Yes
z12 = h(d12) Yes
z13 = h(d13) No

Figure 6: Alice’s table after at the end of salt
interval u. Here Alice observes faults during ex-
changes 1, 12.

If, after many attempts, Alice fails to receive a valid re-
sponse to her synchronization message, then she decides
the data path is faulty and raises an alarm. Synchro-
nization happens infrequently (say, once a day).

Bob’s algorithm: At the beginning of each salt
interval u, Bob randomly chooses a pair of salt values
(s1(u), s2(u)) that he keeps secret for the duration of
the salt interval. Then, Bob runs a slightly modified
version of Pepper Probing, replacing the symmetric key
k = (k1, k2) in Figure 4 and Equation 1 with the salt
values (s1(u), s2(u)). That is, during salt interval u, Bob
runs the Probe function of Equation 1 on packet digests
z = h(d) using salt s1(u) as a key, and for each packet
that is a probe, he constructs and sends to Alice an ack
of the form [B, z, u]s2(u), which contains a packet digest
z and a salt interval number u. As shown in Figure 5,
Bob reveals the salt (s1(u), s2(u)) to Alice (and to all
other source networks connected to him) a seconds after
salt interval u ends by sending a (public-key) signed salt
release message [B, u, s1(u), s2(u)]SKB

.
Alice’s algorithm: Because Alice does not know

the salt for the duration of the salt interval, she is un-
able to run Probe ‘in real time’ as she sends each packet
(as she did in Pepper Probing). Instead, Alice will
store a packet digest for each of the packets that she
sends to Bob as shown in Figure 6. Whenever Alice
receives an ack [B, z, u]s2(u) from Bob, she stores the
ack in her table only if the ack is tagged with the cur-
rent salt interval u and a packet digest z that matches
a packet digest that she has stored in her table. If Al-
ice fails to receive a validly signed salt release message
[B, u, s1(u), s2(u)]SKB

after salt interval u ends, she con-
cludes that her data path to Bob is faulty and raises an
alarm. Otherwise, Alice uses salt s1(u) (from the salt
release message) to run the Probe function on the packet
digests in her table, and salt s2(u) to verify the acks in
her table. Then, to compute an estimate F of the fault
rate that occurred during the salt interval, Alice counts
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Per-Packet Ack Pepper Salt Stealth [4]
communication overhead (due to acks) 100% p p p

key structure symmetric symmetric public symmetric
clock synch between Alice and Bob? No No Coarse No

modifications to Alice’s traffic? No No No Yes

minimum duration of probing session, in packets 1 64β
p(β−α)2

1
q

64β
p(β−α)2

64β
p(β−α)2

number of packet digests stored at Alice all p-fraction q-fraction p-fraction

Table 2: Comparison of (α, β)-secure FD protocols.

the fraction of exchanges for which Probe(z) = Yes and
no valid ack is stored in her table. Finally, Alice raises
an alarm if F > α+β

2 and decides that everything was
normal if F < α+β

2 .
A note on timing: Note that because Alice’s clock

lags Bob’s clock by at most a seconds, it follows that
there will be period of time of length < a where Alice
is operating in salt interval u−1 while Bob has already
moved into salt interval u. To remedy this, during the
first a seconds of each salt interval, Bob uses both the
salt of the current interval s(u) and the salt from the
previous interval s(u− 1) in order to create his acks.

Security: The security of Salt Probing relies on (i)
Eve’s inability to skew Alice’s synchronization to Bob’s
clock beyond a seconds, (ii) Eve’s inability to forge a
salt release message, and (iii) Eve’s inability to bias Al-
ice’s estimate of the fault rate during a salt interval. To
do (i), Eve needs to forge Bob’s digital signature on his
synchronization reply [B, tB , [A, tA]kA

]SKB
; notice that

Alice will reject the synchronization reply if Eve delays
it for more than a seconds. Furthermore, Eve cannot
replay an old synchronization reply because the reply
explicitly includes Alice’s synchronization request. In
order to do (ii), Eve needs to forge the digital signa-
ture on the salt message [B, u, s1(u), s2(u)]SKB . To see
why (iii) holds, notice from Figure 5 that s(u) is known
only to Bob for the duration of salt interval u on Alice’s
clock. As such, to bias Alice’s fault estimate during
salt interval u, Eve needs to break the security of Pep-
per Probing. As in Pepper Probing, Salt Probing is
(α, β)-secure if Alice runs Salt Probing on at T packets
where T is greater than the bound in Equation 2.

Efficiency: We compare Salt Probing, Pepper Prob-
ing, Per-Packet Ack and Stealth Probing [4] in Table 2.
In contrast to Pepper Probing, in Salt Probing, Bob
does not need to perform a key lookup for each packet
he receives, since the same salt is used for each of Bob’s
probing sessions with each different Alice source net-
work. The communication overhead and complexity
of cryptographic operations for Salt Probing is almost
identical to that of Pepper Probing (with the addition
of a few infrequent public-key signature operations).
Furthermore, while on the surface it may seem that
in Salt Probing Alice needs to store information about
each packet she sends to Bob for the duration of a salt
interval, storage requirements can be reduced without

compromising security if Alice independently subsam-
ples packets with (truly random) probability q, as long
as the total number of exchanges T that Alice uses for
her estimate is a factor of 1

q greater than the bound in
Equation 2. (See [1] for proof.)

For reasonable parameters: p = 0.02, false-alarm
threshold α = 0.005, and detection threshold β = 0.01,
it follows from Equation 2 that Alice must store at least
qT = 1.3 × 106 entries in her table (Figure 6). If each
packet digest z = h(d) is 128 bits long, Alice must store
on average about 128(1 + p) + 1 = 131 bits for each
row of her table, she requires about qT × 131 ≈ 170
Mbits of storage. Now, assuming that average packet is
3000 bits long, RTTs are on the order of 100 ms, and
line rates are 5 Gbps, then about 107 packets are sent
during one RTT. Then, if a salt interval lasts for about
5 RTTs, it follows that it is sufficient for Alice to sub-
sample packets at rate q = 1.3×106

5×107 ≈ 2.6% in order to
obtain an unbiased measurement during a salt interval.

4. FAULT LOCALIZATION
In fault localization (FL) Alice must not only detect

if her path to Bob is faulty, but she must also localize
the faults to a particular link (or set of links) where she
suspects the faults occurred. In this section, we first
define security for per-packet FL and present a set of
negative results that show the resources required for any
secure FL protocol. We present an Optimistic Protocol
for secure per-packet FL that leverages the useful cryp-
tographic technique of onion reports. After discussing
security for statistical FL, we show why the most nat-
ural technique for obtaining statistical FL from statisti-
cal FD protocols (where the source runs a probing pro-
tocol with each of the intermediate nodes on the path
simultaneously [5,21]) is vulnerable to a timing attack.
Finally, we present a statistical FL protocol composed
by having each intermediate node simultaneously run
Salt or Pepper Probing with the destination network.

4.1 Per-Packet FL: Security Definition
Notation: Recall that a node can be either an AS

or an individual router. We denote Alice, Bob, and
the N intermediate nodes by RA, RB , R1, . . . , RN . We
say that the direction towards Alice is “upstream” and
the direction towards Bob is “downstream”. We say
an exchange is all the communication associated with
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Figure 7: Fault localization security game.

sending a single data packet d.
Localizing links, not nodes: In the adversarial

setting, it is impossible for Alice to always localize a
node controlled by Eve. To see why, refer to Figure 7,
where Eve controlling R2 can always either: (a) be-
come unresponsive by ignoring all the packets she re-
ceives from R1, or (b) pretend that R3 is unresponsive
by dropping all communication to and from R3. Notice,
however, that case (a) could also have been caused by
R1 refusing to send packets to R2, and case (b) could
also have been caused by R3 becoming unresponsive.
It follows that at best, a fault localization protocol can
pinpoint a link that is adjacent to a malicious node(s),
rather than the malicious node itself. As such, in Fig-
ure 7, it suffices for Alice to localize the fault in case
(a) to link (1, 2) and the fault in case (b) to link (2, 3).

Assumptions: We model and design FL protocols
for the setting of source routing with symmetric paths.
However, these assumptions only make our negative re-
sults stronger; a secure FL protocol that operates in a
more general setting (where Alice does not know the
identity of the nodes on the path) requires at least as
much overhead as a secure FL protocol designed for
source routing with symmetric paths.

Definition 4.1 (Per-packet FL Security). The FL game
is shown in Figure 7, for a path of length N = 8. Alice
and Bob are connected to each other by a series of N
intermediate nodes, some of which may be controlled
by Eve. Eve is allowed to “corrupt” any set of nodes
along the path (this models multiple adversarial nodes
that collude), as in Figure 7 where she corrupted R2

and R6. She interacts with the honest nodes via the
nodes that she corrupts. In Figure 7 we box the hon-
est nodes together to emphasize that Eve cannot see or
directly control any interactions between honest nodes.
We assume that during the game, each link can drop
packets due to congestion with some probability. The
game consists of the Source sending data, and Eve play-
ing with the packets that she sees (at each of the nodes
she controls) until she decides to stop the game. At
the end of the game, Alice uses the history of messages
she received to output a list of packets that experienced
faults, and the links where she believes these faults oc-
curred.
Correctness condition: We require that if all the
nodes are honest and there is no congestion, then Bob
should be able to recover the data Alice sent, and Al-
ice should never detect any faults. If congestion occurs,

then Alice should localize the congested link.
Security condition: Eve wins the FL game if there
is an exchange for which (1) Eve causes a fault that Al-
ice does not detect, or (2) Eve causes Alice to implicate
an un-congested link that is not controlled by Eve.

An FL protocol is secure if no efficient Eve is able to
win the FL game with non-negligible probability.

Congestion: Since FL localizes faults to particu-
lar links, we want to accurately attribute faults, even
ones caused by normal congestion, to the links on which
they occurred. In order to do this, we need to explicitly
model the congestion on every link, even those not ad-
jacent to Eve. As such, we incorporate the probabilistic
model of congestion in the game setting.

Monotonicity: In this case, our security definition
does not imply monotonicity (as defined in Section 3.1),
but in [1] we discuss how our protocols can be made
monotone by including additional MACs or signatures.

4.2 Negative results
The security guarantees provided in FL are strictly

stronger than those provided in FD; it follows that FL
protocols require strictly more overhead than FD pro-
tocols. Here we show that, even in the setting of source
routing with symmetric paths, in any secure per-packet
FL scheme (1) Alice requires shared keys with Bob and
the intermediate nodes, (2) Alice, Bob and each inter-
mediate node must perform cryptographic operations,
and (3) Alice and each intermediate node must mod-
ify storage for each packet sent. All these results hold
in the statistical FL model of Section 4.4 (except that
the result on the necessity of cryptography has some
technical caveats for the statistical setting, see [1]), and
outside the setting of source routing with symmetric
paths. Again, our results on the necessity of keys and
cryptography rely on the assumption that Eve actively
forges acks, while our result on the necessity of storage
holds even when Eve can only selectively drop packets.

Keys are necessary at every node: We claim
that in any secure FL scheme, each node Ri must share
secret information with Alice. We prove this in the con-
trapositive. Suppose there exists a node Ri who shares
no secrets with Alice. Then consider an adversary Eve
who controls all the nodes 1, . . . , i − 1, illustrated in
Figure 8, where i = 2 and we represent R2’s sad lack
of keys with a frowney. In case (a) of Figure 8, R3 is
unreachable so Alice localizes the fault to link (2, 3).
However, because Alice shares no secrets with R2, Eve
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Figure 8: Necessity of keys and crypto.

knows everything that Alice knows about R2! It follows
that in case (b), Eve can drop all packets, and simulate
R2’s behavior in a way that convinces Alice that R3 was
unreachable. Case (a) and (b) are indistinguishable for
Alice. As such, in case (b) Alice will localize the fault
to link (2, 3), which is not adjacent to Eve, and the FL
protocol cannot be secure.

Cryptography is necessary at every node: We
can also prove that the keys at each node must be used
“in a cryptographically-strong manner”. The structure
of this proof resembles the structure of our previous
proof; refer again to Figure 8, where this time i = 2’s
frowney represents the sad fact that Ri does not per-
form cryptography. Again we will show that Eve con-
trolling R1 can break security by simulating R2 in a
manner that convinces Alice that link (2, 3) failed. How-
ever, now R2’s key is kept secret from Eve, so Eve needs
to find some way to learn R2’s key in order to simulate
R2. We note that case (a), where R3 is unreachable for
the duration of an exchange, will occur relatively fre-
quently during the course of the security game due to
congestion. Because node R2 does not use cryptogra-
phy, each time case (a) occurs Eve at node R1 observes
the way R2 reacts to congestion, and uses her observa-
tions learn ‘a part of node R2’s secret key’. After seeing
sufficiently many examples of case (a), Eve has learned
enough to be able to simulate R2’s reaction to conges-
tion and break security as in case (b). Formalizing this
intuition is quite subtle and the details appears in [1].
The algorithm used to learn the key is a variant of the
learning algorithm of [19], and the proof is an oracle
separation in the blackbox model of [15].8

Modifying storage per monitored packet is nec-
essary at every node: We prove in the contrapositive,
using a timing attack, that each node must modify stor-
age at least once for each packet it monitors. Suppose
that we had an FL scheme in which node i does not
modify storage when transmitting some packets. It fol-
lows that each time node Ri receives a message about
packet d, he must immediately compute and send his
response(s). Refer now to Figure 9 and where i = 2.
Node R2’s sad lack of storage means that upon receipt
8This negative result does not rule out non-blackbox con-
structions where intermediate nodes do not perform cryp-
tography; however all known practical cryptographic con-
structions are blackbox, so for all practical purposes, this
does not weaken our results. A full discussion of the impli-
cations of the blackbox nature of this result appears in [1].

3
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Figure 9: Necessity of storage.

of a message corresponding to packet d from R1, he
must immediately transmit a response to downstream
node R3 and he may also need to immediately send a
response back upstream to node R1 (we represent this
by the arc in Figure 9). In case (a) R2 is unreachable.
Notice that since R2 does not access storage, R2 trans-
mits no further messages corresponding to packet d be-
cause he forgot that he is waiting for a response from
R3! In case (a) Alice localizes the fault to link (2, 3).
Now consider case (b), where Eve at R1 forwards R2’s
immediate response to her messages (again represented
by the arc) but drops any communication that is not an
immediate response to her message. From Alice’s point
of view, case (b) will look exactly like case (a), so Alice
will implicate innocent link (2, 3), and the FL protocol
cannot be secure.

4.3 Per-packet FL: Optimistic Protocol
Here we sketch our optimistic per-packet FL proto-

col, which can be thought of as a secure version of the
Packet Obituaries [2] protocol. (Our protocol corrects
a security vulnerability in [2]). Our presentation here is
short and informal, but [1] has a full treatment, and also
a technique to run this protocol in the asymmetric-path
setting. This protocol is instructive as an example of
a secure per-packet FL protocol with little additional
communication overhead beyond Per-Packet-Ack, and
because it demonstrates the use of onion reports (that
appear again in our statistical FL protocol, Section 4.5).

We assume that each node Ri shares a MAC key ki

with Alice. For each packet that Alice sends, the pro-
tocol proceeds in two phases:

The send phase: This is identical to Per-Packet-
Ack: Alice sends data packet d to Bob and Bob re-
sponds with ack a = [B, h(d)]kB . As before, Alice needs
to store a data packet digest z = h(d) and a time-out,
but now we also require that all intermediate nodes
store a digest of the data packet and ack that they see.

The report phase: This phase is run only if Alice
detects a missing or invalid ack. Alice sends an onion re-
port request to Bob, which tells all nodes along the path
to prepare an onion report. To respond to the request,
each router i creates an onion report θi. Each report
θi contains the digest of the data packet and ack corre-
sponding to the faulty exchange, which is concatenated
to its downstream neighbor’s onion report θi+1 to form
θi = [i, data-digest, ack-digest, θi+1]ki . We call these
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onion reports because each report layer is wrapped with
a MAC and then included in the next layer. In [1] we
prove that, because uncorrupted nodes do not modify
the data or acks, all of the uncorrupted nodes immedi-
ately downstream of Alice must send “good reports”
(defined formally in [1]). Thus, when Alice receives
the completed report θ1, checks to see where the first
“bad report” appears, and implicates the upstream-
most point where reports transition from “good” to
“bad” as the faulty link.

Security: First, observe that since onion reports are
MAC’d in layers that cannot be split apart, Eve can-
not implicate a link between two innocent downstream
nodes by selectively dropping reports. (Selective drop-
ping of reports and acks is a significant vulnerability of
the FL protocols of [2,5,21].) Now, observe that if Eve
wins by security condition (1) (see Section 4.1) then
she either must convince Alice that no fault occurred
at all (in which case she has to break the security of
the Per-Packet-Ack protocol of Section 3.3), or (2) she
has to forge part of the onion report θ1 in order to
make it looks like the fault that she caused occurred
at a link between two honest nodes, and not at a link
adjacent to Eve. However, to modify the onion report
so that it looks like a fault occurred between two hon-
est nodes, Eve must be able to forge the MAC of an
honest node. From the security of MACs and the Per-
Packet-Ack protocol, it follows that Eve cannot win at
by either security condition (1) or (2) with better than
negligible probability, so that the FL protocol is secure.

4.4 Statistical FL: Security Definition
We now explore secure statistical FL. We define secu-

rity for statistical FL, and discuss methods to construct
statistical FL protocols out of secure FD protocols.

Naive sampling is not useful: In contrast to the
sampling technique we used to build secure statistical
FD protocols, simply having Alice sample some packets
as probes and running FL on only those probe packets
does not make FL much more efficient. To see why,
observe that Alice cannot inform intermediate nodes
which packets she designates as probes (if she did, a
node occupied by Eve could then violate probe indistin-
guishability, see Section 3.4). It follows that intermedi-
ate nodes must behave as through every packet they see
is a probe, and the storage overhead at the intermediate
nodes remains as in a per-packet FL protocol!

Alarm thresholds for each link: In the spirit
of (α, β)-security (see Definition 3.2), in statistical FL
Alice should avoid raising an alarm when the fault rate
is below the false-alarm threshold α, but if Eve drops
more than a β-fraction of packets, then Alice should be
able to localize at least one link adjacent to Eve. We
can take an overall false-alarm threshold α and calcu-
late per-link thresholds α` (and likewise for β`).9 Alice

Secure statistical FD(a)

Alice 31 Bob2

(b)

Alice 31 2 Bob

Figure 10: An insecure composition.

should not complain if link ` experiences fault rate be-
low α`, and she should raise an alarm if the fault rate
exceeds β`.

Definition 4.2 ((α, β)-statistical FL security). We reuse
the game setting of per-packet FL of Figure 7. The
game consists of the Source sending at least T packets
and then Eve playing with the packets that she sees at
each of the nodes she controls. Let κ` denote the true
fault rate along link `, and let κ =

∑
` κ`. At the end

of the game, Alice outputs a list of links ` where Alice
believes that κ` > β`.
Correctness and security conditions: Here we com-
bine the correctness and security conditions, since it
may be in Eve’s interest to increase Alice’s estimate of
the fault rate on links between two honest nodes. We
require that (1) for every link ` not adjacent to Eve and
where κ` ≤ α`, Alice never outputs `, and (2) if κ > β
(which only happens if Eve is acting maliciously) then
Alice outputs at least one link ` that is adjacent to Eve.

A statistical FL scheme is secure if no efficient Eve
can break the correctness and security conditions with
non-negligible probability.

An insecure composition: Perhaps the most nat-
ural way to compose statistical FD protocols to obtain a
statistical FL protocol (similar to the approach of [5,21],
see Figure 10-(a)) is to have Alice run N simultaneous
probing protocols with each of the intermediate nodes,
9There are several possibilities for calculating α`, β`. One is
to assume that α is the overall honest congestion rate, and
then compute the corresponding per-link honest congestion
rates. For link ` = (i, i + 1), this false-alarm threshold is

α` = (1− α)i/N (1− (1− α)1/N ) and the corresponding de-
tection threshold is β` = α` · (β/α). In [1], we also present a
more precise security definition where Alice gets an accurate
estimate the fault rate for each link.
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Figure 11: A secure composition.

and use the statistics from each to infer behaviour at
each link. Unfortunately, this composition is vulnera-
ble to the following timing attack : Suppose an isolated
burst of packets travels through the network. The burst
will trigger a separate burst of acks as it reaches each
intermediate node. It follows that Eve (as in Figure 10-
(b)) can determine the origin of each ack by observ-
ing the time at which the ack arrives. Then, Eve can
drop all the acks originating from an honest node (Bob),
causing Alice to implicate a link (3, B) which is not ad-
jacent to Eve. Notice that this attack results from the
structure of the composition in Figure 10, and cannot
be prevented even when acks are encrypted.

4.5 A Secure Composition for Statistical FL
We can use secure statistical FD protocols to con-

struct a secure statistical FL via the composition method
in Figure 11. We assume that every node Ri has public
key PKi that is known to everyone, and keeps secret
the corresponding secret key SKi. Each intermediate
node runs a probing session with Bob, with one mod-
ification: whenever Bob decides to send an ack, Bob
will address that ack to Alice no matter whom the ack
is destined for! Each node forwards all acks upstream,
and processes only the ack he expects. At the end of
the FL session Alice will send a request [A]SKA

, similar
to the onion request of Section 4.3, to all the interme-
diate nodes. Then, upon node i’s receipt of the onion
report θi+1 from downstream node i+1, node i responds
with a digitally-signed onion report θi = [i, Vi, θi+1]SKi

where Vi is his count of the number of faults that oc-
curred between himself and Bob.10 When Alice receives
the onion θ1, she computes F` = Vi−Vi+1

pT for each link
` = (i, i + 1), and adds ` to her list of faulty links if
F` > α`+β`

2 .
Security: Notice that now Eve cannot implicate an

innocent link via (i) targeted dropping of acks, as in Fig-
ure 10-(b), because acks destined for different nodes are
indistinguishable, or (ii) targeted dropping of reports,
because the reports are onionized as in Section 4.3. Be-
cause the full proof is rather complex, we omit even a
sketch here and refer the reader to [1].

10To prevent replay attacks, each node should also timestamp
his onion report. To make the protocol monotone, each
intermediate node Ri should only include the onion report
from his downstream neighbour θi+1 in his own report θi if
the digital signature on θi+1 is valid.

Choice of probing protocol: The composition
works with either Pepper or Salt Probing. With Salt
Probing, the communication overhead and the compu-
tations at Bob required for the composition are identical
to those required for a single Salt Probing session be-
tween Alice and Bob, because the same set of packets
are designated as probes (by Bob) for each intermediate
node. Meanwhile, Pepper Probing increases communi-
cation overhead and processing at Bob, but less storage
is required at Alice and the intermediate nodes.

Implications for routing architectures: We ob-
serve that architectures in which source networks make
routing decisions by probing to intermediate nodes are
also vulnerable to the timing attack in Section 4.4. Our
results imply that architectures in which intermediate
nodes probe to destination networks are preferable from
the perspective of security.

5. CONCLUSIONS AND IMPLICATIONS
We conclude with some thoughts about the implica-

tions of our results on network architecture.
Fault Detection? Because FD protocols require

only pairwise participation from nodes, deployment of
FD can proceed in an incremental fashion that is com-
patible with incentives for informing routing decisions
at the network edge. However, when we consider the
placement and selection of FD protocols, natural ques-
tions arise about the division of labour between the end
host and the edge router. We argue that the placement
of FD protocols depends on the parties responsible for
providing confidentiality and driving routing decisions.
Consider, for example, the following three scenarios: (1)
Firstly, if the end host both provides confidentiality and
makes routing decisions, then host-based cryptography,
e.g., SSL, is appropriate for detecting faults on a per-
packet basis. This may be the case in a new routing ar-
chitecture, or a special-purpose secure network. (2) On
the other hand, if the edge router both provides con-
fidentiality and makes routing decisions, then Stealth
Probing [4]’s secure statistical FD protocol, that also
performs edge-to-edge encryption of traffic, is most ap-
propriate. This particularly appropriate when two stub
ASes belong to the same institution. (3) Finally, when
routers make routing decisions but confidentiality is op-
tionally provided at the end hosts, our Pepper and Salt
Probing protocols (designed to avoid modifying and re-
encrypting traffic at the edge router) are most appropri-
ate. We believe that this is the case for the majority of
scenarios at the edge of the Internet (e.g., a residential
broadband provider who runs FD on traffic that users
optionally protect with SSL), as well as in the core of
Internet. In fact, our Pepper and Salt Probing may
even be efficient enough to be deployed in the core of
Internet, as part of an architecture where core routers
inform their routing decisions by running FD to desti-
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nation networks.
Fault localization? FL protocols are likely to

be practical for special settings, e.g., highly-secure net-
works owned by a single party, or for a subset of packets
within an AS, e.g., network-management traffic. How-
ever, because FL requires active participation from the
intermediate nodes, basing a network accountability frame-
work on FL is not obviously compatible with the de-
ployment incentives of the intermediate nodes on the
Internet. (Recall that FL requires participation, i.e.,
dedicated storage, at each intermediate node even in a
weaker security model where Eve can only selectively
drop packets.) Our negative results imply that reduc-
ing the complexity of FL is only possible under a weaker
security model: for example, by assuming some trust
between ASes, or by detecting bad behaviour by using
additional out-of-band information about the content of
the packets, or by considering an adversary with strictly
weaker abilities. We leave a rigorous treatment of these
alternatives for future exploration.

Accountability? Our FD protocols may be a
more appropriate building block for constructing an ac-
countability framework based on bilateral business re-
lationships between ASes. For instance, a stub AS may
blame poor edge-to-edge performance on its immediate
provider who could, in turn, ascribe blame to the next
AS in the path, as suggested in [16]. (Interestingly,
the structure of our statistical FL protocol echos that
of [16]’s accountability framework). Another possible
accountability framework could combine multiple FD
measurements from different vantage points to localize
faulty links and nodes in the network, in the style of
network tomography. However, traditional approaches
to network tomography based on maximum likelihood
estimation [6,7], do not apply when an adversary is ac-
tively trying to evade detection. We believe that this
open problem would benefit from a rigorous approach,
similar to the one we took in this paper, that combines
theoretical cryptography with statistics to construct se-
cure protocols and establish negative results for the ad-
versarial setting.
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