Evaluating Server-Assisted Cache Replacement
in the Web

Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford

AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932 USA,
E-mail: {edith,bala, jrex}@research.att.com
Web page: http://www.research.att.com/"{edith, jrex}

Abstract. To reduce user-perceived latency in retrieving documents on
the world wide web, a commonly used technique is caching both at the
client’s browser and more gainfully (due to sharing) at a proxy. The
effectiveness of Web caching hinges on the replacement policy that de-
termines the relative value of caching different objects. An important
component of such policy is to predict next-request times. We propose
a caching policy utilizing statistics on resource inter-request times. Such
statistics can be collected either locally or at the server, and piggybacked
to the proxy. Using various Web server logs, we compared existing cache
replacement policies with our server-assisted schemes. The experiments
show that utilizing the server knowledge of access patterns can greatly
improve the effectiveness of proxy caches. Our experimental evaluation
and proposed policies use a price function framework. The price func-
tion values the utility of a unit of cache storage as a function of time.
Instead of the usual tradeoffs of profit (combined value of cache hits) and
cache size we measure tradeoffs of profit and caching cost (average allo-
cated cache portion). The price-function framework allows us to evaluate
and compare different replacement policies by using server logs, without
having to construct a full workload model for each client’s cache.

1 Introduction

The popularity of the World Wide Web has imposed a significant burden on
the communication network and web servers, leading to noticeable increases in
user-perceived latency. Caching popular resources at proxies offers an effective
way to reduce overhead and improve performance. Given that proxy caches are
of a finite size, sound policies are needed for replacing resources in the cache.
Although cache replacement has been studied extensively in the context of pro-
cessor architecture and file systems, the Web introduces more complicated chal-
lenges, since resources vary substantially in their sizes, fetching costs, and access
patterns. Indeed, new replacement policies have been developed to incorporate
these parameters [1, 2, 3, 4]. The Web exhibits high variability between the
access patterns of different resources, but more regularity in accessing a partic-
ular resource. The most important factor for a good replacement policy remains
predicting the next request time of a resource which depends on the ability to
observe and interpret the access patterns.

The natural place to collect statistical information on request patterns and
interdependencies is the web server. Any one proxy views a small number of re-
quests to any one server, and hence, the data at its disposal may not be sufficient
to model the access patterns. In addition, the proxy contacts a large number of
different servers, and the required computational efforts to generate such mod-
els may not be justified. Proxy cache performance can be enhanced by having
servers generate predictions of accesses to their resources and communicate this
knowledge back to the proxies (as hinted in [5] and explored in [6]). Following the
approach in [5, 6, 7, 8], we assume that proxies and servers can piggyback infor-
mation on regular request and response messages. The information exchange can
be incorporated into the HTTP 1.1 protocol without disrupting the operation
on non-participating proxies and servers [6]. For the sake of efficiency, the server
does not maintain an online history of each proxy’s past accesses and, hence,
bases its response to the proxy only on the requested resource and piggyback
content. A small amount of transient state is maintained on a per-server basis
at the proxies. The protocol does not involve any new messages between the
proxy and server sites. Operating within these practical constraints, we propose
policies for server-assisted cache replacement.

Performance of cache replacement policies hinges on the accuracy of the pre-
dictions of the next access time for each resource. The LRU policy, for example,
utilizes the last request time of each resource as the only predictor for its next re-
quest. The LFU replacement policy utilizes the frequency with which a resource
is accessed and the LRV policy [4] utilizes the number of previous requests to
the resource. We propose a replacement policy where the next request time is
provided as a distribution function. The distribution is estimated by collecting
per-resource statistics on inter-request times. In server-assisted replacement, the
server generates a histogram of inter-request times by observing its request logs.
The histogram 1s piggybacked to the requesting proxy and used to determine
the duration for caching resources. In addition, the server may piggyback hints
about related resources that are likely to be accessed in the future.

Our experimental evaluation compares server-assisted and prozy-local (i.e.
without the help of server hints) replacement policies. The evaluation of server-
assisted policies necessitated the use of server logs since proxy logs do not provide
us the statistics available to the servers. We used three large Web server logs.
The logs provide, for each client, the full request sequence of resources belonging
to the particular server. We used price functions to evaluate the performance of
different replacement policies using the information in the server log, without
directly considering (or simulating) the full workload of the cache. The price is
a function of time capturing the current value of a unit of cache storage. The
caching-cost of a resource for a time period is the average price during that pe-
riod times the resource size and length of time. In the experimental evaluation we
used constant-valued price functions (i.e., an assumption of steady-state). Instead
of considering the usual tradeoffs of cache size and profit (sum of the fetching
cost of objects across all cache hits), we measured tradeoffs of profit and aver-

age cache portion allocated to server’s resources." The profit and caching costs
are computed for each client separately and summed over all clients. Tradeoffs
are obtained by varying the threshold price. When using price functions, cache
replacement policies are viewed as generating a sequence of decisions on if and
how long to cache each resource. In the evaluation, we cast traditional cache
replacement policies (such as LRU) in this framework.

In Section 2 we formulate the optimal caching policy in terms of a price
function where each resource has a distribution of inter-request times. We discuss
a replacement policy when knowledge of this distribution is replaced by statistics
on inter-request times. Section 3 provides an experimental evaluation of our
approach. We conclude with a section on ongoing and future work.

2 Cache Replacement Model

Our caching framework models the value of caching a resource in terms of its
fetching cost, size, next request time, and cache prices during the time period
between requests. After deriving expressions for the profit and the cost of caching
a resource, we describe how the Web server can aid the proxy by estimating
the request interarrival distribution and the likelihood of accesses to related
resources. Together, the proxy’s price function and the inter-request statistics
guide the cache replacement decisions.

2.1 Cache Price Function and Resource Utility

As the basis of the cache replacement policy, we use the price function ©(t) of
the cache and the wutility of a resource to the proxy. For a resource r requested
at time ¢, let s, be the size, t + A, ; be the time of its next request, and f, ; be
its fetching cost at time £ + A, ;. If A, ; is known in advance, then the resource
is worth caching for either 0 or T' = A, ; seconds. Intuitively, the proxy should
favor the caching of resources with high fetching cost and/or small size. We
define the utility of caching the resource for T' seconds as

fr,t

Sp :+T w(t)dt .

Upt (T) =

When caching decisions are made with respect to a price-function and a threshold
value, the resource is cached for a time period if its utility exceeds the threshold
throughout the interval.

In reality, the proxy has only partial or statistical knowledge of fetching costs
and next request time of cached objects. When making the caching decisions,
we use estimated utility for caching a resource for a particular time period. The
fetching cost f,; can be based on the last fetching time, the network load on the
path to the server, or the server load. The most challenging part of estimating
resource utility is to obtain a good estimate of the next request time. The various

! Total caching cost under steady-state, divided by elapsed time.

cache replacement policies make implicit assumptions about this value, and their
performance hinges on the quality of (absolute or relative) estimates for A, ;.
For example, the LRU replacement policy assumes f,:/s, to be identical and
fixed for all resources and utilizes an estimate on A, ; that is decreasing with
the last request time for r. The Greedy-Dual-Size algorithm [1] (generalization
of LRU that incorporates fetching cost and sizes) can be viewed in the above
framework as assuming a steady-state and substituting ¢t — ¢, for A, ;, where ¢,
is the last request time of 7.

Instead of assuming a particular expression for the next request time, we for-
mulate an optimal request sequence when the time between requests is captured
by a probability density function A, ,(x) (z > 0) (probability density that the
object is requested in time ¢ + z) and let L,;(z) be the corresponding distri-
bution function. Let f,(z) be the expected fetching cost of r at time ¢ + z. We
compute the expected profit and cost of caching the resource for T' time units
(or up till its next request). The estimated utility of caching the object for T
time units is the ratio of the expected profit and expected cost. The expected
profit is

T
proﬁtryt(T) :/0 Ay i (2) fr(2)de

and the expected cost is
T
cost, +(T) = s, / m(t+z)(1 — Ly ¢(2))dz .
0

The estimated utility of increasing caching time from 77 to 75 is:

T
profit, ,(T2) — profit, , (1) _ le Ayt (z) fr(z)de
costr¢(T2) —costre(T1) s, [m(t + 2)(1 = Ly (2))dz

If V is the threshold then the caching time T" of a resource can be predetermined
as follows. Caching for 7" time is valid if the estimated utility of increasing
caching period from y to 7" exceeds V for all y € [0,7"].

Tl, prOﬁtr,t(Tl) - prOﬁtr,t(y) >V

Yy <
Y cost, + (T") — costy, +(y)

Among all valid T’, we select T to maximize the expected profit, that is, we
select the maximum valid 7. Formally,

T = arg max T’ is valid (1)

The value of T serves as a expiration timeout for evicting resource r from the
proxy cache.

Related Work: Replacement policies were previously analyzed under some re-
striction or statistical assumptions on the data [9, 10]. Lund et al. [11] and
Keshav et al.[12] studied policies for virtual circuit holding time in TP over ATM
networks, based on statistics of the packet inter-arrival sequence. In cache re-
placement context, these policies translate into considering each client-resource
pair separately and utilizing the resource inter-request statistics to price the
caching cost of a resource. Capturing and utilizing reference locality for replace-
ment decisions was attempted in [13].

2.2 Utilizing Inter-Request Statistics

By receiving requests from a large number of clients, servers can estimate the
distribution A, ¢(z) of the time between successive requests. In responding to a
request for resource 7, the server can piggyback the probability distribution
(in a discretized form) to aid the proxy in its cache replacement decisions.
The distribution is computed using the server logs. Consider discrete times
0 =to,t1,...,tn and a proxy cache in steady-state (w(¢) constant) with fetching
costs that do not change across time (f,(z) = f,). For a resource r let s, be its
size and f, its fetching cost. Let n, be the total number of requests for r listed
in the log. Let ¢, (i) be the number of requests which follow a previous request
for r by same client and was made no earlier than ¢; seconds ago. Let P; be the
price per unit-size of caching for ¢; time. Then the estimated expected cost of
caching for time-length ¢; is approximately
Sy

coste (1) = (X er () P+ Y e ()P
Jj2i J<t
(in the experiments we compute the exact value, where the second term is re-
placed by the sum of prices per unit-size over all inter-request times smaller than

t;) and the estimated expected profit is

profit, (i) = EZCT(_]) :

n
"j<i

To compute the recommended time interval 7 we start with ¢ = 0 and repeat: we
look for the minimum j > ¢ such that

profit, (j) — profit, (¢)

>V
cost, (j) — costy (4)

and set ¢z ¢ j. If no such j exists, we stop.

The use of server-generated predictions implicitly assumes that the set of
clients have similar access patterns. The server can increase the accuracy of the
predictions by classifying various “client types” based on parameters such as
their volume of traffic to the server, time zone, and time-of-day at the time
request was issued. Statistics such as access frequency of resources can be col-
lected for each class separately. The proxy identifies its “type” to the server (e.g.,

provides it with estimate on number of daily /weekly requests made to server re-
sources) and server returns statistical information about the next request time,
along with the request resource. The more accurately the server-generated dis-
tribution function fits the access patterns of a particular client/resource, and the
less variance these distributions exhibit, the better are the replacement sequences
generated. However, dividing the proxies into too many types also decreases the
amount of data available for estimating distributions, which results in lower ac-
curacy and higher computational complexity. (The extreme partition is assigning
a type for each client. This is essentially a local policy that does not utilize the
server’s additional knowledge.)

The above formulation associates with each resource a distribution on its
next request time. In reality, different resources are dependent, and conditional
probabilities capturing these interdependencies may yield more accurate predic-
tions. In [6], we proposed heuristics for constructing volumes that capture the
pairwise dependencies between resources by observing the stream of requests at
a server; measuring such dependencies was also suggested by [14, 15] and further
developed in [6]. Let py|, be the proportion of requests for resource r that are fol-
lowed by a request for resource s by the same client within 7" seconds. Resource s
is included in r’s volume if py), is greater than or equal to a threshold probability
pt. When a proxy requests resource r, the server constructs a piggyback message
from the set of resources s with p,|, > p;. Based on these predictions, the proxy
can extend the expiration time (or adjust the priority) of resources that appear
in the piggyback message and are stored in its cache. After estimating the im-
plication probabilities p,|., the server can evaluate the potential effectiveness of
piggyback information by measuring how often a piggyback message generates
a new prediction for resource s (particularly important when an access to s is
often preceded by a sequence of requests by the same proxy).

3 Performance Evaluation

To compare the proxy-local and server-assisted cache replacement policies, we
evaluated the various schemes on three large server logs. The server logs can be
viewed as providing a sequence of triples, with the requesting client, requested
resource, and request time. For this initial study, we assumed constant price
functions and that all resources have the same size and fetching cost; hence, the
profit is simply the number of cache hits and the cost is the total time resources
spend in cache. We evaluated the cache hit ratio versus the mean cost per hit,
averaged across all requests. These measures are computed by partitioning the
server logs by clients, and computing the number of hits and the total time-
in-cache for each resource and for each client. The latter quantities are then
summed over clients and resources. The total hit ratio is obtained by dividing
the total number of cache hits by the total number of requests. The cost per hit
is obtained by dividing the total cost (object-seconds) by the number of hits.

3.1 Server Logs

The experiments use the access logs of three Web servers, from Amnesty Interna-
tional USA, Apache Group, and Sun Microsystems. The server logs represent a
range of Web sites in terms of the number of resources and accesses, as shown in
Table 1. Though the servers do not necessarily see the requests that were satis-
fied directly at the client or proxy caches, the logs do include all if-modified-since
requests to validated cached copies of resources. Many clients have very short
interactions with a server, resulting in a small number of requests. These clients
experience very low cache hit rates, even under an optimal replacement policy.
In the ATUSA log, only 11% of requests were for resources already requested by
same client. The corresponding figures are 36% and 38% for the Apache and Sun
logs, respectively. These numbers provide an upper bound on the cache hit ratio
for all of the cache replacement policies.

Log (days)|Number of|Number of| Requests |Unique Resources
Requests Clients |per Source Considered
ATUSA (28) 180,324 7,627 23.64 1,102
Apache (49)| 2,916,549 271,687 10.73 788
Sun (9) 13,037,895 218,518 59.66 29,436

Table 1. Server log characteristics

3.2 Cache Replacement Policies

We examined a variety of replacement policies, including an optimal omniscient
policy, three proposed proxy-local policies, and our server-assisted policies. Each
policy is described in terms of our framework, assuming constant price functions:

Optimal (Opt): The optimal replacement sequence caches all resources with a
next request time within some fixed threshold value. Cost-performance trade-offs
are obtained across a range of threshold values. Opt provides a good yardstick
for gauging other policies.

Fized (LRU): LRU predicts a resource’s next request time based only on the
last request time. This results in a proxy-local policy that keeps all resources in
the cache for the same, fixed, period of time. Cost-performance trade-offs are
measured by varying the resource expiration times across a range of values from
40 seconds to 24 hours.

Ezponentially averaged mean and variance (EMV): This proxy-local policy is
based on the premise that current inter-request time interval of a resource is
more correlated with recent inter-request times. This policy was evaluated by
Keshav et al. [12] on circuit holding times, and derived using Jacobson’s work [16]

on Estimators for round trip times. For a parameter 0 < a < 1 (we used o = 0.3),
the policy maintains exponentially averaged estimates on the mean and variance
of the inter-request times: initially po = 0 and o¢ = 0. After observing the kth
inter-request time, ¢, we compute

pr+1 = atg + (1 — a)pg
k41 = a|pg — ti| + (1 — a)og

A resource is cached for pg + 204 time units, when this is below the threshold.

Local inter-request statistics (L1S): This is the policy outlined in Section 2.2,
where the inter-request times histogram is constructed using locally-available
(at the client) data. If fetching costs and resource sizes are uniform, this lo-
cal policy reduces to the adaptive policy proposed in [11, 12] for circuit holding
times. Typically, resources are requested only a few times by any one client in the
duration of the log. When predicting an inter-request interval for resources re-
quested 15 or fewer times, we used a histogram containing all other inter-request
time intervals. Otherwise, the histogram contained all inter-request times. Fu-
ture inter-request times were included in order to account for the initial lack of
history. Note that LIS does not cache resources requested two or fewer times.
The histogram bin partition used to evaluate LIS, SIS and SIS-c policies (see
below) consisted of 21 time intervals varying from 20 seconds to 24 hours.

Server inter-request statistics (SIS): The server-assisted policy outlined in Sec-
tion 2.2. The server generates inter-request distributions for each resource r using
statistics from all its clients. For each resource and threshold value U, there is a
“recommended caching period” t,(U). Trade-offs are obtained by sweeping U.

Server inter-request statistics, filtered by client type (SIS-c): This policy is a
refinement of SIS, where the server generates separate inter-request distributions
and caching periods for different types of clients, based on how often they issue
requests to the server. The statistics obtained for each type are applied to clients
of that type. The experiments consider three classes for the AIUSA logs, four
for the Apache logs, and five for the Sun logs.

Volume enhanced (VOL): This enhancement captures interdependencies be-
tween server resources, and can be combined with any of the other cache re-
placement policies. We evaluate the LRU+VOL policy, which is the LRU policy
(each object is kept for same amount of time) with the following enhancement:
When a resource r appears in a piggybacked volume, and is currently cached,
its expiration time is extended by its stated caching time. We also evaluate
SIS+VOL, a similar enhancement of the SIS policy.

3.3 Cost-Performance Trade-Offs

The graphs in Figure 1 compare the Opt, LRU, EMV, LIS, SIS, and SIS-c algo-
rithms on all three server logs, across a range of thresholds. Each threshold value

results in a single measure of performance (the hit rate on the y-axis) and over-
head (object-seconds-per-hit on the x-axis). The cost per hit increases with the
hit ratio for all of the replacement policies, since small improvements in the hit
ratio incur progressively larger costs. As a result, even the OPT algorithm incurs
a significant cost per hit as the hit ratio grows closer to the upper bound (11%,
36%, and 38%, respectively, for the ATUSA, Apache, and Sun logs). The graphs
also show that the server-assisted SIS and SIS-c policies typically outperform the
three proxy-local policies (LRU, EMV, and LIS). Consequently, server-assisted
policies achieve a higher hit ratio for the same cache size, or the same hit ratio
for a lower cache size, compared to proxy-local schemes. Even SIS, where the
server supplies the same hints per-resource for all clients, outperforms the LRU
scheme that treats all resources uniformly.

Among local policies, LRU outperforms the more involved LIS and EMV
when the cost-per-hit is high. This seemingly counter-intuitive behavior is due
to the large number of resource-client pairs with small number of requests. LIS
does not cache a resource requested by a client twice or less, and EMV does not
cache a resource on its first request. Hence, LIS and EMYV are subject to a lower
performance ceiling than LRU. Furthermore, when there are only a few requests,
the selection of a caching period is based on very limited statistics and is less
accurate. The above suggests that a local policy which combines LIS or EMV
with a default non-zero caching period would enhance its performance.

025
ache OPT
SIS¢
02t SIS o
LRU <
LIS -=
EMV -x
,,,,, +
—]
- B
Z 7
.-
o o
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
“object-seconds per hit “object-seconds per hit
(a) ATUSA (b) Apache
04 . . . ! 0.3 . ! .
Sun OPT
SIS-g—=
0.25
0.2
- ©
o]
E ERCATRS
s =
4 e 0.05 o
0.05 fi’ - B
B
o S 0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 0 2000 4000 6000 8000 10000
‘object-seconds per hit" object-seconds per hit
(c) Sun (c1) Sun (zoomed in at low-cost hits)

Fig. 1. Hit rate vs. cost-per-hit for all six replacement policies

10

The policies SIS, SIS-c, and LIS differ in the partition of the clients used to
collect the inter-request intervals statistics. The granularity of the client partition
corresponds to a tradeoff between the amount of statistics available and the
applicability of the statistics to a particular client. The two extremes are LIS,
which collects statistics locally at each client, and SIS which collects the same
statistics for all clients. SIS-c differentiates between different types of clients,
based on total number of requests.

On very low ranges of object-seconds-per hit (see the zoomed in portion of
Figure 1), the local policy LIS outperforms other policies. This is more pro-
nounced for the Apache and in particular the Sun logs, where client-resource
interactions are on average longer (and LIS indeed exhibits better relative per-
formance). The explanation is that resources that have smaller inter-request
times, and hence, lower expected cost-per-hit, tend to be requested many times
by clients and hence, there is a good amount of inter-request statistics available
locally. As the cost-per-hit increases, SIS and SIS-c significantly outperform LIS,
indicating that locally-available statistics are not sufficient. SIS-c typically out-
performs SIS, substantiating the value of differentiating between client types.
The above results suggest a combined policy likely to dominate all three: For each
client, each resource is considered separately; if there is “enough” local statistics,
we use LIS; otherwise, the client utilizes the statistics of its client-type (SIS-c)
or even the statistics of all clients (SIS). The downside of the combined policy
(and of LIS) is that each entity in the hierarchy needs to collect inter-request
statistics.

Figure 2 shows the performance of the SIS-c policy on various client classes.
For example, the top curve in Figure 2(a) shows the cost-performance trade-offs
for the top clients which accessed the ATUSA server 151-1000 times during the
28-day period. These frequent clients, who contribute 1% of the total requests,
exhibit much higher hit rates than the other clients. This is also true under other
replacement policies, such as OPT, since these clients are much more likely to
access the same resource multiple times. These accesses stem from high-end
users or, perhaps, from proxy sites that relay requests for multiple clients. It is
precisely these clients or proxies that would most benefit from participating in
an enhanced information exchange with the server sites.

In Figure 3, we investigate the benefits of using server-generated volumes
to extend the expiration time of cached resources. The piggyback-enhanced re-
placement policies utilize volumes obtained with time interval 7' = 300, prob-
ability threshold p; = 0.25, and effective probability 0.2 [6]. Incorporating the
piggyback information improves the performance of the LRU policy, as shown
in Figure 3(a). The volume information augments the proxy-local policy with
information about resource access patterns. This extra knowledge is less useful
for the SIS policy, as shown in Figure 3(b), since the basic SIS scheme already
gleans useful information from the server estimates of the inter-request times for
individual resources. In fact, the basic SIS scheme even outperforms the volume-
enhanced LRU policy, suggesting that accurate estimates of inter-request times
may be more useful to the proxy than predictions about future accesses to other

11

0.09 T T T T 1 T T T T

L o] 08|
0.08 £ 1g:1_1062 35% ~—
08 ; 10:1062_1063 36% -+ 1
007 |] i 1g:10e3_10e4 15% &
- i G:10e4_1065 5% x
) 0.7 1 / q:10e5_10e6 9% -&-- B
0.06 | - 1q:1_ 19 16% —~— 1 / All =
. - 1q:20_150 76% -+ . 06 - / N * 1
E ; fq:151_10e8 1% o E) /o
£ o005 ° All - o] £ o5r i 1
£ ST e £ o

—— 04 X

03 Fx / 4

0 2000 8000 10000 0 2000 8000 10000

4000 6000 4000 6000
‘object-seconds per hit ‘object-seconds per hit

(a) ATUSA (b) Sun
Fig. 2. Hit rate vs. cost-per-hit for SIS-c client classes

resources. Further experiments with other server logs and volume parameters
(e.g., larger p;) should lend greater insight into the cost-performance trade-offs
of volume-enhanced cache replacement policies.

0.1 0.18 T T T

0.09 9 0.16 -

0.08 1 0.14 + Sun RF+V ——

SUN RF -+

© °
£ o007t — g od2) g
z E

0.06 | 1 041l]

LRU ——
005 | Enhanced - 1 oost 1
0.04 ; 5 t t y 0.06
500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
‘object-seconds per hit’ ‘object-seconds per hit'
(a) LRU vs. LRU4VOL (b) RF vs. RF4+VOL

Fig. 3. Volume-enhanced policies on the Sun log

4 Ongoing Work

Our experiments implicitly assume that the servers see all or most of the client
requests. This becomes less likely as proxy caching becomes more common, par-
ticularly when the proxy employs cache coherency policies that avoid generating
If-Modified-Since requests to servers. By hiding client accesses from the server,
these trends potentially limit the server’s ability to generate accurate predic-
tions of inter-request distributions and dependencies between resources. One
approach is for the server to collect statistics based on the fraction of traffic due
to low-volume clients. These clients are more likely to be individual users with
only browser caching. As an extension to our server-assisted cache replacement
model, we are also considering ways for participating proxies to summarize in-
formation about client requests that are satisfied in the cache. The server can

12

accumulate these additional statistics across multiple proxy sites to generate
better estimates of the inter-request distributions and resource dependencies.
the piggyback response messages.

To reduce the overhead on the web server, we also propose the concept of a
transparent node in the network that can intercept traffic to a server, collect the
statistics, and disseminate information to proxies [17]. In addition, our model
of server-assisted caching introduces integrity issues, since the server and proxy
must trust the information in the piggyback messages. The server may have
incentives for proxies to cache resources for longer periods of time, and could
intentionally underestimate the next request time. Likewise, a proxy could “at-
tack” the integrity of server’s operations by providing wrong information about
their type or user access patterns. The server can control these proxy attacks
by removing proxies with extreme behaviors when calculating the statistics. The
proxy can only control server attacks by collecting per-server information or by
subscribing to statistics accumulated at a trusted intermediate site, such as the
transparent network node.

In Section 2 we formulated price-function-optimal cache replacement, where
the goal is to maximize cache hits for a given caching cost. We notice tight corre-
spondence between these trade-offs and optimal trade-offs of hits and cache size:
(1) Consider an (offline) instance of the Web caching problem where resource
sizes are small relative to the cache size. There exists a price function such
that optimal replacement with respect to it yields near-optimal hits-cache-size
tradeoffs. These prices can be obtained by formulating (fractional) caching as a
linear program, and setting the prices according to the dual optimal solution.
(2) For paging with uniform fetching costs and resource sizes, the least-valuable
resource is the one to be requested furthest in the future [18]. When varying
fetching costs are introduced, there is no such total order on values of caching
different resources. The price-function metric induces such an ordering. (3) Stud-
ies show that large proxy caches exhibit regular usage patterns and a definite
diurnal cycle [19]. This suggests that the same price function is applicable on
different days.

References

[1] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems, December
1997.
http://www.cs.wisc.edu/ cao/papers/gd-size.html.

[2] S. Irani, “Page replacement with multi-size pages and applications to web
caching,” in Proc. 29th Annual ACM Symposium on Theory of Computing, 1997.

[3] N. Young, “On line file caching,” in Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms, ACM-SIAM, 1998.

[4] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,” tech. rep.,
University of Pisa, January 1998.
http://www.iet.unipi.it/ " luigi/lrv98.ps.gz.

[5] J. C. Mogul, “Hinted caching in the web,” in Proceedings of the 1996 SIGOPS
FEuropean Workshop, 1996.
http://mosquitonet.stanford.edu/sigops96/papers/mogul.ps.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

13

E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving end-to-end performance
of the Web using server volumes and proxy filters,” in Proceedings of ACM SIG-
COMM, September 1998.

http://wuw.research.att.com/ "bala/papers/sigcomm98.ps.gz.

B. Krishnamurthy and C. E. Wills, “Study of piggyback cache validation for
proxy caches in the world wide web,” in Proceedings of the USENIX Symposium
on Internet Technologies and Systems, December 1997.
http://www.research.att.com/ bala/papers/pcv-usits97.ps.gz.

B. Krishnamurthy and C. E. Wills, “Piggyback server invalidation for proxy cache
coherency,” in Proceedings of the World Wide Web-7 Conference, April 1998.
http://wuw.research.att.com/ bala/papers/psi-www7.ps.gz.

A. Borodin, S. Irani, P. Raghavan, and B. Schieber, “Competitive paging with
locality of reference,” in Proc. 23rd Annual ACM Symposium on Theory of Com-
puting, 1991.

A. Karlin, S. Phillips, and P. Raghavan, “Markov paging,” in Proc. 33rd IFEF
Annual Symposium on Foundations of Computer Science, IEEE, 1992.

C. Lund, N. Reingold, and S. Phillips, “IP over connection oriented networks and
distributional paging,” in Proc. 35th IEEE Annual Symposium on Foundations of
Computer Science, 1994.

S. Keshav, C. Lund, S. Phillips, N. Reingold, and H. Saran, “An empirical evalu-
ation of virtual circuit holding time policies in 1P-over-ATM networks,” Journal
on Selected Areas in Communications, vol. 13, October 1995.
http://www.cs.cornell.edu/skeshav/doc/94/2-16.ps.

A. Fiat and Z. Rosen, “Experimental studies of access graph based heuristics:
Beating the LRU standard?,” in Proc. 8th ACM-SIAM Symposium on Discrete
Algorithms, 1997.

A. Bestavros, “Using speculation to reduce server load and service time on the
WWW.” in Proceedings of the ACM 4th International Conference on Information
and Knowledge Management, 1995.
http://www.cs.bu.edu/faculty/best/res/papers/Home.html.

V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to improve
world wide web latency,” Computer Communication Review, vol. 26, no. 3, pp. 22—
36, 1996.
http://daedalus.cs.berkeley.edu/publications/ccr-july96.ps.gz.

V. Jacobson, “Congestion avoidance and control,” in Proceedings of ACM SIG-
COMM, August 1988.

E. Cohen, B. Krishnamurthy, and J. Rexford, “Improving end-to-end performance
of the Web using server volumes and proxy filters,” Tech. Rep. 980206-01, AT&T
Labs Research, February 1998.

http://www.research.att.com/ "bala/papers/mafia-tm.ps.gz.

L. A. Belady, “A study of replacement algorithms for virtual storage computers,”
IBM Systems Journal, vol. 5, pp. 78101, 1966.

S. D. Gribble and E. A. Brewer, “System design issues for Internet middleware
services: Deductions from a large client trace,” in Proceedings of the USENIX
Symposium on Internet Technologies and Systems, December 1997.
http://www.usenix.org/events/usits97.

