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Abstract
There is now a significant and growing functional gap between the
public Internet, whose basic architecture has remained unchanged
for several decades, and a new generation of more sophisticated
private networks. To address this increasing divergence of func-
tionality and overcome the Internet’s architectural stagnation, we
argue for the creation of an Extensible Internet (EI) that supports
in-network services that go beyond best-effort packet delivery. To
gain experience with this approach, we hope to soon deploy both
an experimental version (for researchers) and a prototype version
(for early adopters) of EI. In the longer term, making the Internet
extensible will require a community to initiate and oversee the
effort; this paper is the first step in creating such a community.

CCS Concepts
• Networks → Network architectures;

1 Why try to change the Internet now?
It is well known that the current Internet’s design has many short-
comings. For instance, it was not designed with security in mind,
so it is vulnerable to a wide range of attacks such as distributed
denial of service, route spoofing, and DNS hijacking. In addition,
the Internet’s service model of host-to-host packet delivery is not
ideally suited to today’s usage, which is predominantly content-
and service-oriented and typically involves mobile and/or multi-
homed clients. We cite these problems not as a criticism of the
original architecture – whose generality and longevity have been
astounding – but of our inability to evolve that architecture as its
inevitable inadequacies have become apparent through changes
in usage and expectations. Despite extensive research into alter-
native designs that would address the problems cited above, this
architectural stagnation has persisted for several decades.

Before continuing, we clarify what we mean by architecture.
Broadly construed, the Internet architecture encompasses the In-
ternet’s layered design and all of its constituent protocols. Here
we adopt a narrower definition that only includes the end-to-end
service model of the Internet (best-effort packet-delivery), but not
the details of the protocols used to achieve it. With this definition,
neither the transition from IPv4 to IPv6 nor the addition of new

*Authors in alphabetical order.

transport protocols are seen as architectural changes. In addition,
we will use the term service, which has many meanings in the net-
working context, to mean the end-to-end functionality provided
to hosts by the network portion of the Internet infrastructure.

While the architecture has remained unchanged, there have
been significant technical developments that have enabled op-
erators to build better networks1 and improve application per-
formance and security/privacy through better infrastructure man-
agement (e.g., software-defined networks, network virtualization,
network function virtualization), more flexible hardware (e.g.,
programmable routers, SmartNICs), more secure and private pro-
tocols (e.g., TLS, DNSSEC, RPKI, QUIC, oDNS), and more
performant congestion control algorithms (e.g., BBR [3], Annulus
[20]). These innovations enable the Internet to do a better job of
supporting the Internet’s current architecture; however, they do
nothing to transform that architecture.

This architectural stagnation has led many to conclude that sig-
nificant change to the Internet’s architecture is not possible. Some
say that we tolerate the shortcomings of the Internet because it
works sufficiently well, so there is no need for change. On the
contrary, we contend that there is a need for change, but we con-
tinue to use the current Internet because we have no other choice:
despite significant efforts, we have not been able to change the
Internet’s architecture, and there is no readily available substitute.

However, the first glimmer of an alternative has recently ap-
peared in the form of an emerging generation of large private net-
works. Over the past decade, several cloud and content providers
have constructed extensive high-capacity networks to handle their
traffic. To extend the reach of these networks, they have deployed
points-of-presence (PoPs) within tens of milliseconds of much
of the world’s population, and have also deployed an increasing
number of off-network caches. As a result of these developments,
a significant fraction of the Internet’s traffic is either handled by
internal caches or exchanged directly between a client’s domain
and one of these large private networks via their PoPs [2, 15].

What makes these new private networks functionally differ-
ent from traditional carrier networks is that they typically apply
additional processing in their PoPs to improve application per-
formance. This in-network processing is fairly basic – consisting

1Unless otherwise specified, we use the term “network” to refer to enterprise, campus,
domain, or other networks within a single administrative realm.
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mostly of caching (which has long been provided by CDNs), flow
termination (which improves end-to-end delivery times), and load
balancing (which improves application performance by avoiding
overloaded servers). Thus, the network-level service provided by
these new networks is not purely host-to-host IP packet delivery
(though, to maintain backwards compatibility, it appears that way
to clients).

While these private networks enhance customer experience,
they also create a growing functional disparity between what we
call the public Internet, whose service is limited to end-to-end IP-
delivery, and these emerging private networks whose additional
processing – for their own applications and those hosted on their
clouds – provides substantially better performance and security.2

As a result, the original vision of a unified public Internet is
starting to fracture into a collection of private networks, each with
its own proprietary service offerings.

While this is a worrisome development, it is also an opportunity
in that these private networks can help improve the public Internet
in two ways. First, they show how the Internet’s basic service
model can be augmented with additional services without changes
in IP or other core protocols. While the ability to create an Internet
with an extensible service model has been described conceptually
in several research papers [9, 11, 14, 16, 18, 19], the existence of
these private networks and their enhanced functionality makes a
far more persuasive case.

Second, these private networks – with their extensive reach,
high capacity backbones, and PoPs capable of in-network process-
ing – provide an ideal platform on which to deploy a new and more
flexible Internet architecture. We propose leveraging this platform
to transform, in a fully backwards-compatible manner, the current
Internet into one with an extensible service model where the adop-
tion of new functionality does not require equipment upgrades nor
substantial delays for standardization and deployment. In short,
we believe there is an unprecedented opportunity to gradually but
radically remake the Internet architecture through incrementally
deployable changes.

This short essay explains why we believe such a transformation
is possible by addressing why an architectural change is needed
(Section 2), what principles should guide the design of this new
architecture (Section 3), how these principles could be turned into
a concrete design (Section 4) that would benefit users (Section 5),
who among the stakeholders might benefit (Section 6), and why
there is a chance of success (Section 7).

This last point is crucial because previous proposals for chang-
ing the Internet architecture in any fundamental way have come to
naught (see [4] for a recent review of such proposals). However,
as we articulate at the end of this essay, there are several reasons
to believe that this time is indeed different. Most importantly,
our goal is not to change the direction of the modern Internet
(as defined by the designs being adopted by the new private net-
works) but to architecturally incorporate these trends in a way that
is aligned with the incentives of major stakeholders, so that the

2The improved security is due to the shorter interdomain paths, which reduce the
chance of route hijacking

public Internet remains vital. These private networks provide bet-
ter support for modern applications by implementing more than
just end-to-end packet delivery. Our goal is to allow the public
Internet to offer similar capabilities (and eventually much more)
in an open (in terms of process and code) and extensible manner.

2 Why should we care about Internet architecture?
These new private networks are providing superior service to
billions of users without any change in the architecture: why
isn’t that sufficient? That is, why should we care about changing
the Internet’s architecture if the desired functionality is already
being provided without an architectural change? There are two
fundamental reasons.

First, these changes are not compliant with the current archi-
tecture; packets are being intercepted and processed in ways not
consistent with the core IP protocol. Rather than banning such
additional processing, which would be unwise given its proven
utility in these private networks and there being no obvious way
to achieve similar results within the architecture, we want to make
this additional processing part of the standard Internet service
model. These services would then be uniformly defined and auto-
matically available to all Internet users.

Second, when these services become part of the architecture
in an extensible manner, each application can explicitly invoke
the desired service via a mechanism provided by the architecture.
Since applications will only invoke those services they are compat-
ible with, the functionality of these services can be fully general.
However, when additional network functionality is deployed out-
side of the architecture, then one of the following conditions must
hold: any such functionality must be backwards-compatible with
all existing applications; or such functionality can only be applied
to applications built or deployed by the entity running the private
network (who can ensure that the applications are compatible
with this additional functionality); or the functionality is deployed
by the application provider itself (such as by using cloud-based
proxies). The first option greatly limits what functionalities can be
provided, the second limits who can provide them, and the third
places a substantial burden on application providers.

There are thus three advantages for incorporating new function-
ality into the architecture: universality (as a required part of the
architecture, these services are uniformly and automatically avail-
able as a basic part of the Internet service), extensibility (which
allows applications to choose which services to use), and general-
ity (which allows complete freedom in designing new services).

Note that the Internet’s functionality has long been expanded
through middleboxes (e.g., firewalls, WAN optimizers, proxies,
and the like). These middleboxes account for roughly a third of
the network elements in most networks [22], yet there have been
few calls for extending the Internet architecture to incorporate
them (but see [23, 24] for some voices in the wilderness). In
addition, enterprise networks often have local QoS and security
mechanisms that are not part of the standard IP model. These
local changes do not threaten the public Internet because they are
intended solely for internal users. In contrast, these new extensive
private networks are offering their privately-implemented services
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globally, through widespread deployment of PoPs, to those who
use the applications offered by or hosted on these private networks.
These services should be made universally available, so the public
Internet, whose uniform service model enabled such rapid innova-
tion, is not largely replaced by a set of private networks offering
their own privately defined and implemented services.

3 What principles should guide us?
Our task is to design a new and more flexible Internet architecture,
but what principles should we use to guide us? We propose four
such principles that guide what these additional services could
be (#1), where they are supported (#2), how they are initially
deployed (#3), and what they are not (#4).
#1 Services should be layered on top of packet delivery. We
already know how to deliver packets on the Internet, and further
improvements in speed and reliability, though desirable, will not
transform the Internet. Instead, we should focus on what other
services the Internet should offer besides packet delivery, and
those services should be deployed on top of packet delivery. This
principle is merely a natural application of layering. Just as logical
links (L2) are built on top of physical links (L1), and global best-
effort delivery (L3) is built on top of L2, we should build all
additional services on top of L3. For convenience, we will say
such services belong to the service layer or L3.5 (as in [16]).
Service implementations start at the service layer but may extend
up through the application layer.

There is a wide range of possibilities for these services. EI
would likely start with the functions currently deployed on private
networks (e.g., caching, flow termination, and load balancing). In
time, additional functions could provide better security (e.g., pro-
tection against DDoS), increased privacy (e.g., anonymization of
queries), additional delivery services (e.g., better support for mul-
tipoint applications and multhomed clients), and use-case-specific
performance improvements for streaming, IoT, gaming, AR/VR,
and other common uses. Eventually, some new services could
be more architectural in nature, such as providing support for
information-centric designs where the interface revolves around
publishing and retrieving content as in NDN [25] or DONA [13].

We call the set of additionally offered services the Internet ser-
vice model. While our approach (described in the next section) can
support a broad range of architectural proposals and performance
enhancements, we envision the service model is not merely the
union of all such possibilities but instead is a carefully curated set
of services designed to meet a wide variety of application and user
needs. This curation, involving discussion and ultimately approval
of each service, will require some form of governance (akin to
the IETF) that is yet to be determined. Note that an individual
service may be composed of several component functions (e.g., a
service could combine flow termination and caching). However,
we do not envision allowing hosts to invoke the composition of
arbitrary services, as in many cases this may not be feasible (e.g.,
a security-improving service and a multipoint delivery service
may be inherently incompatible).
#2: Services need only be implemented at network edges. Good
system design requires modularity. Here, we propose an edge-core

modularity (as in MPLS), where all additional services need only
be implemented at Internet edges on what we will call service
nodes (SNs), and the Internet core merely provides packet delivery
(L3). This limited deployment of service nodes seems sufficient,
given the application support provided by current private networks,
and also makes deployment easier. Some services may require
support on hosts, and in some cases these could be implemented
to allow hosts colocated on the same network to communicate
directly rather than via a service node.

Thus, EI has a new layering configuration where switches
implement layers 1 and 2; routers implement layers 1, 2, and 3;
and service nodes and hosts implement all layers (including the
new service layer). While service nodes and hosts are equivalent
in terms of which layers they can implement, we expect the code
deployed on service nodes at the service layer and above to be
quite different from that deployed on hosts.

Where is this Internet edge where the service nodes are to be
located? As the term edge implies, service nodes are within the
Internet, not under host control, so host compromises do not affect
their functioning. In addition, the host-to-service-node latencies
should be relatively low, and the number of hosts being handled
by any single service node should be small enough so the service
node can handle per-flow state. These two constraints still allow
wide latitude in where service nodes are placed, which will likely
depend on the context (e.g., whether they are within a cellular,
enterprise, datacenter, or home network). For the purposes of this
essay, we will consider the service node placements to be roughly
equivalent to the PoPs of large private networks, the central offices
(or regional aggregations points) of traditional carrier networks,
or within large datacenters (to support the hosts therein). As 5G
deployments mature, some service nodes could migrate to cellular
base stations.
#3: Services should be initially deployed via open-source soft-
ware modules designed to run on commodity servers. As has
been amply demonstrated by these new private networks, and
briefly argued in [16], software processing is sufficient to han-
dle the loads at network edges. This is a major change from two
decades ago, and it allows us to adopt this open-source approach
to service deployment. Defining a new service not through a
detailed specification (which is needed when requiring interop-
erability between independent proprietary implementations) but
through an open-source software module deployed on commodity
hardware will speed adoption and deployment by avoiding the
delays inherent in hardware development/replacement cycles and
in traditional standardization processes.

This does not preclude eventually providing hardware support
for services to lower the cost/performance (either in general or
for specific tasks such as cryptographic operations). However,
these hardware implementations (be they ASICs, FPGAs, pro-
grammable routers, or anything else) must be compatible with
the open-source code. To wit, the open-source software is the de
facto standard, and all other implementations must interoperate
with it. Thus, our agenda does not require programmable routers
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or other specialized hardware, but the efficiency of the resulting
infrastructure could benefit from their eventual deployment.
#4: Services should focus on simple processing, not general
computation. Edge computing [5] has become an important trend,
but we do not want to confuse the simple processing (either packet-
processing or handling basic requests such as caching) with the
general computation offered by edge computing. Our focus here
is only on the former as the latter involves a suite of issues that
we do not address (e.g., how to charge for computation and what
is the right computational environment). However, while the in-
stantiation of each service on a service node only involves simple
processing, the control plane of these services could be quite gen-
eral and supported by nodes other than service nodes, as would
be needed to coordinate caches or control load-balancing.

4 What would a resulting design look like?
We now present a design, called the Extensible Internet (EI),
that is consistent with these principles. We start by describing
the general service paradigm in EI, followed by discussions of
eventual deployment and incremental deployment scenarios.

4.1 General Service Paradigm

Interaction Pattern: For convenience, we focus on host-to-host
communications when explaining this paradigm, but everything
easily generalizes to other delivery models (such as would be
needed for DTN [8] or NDN). Each host is associated with one or
more service nodes through a discovery process (though usually
only using one at a time, so in what follows we assume a single
associated service node). For clients, this service node would
typically be in a nearby PoP, while for servers within a cloud
provider’s datacenter the associated service node would be within
the datacenter itself. When two hosts are communicating, the
packets take a path which (when described at the service layer)
goes from the source host, to its associated service node, to the
service node associated with the destination host, and then finally
to the destination host itself. The packets are tunneled in each
hop of this process; the tunneling technology could be chosen
on a pairwise basis, but for simplicity we will assume there is a
single service-layer tunneling protocol built on IP. Note that this
tunneling protocol, and the existence of service nodes (along with
their service implementations), are the only architectural changes
in EI and are sufficient to create the desired extensibility.

However, the Host-SN-SN-Host pattern does not always apply.
If the two hosts are within the same L2 network or in different L2
networks but in the same administrative domain, then they could
either communicate directly (just as in IP where two hosts can
communicate directly without going through a router if they are
part of the same L2 network) with the service-specific processing
done by the host component of the service, or go through a single
service node that they are both associated with, or go through two
service nodes (if the hosts are associated with different service
nodes). Which of these three cases apply will depend on the
service itself (i.e., whether it allows direct communication) and
whether the two hosts share the same service node. In addition,
some services may want to leverage additional service nodes

along the path (e.g., to improve caching or increase privacy), and
the service itself can manage the routing between service nodes
within a single network. While these other cases may arise in
various deployment scenarios, for convenience we will focus on
the canonical Host-SN-SN-Host pattern in the ensuing discussion.

Service nodes provide an architecturally-compliant way to
insert simple processing inside the network above the IP layer.
The fact that the processing occurs at only a few service nodes
does not greatly limit what services EI can offer (though it has
implications for the resulting performance). In fact, all proposals
for new L3 architectures that assume a Host-Router-...-Router-
Host paradigm could be implemented at the service layer.
Interfaces: Service nodes need to know which service to apply
to an arriving packet. This can be handled by the equivalent of
a “Next Protocol” field in the service-layer tunneling protocol.
However, in some cases, the decision to invoke a specified service
for a certain class of traffic might be made through a management
interface between the host (or operator on the host’s behalf) and
the service node (e.g., to filter incoming traffic for DDoS pre-
vention). This invocation would specify the class of traffic, the
intended service, and any configuration state required.

Hosts need to discover their associated service node. As we
discuss later, this service node might be supplied by the host’s
network provider or by a third party. A simple discovery protocol
can allow clients to discover nearby service nodes in either case.
Service Node Design: We assume that each service in the service
model is instantiated in an open-source code module. The service
node must provide an execution environment supporting a few
basic primitives (e.g., packet-in/out, read-write state, read-write
configuration). This execution environment should be independent
of its packaging so it can be supported natively, or in containers,
or in VMs. In addition, the service node should handle various
orchestration tasks for modules, such as invoking/killing, scal-
ing up/down, failure detection/recovery, and diagnostics. While
the execution environment interfaces and the service modules
should be universal (except when supporting specialized hard-
ware), the packaging and orchestration can vary between service
nodes. Logically separating the execution environment from how
it is deployed allows providers to initially use existing orches-
tration frameworks (for VMs and containers) while enabling an
eventual transition to native deployments. Such a separation also
allows primitives to be offloaded to hardware more easily.

4.2 Eventual Deployment Options

We now consider what a deployment might look like in the long-
term by addressing three questions:
Who deploys the service nodes? To answer this, we define Last
Mile Providers (LMPs) as those connecting end users (whether in
homes or enterprises) to the Internet (e.g., China Telecom, NTT,
Comcast, Deutsche Telekom, Orange, Korea Telecom, and oth-
ers), and the Cloud and/or Content Providers (CCPs) as those
running one of the large emerging private networks (e.g., Face-
book, Google, Amazon, Azure, Alibaba, and others). The service
nodes can be deployed by LMPs for their own users (presumably
in their central offices), or LMPs can contract with one or more
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CCPs so the LMP’s users can access the CCP’s service nodes
(presumably in their PoPs). We call the set of providers offering
service nodes the Service Node Providers (SNPs).
How are the service nodes interconnected? When two hosts
in different networks exchange packets, we require that at the
service layer packets go directly from a service node in the source
network to a service node in the destination network without
passing through service nodes in any intermediate transit networks.
Thus, we require that, at the service layer, SNPs exchange packets
directly. Moreover, we require that there be no settlement fees for
these direct service-layer peerings.

The reason for this last requirement is that settlement fees can
be used to charge application providers for access to customers (or
the reverse), which can hinder competition (see [12] for a more
detailed rationale). Moreover, each user is associated with a ser-
vice node and is either directly or indirectly paying for the access
to that node. Part of an SNP’s service commitment is to carry
packets to or from the next hop on behalf of its associated users.
Therefore, if an SNP feels it is not being properly compensated
for doing so, it should increase the charges to its own users for
whom it is providing that service, rather than charging peers.

However, we do not expect every SNP to have the backbone
infrastructure needed to directly connect to every other SNP at
the L3 layer. If two SNPs have no direct L3 connectivity, they
can choose to remotely peer at the service layer via a variety of
methods including: setting up a tunnel using the existing Internet
service, mutually contracting with a transit provider to provide
such a tunnel, or both contracting with transit providers to reach
the same IXP. How the SNPs share the cost of these remote peer-
ing arrangements and how they select between their multiple
interconnection points (which presumably will be needed for re-
silience) is left to bilateral negotiations, though common industry
practices might emerge.

Note that this design effectively decouples EI from BGP. BGP
could continue to be used to provide interdomain routing at L3,
but it is not exposed to EI, which only sees service-layer peering.
This provides a much-needed separation of concerns between
how packets are carried between domains (which can be any
packet delivery technology), and how originating and destination
domains deal with packets (which is determined by the Internet’s
service model). This would also allow the Internet to gradually
diminish BGP’s role without any change in EI.
What kinds of services are offered, and by whom? At an archi-
tectural level, there are a set of public services that must be offered
at all service nodes. These services are curated and officially form
the Internet’s service model. There are no additional charges for
these services, as they are part of the basic Internet offering.

In addition, we expect that, for a fee, SNPs will allow third-
parties (such as application providers, companies selling special-
ized security services, and groups trialing services hoping to get
them adopted as a public service) to offer private services at ser-
vice nodes. These services are invoked using the mechanisms that
are part of the architecture but using service identifiers that lie
outside the public set of services.

Lastly, cloud providers that are also SNPs could additionally
offer hybrid hosting services, using their datacenters to run their
customers’ backend application code and their service nodes to
run associated application-specific service code. This combines
a private service as above with traditional cloud hosting, and the
resulting codesigns could eventually inform future public services.

4.3 Incremental Deployment Options

The deployment described above is what EI might look like in the
long term. To get started on the journey towards that vision, we
describe three steps that we hope to take in the short-term.
Host implementation: Because universal host support for EI is
far in the future, we will produce code that can be embedded
in applications (e.g., web browsers and mobile apps) to execute
the service node discovery protocol and tunnel packets to service
nodes. We will release a version of the Chromium browser incor-
porating this, which will allow users and application developers
to trivially redirect browser-based applications to EI.
Experimental deployment: We hope to use various research
testbeds (such as FABRIC [7], EdgeNet [6], and Pronto [17]),
along with donated resources from CCPs, to deploy a geographi-
cally dispersed set of service nodes. This would allow researchers
to freely experiment with implementations of novel services.
Prototype deployment: We are working on a preliminary ver-
sion of an open-source execution environment that can be run by
various cloud providers. Cloud providers who are interested in
participating in the prototyping exercise may allow this execution
environment (and some service modules) to be run in their PoPs.
For other cloud providers, the execution environment can be run
on their cloud without any explicit involvement from the cloud
provider (except to perhaps offer reduced charges). We hope to
gather enough technical and financial support from a collection
of cloud providers to create a fairly stable and widespread infras-
tructure. If this comes to pass, some early services could be stably
deployed so application developers can depend on those services
and design their software accordingly. In the beginning, this ser-
vice would be free, and hopefully later turn into a commercially
viable infrastructure (see Section 6).

5 How would this make users happier?

The ultimate test of an architecture is how well it, and the ap-
plications deployed thereon, meet user needs. EI’s process for
deploying new services is crucial in allowing it to address user
needs. Once a service has been instantiated in an approved (by
the curation process) open-source module, it can then be quickly
deployed on all service nodes. In the current Internet, potential
improvements must first endure a detailed IETF specification pro-
cess because each protocol must allow independent interoperable
implementations. Any L3-related proposals must then be deployed
by individual domains, which can result in lengthy delays because
such deployments often involve extensive and costly changes in
domain infrastructure and operations. In EI, all service nodes must
support all approved services, which merely requires installing
the associated software module; thus, there will be no substantial
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time-lag between approval and deployment, thereby speeding the
process of meeting user needs.

This is perhaps the most important advantage of EI: although
many services we envision EI supporting can be implemented
today using some ad hoc and/or proprietary combination of cloud
and edge resources, EI allows the rapid adoption of such services
in an open, universal, and extensible manner.

What do we envision these services to be? As previously men-
tioned, the first class of services offered will be those that are
currently provided on the emerging private networks, perhaps
combined with better support for multipoint, multihomed, and/or
mobile delivery. More generally, as EI becomes the accepted ar-
chitecture, application developers can leverage a growing set of
universally available in-network services as they design their ap-
plications. We do not know exactly what service node support
might best suit video streaming, gaming, IoT, AR/VR, and other
common use cases, but we expect that at least some of these
would benefit from such support. In addition, these public ser-
vices will be augmented by private services that may be more
application-specific.

The fact that service nodes can handle per-flow or per-user
state, yet be unaffected by host compromise, could enable im-
provements in security. As mentioned above, EI could support
DDoS prevention measures that allow hosts under attack to “shut-
off” their attackers at each attacker’s service node (as described in
[1, 10]). Going further, a service node can use a capability-based
mechanism and software attestation to limit the set of endpoints
an application can communicate with (e.g., ensuring that only an
uncompromised webserver can send requests to a database server).
As EI becomes established, researchers will doubtless find new
ways to improve security via these service nodes.

These service nodes could also provide a public discovery ser-
vice, redirecting clients to edge computation and private services
(i.e., functions that are not part of the architecture could register
their existence with the architecturally-supported discovery ser-
vice), easing the deployment of new functionalities by making
them easier to discover and invoke.

In the longer term, EI could support services that are more
architectural in nature. For instance, as mentioned above, a service
could support an information-centric design such as NDN or
DONA that provides an entirely new service abstraction. Or, less
radically, one could create an architectural service that provides a
more secure and private name resolution design to replace DNS
(e.g., similar in spirit to oDNS [21]). Of course, we cannot predict
how these new architectures would improve the user experience,
but our point is that we will have greatly improved our ability to
deploy such architectures, so that future research could have a
greater impact on the Internet service model than it does today.

6 Could this reshape the Internet?
Assuming we are able to achieve a prototype deployment of EI as
described previously, what market forces would move us towards
a more permanent deployment? EI would provide three benefits
to CCPs. Through its support for explicit service invocation, EI
will facilitate a growing market for private services that could

generate additional revenue. EI also allows the CCPs to share the
burden of providing the public services that create a better Internet
for all. The desire to share this burden may particularly apply
to content providers, where content is king and the necessary
infrastructure to achieve good performance is not where they
differentiate themselves. More generally, EI gives the CCPs a
larger role in the Internet infrastructure, as they would likely be
leading the way in deploying service nodes and the backbone
interconnections among them.

EI would be a mixed blessing for the traditional carriers. While
it makes the CCPs more of a threat, EI would also provide a
community-led solution for the kinds of software services that
carriers have struggled to develop, standardize, and deploy. More-
over, their basic Internet offerings would immediately become
functionally equivalent to those of the private networks because
the public services would be common to both. Lastly, when it
comes to deployment of EI, traditional carriers have a huge in-
stalled base of central offices that could easily house service nodes.
Thus, carriers would get the benefits of EI’s better Internet service
without having to be the technical leaders in its development.

7 Why is this time different?
There have been many clean-slate proposals for radically trans-
forming the Internet architecture, yet its architecture remains
largely unchanged. Why do we believe our approach will have
better success? We think there are four factors.

First, the set of Internet providers has changed. The classic
large-scale carriers are struggling to adapt to the increased role of
software in modern networking. At the same time, a new genera-
tion of cloud and content providers have arisen who run their own
global private networks and are experts in developing and man-
aging software at scale. Thus, we now have a set of incumbents
technically prepared to lead the (r)evolution.

Second, we are not proposing another one-size-fits-all archi-
tecture to replace the current Internet but instead are making the
current Internet extensible, through minimal architectural changes,
so it can support a growing variety of public services, with an ini-
tial focus on providing immediate consumer value through better
application performance, security, and privacy. EI also enables
longer-term architectural evolution; while not the initial driver for
adoption, this could be the EI’s most important legacy.

Third, software processing is now sufficient to enable the rapid
deployment of new services at service nodes. This allows the
Internet to evolve at the speed of open-source software, not at
the speed of standards-driven protocols or hardware upgrades.
Moreover, this software processing is only implemented in service
nodes, so the vast bulk of the Internet infrastructure remains
completely unchanged by the transition to EI.

Fourth, and most importantly, this approach is not advocating
a radical change in what the actual Internet does, only a radical
change in what the public Internet officially provides. For almost
as long as the Internet has been commercial, the functionality
of the basic architecture has been augmented with additional
privately-defined functionality such as on-path caches. We think
it is time to bring these developments within the architecture, so
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they can be supported by the public Internet in an open, extensible,
and universally available manner. As such, our proposal is the
opposite of an academic pipedream; it is the incorporation of
current commercial practices into the paradigm of the public
Internet, and doing so in a way that is aligned with the interests
of users and some major stakeholders in the Internet ecosystem.

8 Why are we writing this position paper?
The Internet community has become inured to the public Inter-
net’s architectural stagnation and now greets talk of transformation
with well-earned skepticism if not outright scorn. However, for
the above reasons, we think this time may be different. In our
view, the confluence of industry trends, technical developments,
and customer needs have produced a rare opportunity to transi-
tion to a fundamentally extensible Internet architecture. This is
not a revolution overthrowing the Internet’s current architecture
but an incrementally deployable evolution that allows the public
Internet to incorporate a broader scope of functionality. Success
will require a community effort, and we are writing this note with
the aim of enlisting others to help make this vision a reality.
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