
The Cutting EDGE of IP Router Configuration
Don Caldwell, Anna Gilbert, Joel Gottlieb,

Albert Greenberg, Gisli Hjalmtysson, and Jennifer Rexford

AT&T Labs–Research; Florham Park, NJ�
dfwc,agilbert,joel,albert,gisli,jrex � @research.att.com

Abstract— Human error in configuring routers undermines at-
tempts to provide reliable, predictable end-to-end performance on
IP networks. Manual configuration, while expensive and error-
prone, is the dominant mode of operation, especially for large en-
terprise networks. These networks often lack the basic building
blocks—an accurate equipment inventory, a debugged initial config-
uration, and a specification of local configuration policies—to sup-
port the holy grail of automation. We argue that migrating an ex-
isting network to automated configuration is a rich and challenging
research problem rooted in data analysis and in the modeling of
network protocols and operational practices. We propose a novel,
bottom-up approach that proceeds in three phases: (i) analysis of
configuration data to summarize the existing network state and un-
cover configuration problems; (ii) data mining to identify the net-
work’s local configuration policies and violations of these policies;
and ultimately (iii) boot-strapping of a database to drive future con-
figuration changes. The first stage reduces the number of errors,
the second normalizes the local policies, and the third prevents new
errors and reduces the manpower needed to configure the network.
We describe the architecture of our EDGE tool for steps (i) and (ii),
and present some examples from our experiences applying the tool
to several large enterprise networks.

I. INTRODUCTION

Predictable, reliable network performance depends on
the correct and consistent configuration of the routers.
Configuring the routers is one of the most important and
complex aspects of running a large network. Manual con-
figuration, while time-consuming and error-prone, is ex-
tremely common, and may be responsible for many of the
outages and anomalies that occur in practice. Automated
provisioning improves on manual configuration by gen-
erating the router configuration commands from a set of
rules applied to a database that models the network and
its services. Although these kinds of systems are rela-
tively common in large service provider networks, com-
parable automation in enterprise networks remains elu-
sive, despite the fact that many of enterprise networks are� quite large, sometimes spanning multiple continents,� managed in a decentralized fashion, due to mergers and
acquisitions or geographic boundaries,� running a mix of network protocols (IP, IPX, Appletalk)
and routing protocols (RIP, EIGRP, OSPF, BGP), and� operating under strict reliability requirements (e.g., for
carrying retail, financial, or medical data).
Without a provisioning database and well-codified rules,
network administrators often continue the risky practice
of manual configuration or embark on a time-consuming
redesign of their networks with automation in mind. In-
stead, we argue that a detailed analysis of the existing
router configuration data can drive the migration of the
network toward automated provisioning.

A. Router Configuration is Hard

Several factors conspire to make configuring IP routers
extremely challenging:
High degree of configurability: Routers implement a
vast array of protocols and mechanisms, with many tun-
able options. Network administrators must configure the
routing protocols, interfaces, access control lists, QoS
mechanisms, and services such as SNMP, NTP, and NAT.
For example, modern routers implement numerous rout-
ing protocols such as RIP, EIGRP, OSPF, IS-IS, BGP,
MPLS, and multicast protocols, each with dozens of con-
figurable options (e.g., timer values, link weights, route
filters, route injection between routing protocols, and ses-
sion establishment). As another example, interfaces have
many parameters at the IP level (e.g., address, mask
length, and packet filter) and Medium Access Control
level (e.g., encapsulation, framing, and error checking).
Complex, low-level configuration languages: The con-
figuration languages designed by router vendors are es-
sentially a collection of thousands of “assembly lan-
guage” commands that each provide a small piece of
functionality. An operational router in a large IP network
may have several thousands of lines of commands. Some
work has considered vendor-neutral constructs for cer-
tain aspects of router configuration, such as routing pol-
icy [1]. In addition, some router vendors offer Web-based
interfaces for specifying and applying configuration com-
mands. However, generic data models and high-level lan-
guages for router configuration do not exist and are likely
to remain elusive for some time (see the charter for the
new IETF Network Configuration working group [2]).
Rapid changes in router features: IP protocols and
equipment continue to evolve, and administrators periodi-
cally enable new functionality in their networks. Over the
past few years, IETF activity has led to several completely
new functions, such as MPLS routing, Random Early De-
tection (RED), and differentiated services. Existing pro-
tocols such as BGP have seen a number of extensions to
add new configurable options (e.g., soft-reconfiguration
and extended communities). Router vendors have peri-
odic releases of their operating systems. Any data mod-
els, languages, or configuration tools would need suffi-
cient extensibility to accommodate this rapid change.

B. Manual Configuration is Bad

Despite the many challenges, moving beyond manual
configuration is crucial because:



2

Manual configuration is error-prone: Configuration
mistakes can cause network outages, degradation in per-
formance, and security vulnerabilities. For example, in-
stalling the wrong packet filter, filtering valid routes, ad-
vertising an incorrect block of IP addresses, or assign-
ing the same IP address to multiple pieces of equipment,
can lead to reachability problems. As another example, a
link cannot carry traffic if the two ends belong to different
OSPF areas or apply a different CRC technique. A mis-
take in specifying or installing a packet filter may leave a
network open to denial-of-service attacks. A recent study
estimates that half of network outages stem from human
configuration error [3]; similar results have been found in
studies of Internet services [4]. Analysis focusing specif-
ically on BGP routing suggests that configuration errors
are responsible for many network anomalies [5].
Manual configuration is expensive: Manual configura-
tion leads to costly mistakes and expensive delays in en-
abling service for new users. Network administrators may
be forced to limit or delay upgrades and introductions of
new features, protocols, and services. In addition, man-
ual configuration requires hiring and training a potentially
large number of skilled engineers. In practice, network
administrators often take lengthy certification courses to
acquire the necessary skills to configure the routers, as
well as on-the-job training to learn the local networking
policies of their organization. These engineers may need
additional training in how to diagnose and fix configura-
tion problems. The investment in engineers trained on a
particular router product can make it extremely difficult
to incorporate products from other vendors.

C. Moving Beyond Manual Configuration

The problems inherent in manual router configuration
have recently attracted a great deal of commercial atten-
tion. Existing products and services focus on:
Reducing the complexity of manual configuration:
Several kinds of products help administrators in their
manual configuration tasks. GoldWireTech [6] supports
authentication of engineers connecting to the routers,
archiving of past versions of configuration files, logging
of human keystrokes, and scheduled pushes of configu-
ration commands. Other tools like WANDL’s IPAT [7]
and OpNet’s NetDoctor [8] generate reports of the net-
work topology and configuration errors. Individual router
vendors provide Web-based interfaces for configuring the
routers to reduce the likelihood of typographical errors,
without moving the network toward greater automation.
Automating for new networks/services: Products such
as Orchestream [9] support automated configuration of
new services, such as Virtual Private Networks. These
products tend to “start from scratch” in configuring the
new service, and they often have proprietary internal
databases that are difficult to integrate with other parts of
the provisioning process (such as ordering, billing, net-
work inventory, and work-flow management).
Automating the tuning of specific parameters: Other
tools focus on specific operational tasks, such as traf-

fic engineering or mitigation of Denial-of-Service (DoS)
attacks. For example, Cariden’s MATE [10] and Op-
Net’s SP Guru [11] products support tuning OSPF costs
or MPLS Label Switched Paths to the prevailing traffic,
and ArborNetwork’s PeakFlow DoS [12] product detects
DoS attacks and generates filters to block the offending
traffic. While very useful for specific tasks, these tools
focus on a small portion of the configuration state.

Although these kinds of tools are useful, we argue
that the complete configuration of the network should be
driven from an automated provisioning system. New net-
works can, and should, be designed with this approach
in mind. However, network administrators rarely have
the luxury of starting from scratch. Instead, we argue
that migration of existing networks is an important part
of the configuration problem. The next section discusses
the target design of a provisioning system and describes
our three-phased approach to boot-strapping a manually-
configured network. Our approach is deeply rooted in
analysis of the configuration state of the existing network.
In Section III, we describe the software architecture of
our EDGE (Enablement and Debugging of Growing En-
terprises) tool for analyzing the configuration data, and
present examples based on our experiences with several
large enterprise networks. The paper concludes in Sec-
tion IV with a discussion of directions for future work.

II. AUTOMATING ROUTER CONFIGURATION

In the automated provisioning systems common in ser-
vice provider networks, all configuration changes flow
through a database using explicit local rules. However,
for many existing enterprise networks, the routers’ con-
figuration state is the “database”1. We believe that a de-
tailed analysis of this configuration state should play an
important role in the move toward automation.

A. Target Automated Provisioning System

In large service provider networks, automated provi-
sioning typically follows the high-level approach in Fig-
ure 1. Each configuration task, such as adding a new
router or a new customer, depends on input data col-
lected using a technical questionnaire (TQ). For example,
adding a new customer connection might require infor-
mation about the customer’s name, address blocks, me-
dia type and speed, and the desired service. The TQ de-
tails depend on the specific task, and vary from network
to network. In addition, other identifiers such as inter-
face names and access-control list (ACL) numbers may
need to be assigned. The chosen identifiers may depend
on past assignments; for example, a new customer may be
assigned the next available slot in the router and the next
available ACL identifier for a packet filter.

The TQ data and the identifiers are fed into a database
�
Yet, this “database” has no mechanism for normalization. In a real

database, a policy (e.g., for packet filtering) might be defined once and
then used again and again. Under manual configuration, the policies are
instantiated separately on each router, and tend to diverge as the network
evolves, whether or not this is the administrator’s intent.



3

inventory
Identifiers configlet

query

provisioning data

Assign

Technical
Questionnaire

Database

Fig. 1. End-to-end view of router provisioning process

that stores key information about the network equipment
and the existing configuration. Rather than storing the raw
configuration commands, the database stores the informa-
tion necessary to generate the sequence of commands—
a configlet—to apply to the router. Like the TQ, the
database schema would vary across networks, depending
on the key parameters underlying the services they pro-
vide. The configuration commands are generated by ap-
plying rules based on the contents of the database2. For
example, a Serial interface may be configured to apply a
particular framing technique. In practice, the rules can be
much more complicated. For example, the IP addresses
owned by a BGP-speaking customer may drive the con-
figuration of both the packet filter on the interface and the
route filter on the BGP session. An example of an auto-
mated provisioning system for BGP is presented in [13].

B. Bootstrapping an Existing Network

Despite the conceptual appeal of Figure 1, many en-
terprise networks don’t have explicit TQs, provisioning
rules, or an underlying database. In some cases, an infor-
mal TQ exists and the rules are codified in English text;
however, these documents are often out-of-date or incom-
plete, and administrators do not always adhere to them.
Administrators may have a list of the equipment in the
network but not necessarily a complete record of how the
routers are configured. In essence, the network itself is
the database. This observation suggests a bottom-up ap-
proach to enabling automation. We argue that network
administrators should start with a snapshot of the config-
uration state of the network—a single configuration file
for each active router—and proceed in three stages:
1. Generic analysis: Analysis within and across con-
figuration files enables us to reverse-engineer the router
topology and summarize the status of the network. As
part of this process, we identify configuration mistakes
that the network administrators can fix. This offers imme-
diate value in terms of boot-strapping a simple inventory
database and improving the configuration of the network.
Several recent tools provide this kind of service [7, 8, 14].
2. Data mining: Further analysis seeks to identify dis-
tinct patterns in the configuration that reflect the local de-
sign choices of the network administrators. The output of
this process is a set of inferred rules and the exceptions to
these rules. For example, if 99 of 100 routers have the fin-
ger daemon disabled, the inferred rule would be “the fin-
ger daemon should be disabled” and the exception would
be the one non-compliant router. This facilitates interac-
�
In practice, the configlet might be generated in two steps, starting

with some vendor neutral form followed by a mapping into the com-
mand syntax necessary for a particular router.

tion with the engineers to formalize and fine-tune these
rules, and fix the violations. This offers immediate value
by alerting network administrators to notable inconsisten-
cies within and across routers.
3. Database design: At the end of the second stage, the
network has a correct configuration that is consistent with
the complete, fully-codified set of rules. In essence, the
network looks as if it has been automatically configured.
The TQ and database schema can be designed, and the
database can be populated from the state of the existing
network. Going forward, the automated system can drive
future configuration changes.

Ultimately, these steps require human intervention to
fix configuration mistakes, vet and fine-tune the rules, and
design the TQ and database. Still, we can expedite the
discovery and design with suitable tools for rapid and de-
tailed analysis of the configuration data. The next section
describes our EDGE prototype for the first two stages.

III. EDGE ANALYSIS OF CONFIGURATION FILES

A detailed analysis of router configuration data can pro-
vide a wealth of information about the state of the net-
work. This section presents a brief overview of the soft-
ware architecture of our EDGE tool, and examples of the
kinds of analysis the tool performs to aid network ad-
ministrators in building an inventory database, identifying
configuration mistakes, visualizing the network design,
and reverse-engineering the local configuration policies.

A. EDGE Software Architecture

The EDGE software runs daily on tens of thousands
of configuration files from dozens of large enterprise net-
works. In designing the software, we focused on scala-
bility (to support a large number of networks and config-
uration files) and extensibility (to support the rapid addi-
tion of reports on different technologies used in enterprise
networks). The tool starts with a snapshot of the config-
uration file for each router in the network and produces a
collection of Web reports, as illustrated in Figure 2:
Configuration data feed: EDGE operates on a snapshot
of the configuration state from Cisco routers, or other
routers that emulate the Cisco IOS (Internet Operating
System) command set. Dumping a router’s configuration
file involves applying the show running-config
command at the Telnet interface or issuing a get via the
SNMP interface. In many cases, the network administra-
tor has a backup server storing these files. EDGE checks
the configuration files into a CVS repository to store only
the differences. This substantially reduces the overhead
of storing the data and also facilitates our analysis of the
changes to the network over time.
Parsing of configuration files: The parser incorporates
knowledge of Cisco IOS syntax, such as command modes
that define the various sections of the configuration files
(e.g., interface and router bgp). The output of
the parser is a Perl hash table that can be easily read by
subsequent parts of the software. Rather than understand-
ing the syntax of every command, the parser focuses on



4

Parsed configs

queries
Utility

Presentation
queries

User interface

Poller

Config filesRouters SQL database

Parser Extractors

tables
Database

tables
hash
Perl

GUI

Fig. 2. Flow of configuration data from the routers through the database to the Web-based reports

Utility

IGP network

tables

Presentation table

interfaceExtracted tables

link OSPF interface

active OSPF interface

IGP passive

OSPF link with area mismatch

Fig. 3. Example OSPF report based on joins of multiple tables

commands that occur frequently in practice and figure in
the analysis in subsequent parts of the software. Con-
figuration commands that the parser does not understand
are annotated as unparsed features that can be analyzed
by other software as needed. The parser can be (and has
been) extended over time to parse additional commands
without requiring changes to the rest of the software.
Extraction into database tables: Simple extraction rou-
tines pull information from the Perl hash representation
into database tables. These tables capture important in-
formation underlying the queries that analyze the config-
uration data. For example, the interface table stores basic,
layer-3 information about each interface such as router
name, interface name, IP address, mask length, descrip-
tion (comment field), and status (shutdown or active). As
another example, the IGP network table lists all subnets
participating in each routing protocol instance on a router;
each row includes a router name, routing protocol (e.g.,
OSPF, EIGRP, or RIP), the area or Autonomous System,
the subnet address, and the subnet mask. Rather than try-
ing to model the entire router configuration state, these
tables are designed as needed to support the queries.
Joining the database tables: Specific features of EDGE
are supported as utility queries on the database. Multi-
ple queries may be necessary to generate a single report.
For example, consider the problem of identifying links
with end points configured in different OSPF areas. As
illustrated in Figure 3, this requires referencing the IGP
network table that identifies the subnets participating in
OSPF on each router. By joining this table with the in-
terface table, we identify which interfaces on each router
have addresses that fall in these subnets. Some inter-
faces may be configured as passive and thereby excluded
from OSPF. The interface table is also used to group in-

terfaces into links based on their network addresses. By
combining the active OSPF interface and link tables, we
can check whether the remote end of an interface (i) ex-
ists, (ii) participates in OSPF, and (iii) has the same OSPF
area. Despite the need for multiple joins, each step is a
simple SQL query.
Generating Web reports: The final stage presents tabu-
lar reports and network diagrams on the Web for EDGE
users. Users navigate presentation queries by topic (e.g.,
inventory, routing, etc.) and select reports to display. A
presentation query is an XML file that includes the neces-
sary SQL statements to generate the tables. The Web page
also displays the output of the visualization software [15]
to show different views of the network (e.g., network
topology, BGP sessions, OSPF routers/links, etc.). The
EDGE Web site serves as a sort of “portal” for the net-
work administrators to track the status of their networks
and identify configuration errors.

B. Building a Network Inventory Database

Analysis of the configuration files provides information
about the equipment, topology, address allocations, and
the specific commands applied to the routers.
Equipment: For each router, the configuration file speci-
fies the interfaces by slot position and media type. We use
this information to populate a simple inventory database
that stores basic information about each router (loopback
address, operating system version, slot allocation) and in-
terface (media type, IP address, network address).
Commands: Having a list of the commands and their us-
age frequency is useful for knowing which router features
are important to the successful operation of the network.
The list can also drive testing in the lab to ensure that the
commands work correctly before upgrading the produc-
tion routers with new versions of the operating system. In
addition, we report commands used very infrequently as a
possible sign of inconsistencies in configuring the routers.
Addresses: Managing the allocation of IP addresses is a
challenging part of operating a large network. We use
the configuration data to summarize the addresses and
subnets that are assigned to equipment (router loopback
and other interfaces), connections to neighboring domains
(packet filters, route filters, and static routes), and network
services (NTP, SNMP, measurement collectors).
Topology: The network topology consists of routers and
layer-3 links. A link consists of two or more inter-
faces in the same subnet [16]. For example, the prefix
10.1.2.116/30 consists of two interfaces with addresses



5

10.1.2.117 and 10.1.2.118, as well as the network and
broadcast addresses. Looking across configuration files
enables us to join the interfaces with the same network
address. In other cases, the link may be an ATM or Frame
Relay PVC that is specified in the configuration file.

C. Generating Configuration Errors and Warnings

Combining information from different parts of the con-
figuration files can uncover mistakes and poor practices.
Referential integrity: Many commands refer to items de-
fined by some other command. For example, an access
control list (ACL) defined in one place may be referenced
elsewhere to instantiate a packet or route filter. By main-
taining a list of definitions and references by type, we re-
port an error when an undefined item is used and a warn-
ing when a definition is not used. We construct and extend
our list of commands by analyzing existing configuration
files and inspecting vendor Web pages.
Duplicate IP addresses: Having multiple active inter-
faces with the same IP address can cause significant dis-
ruptions in communication. In addition to reporting du-
plicate addresses, we identify cases where interfaces on
the same link have different network addresses (i.e., mask
lengths), since inadvertent inconsistencies can lead to
reachability problems that are difficult to diagnose.
Routing protocol integrity: Routing protocol configu-
ration combines information within and across configura-
tion files. We perform local checks such as identifying the
interfaces participating in each protocol and ensuring that
routing attributes (such as OSPF cost) are only assigned to
participating interfaces. Our global checks verify that all
end-points of a link participate in the same protocol and
match in key attributes (such as OSPF area); otherwise,
the link does not actually participate in routing.
Violation of best common practices: Additional checks
can generate warnings when the configuration does not
follow “best common practices.” For example, we check
that two routers with an internal BGP session communi-
cate using their loopback addresses, rather than specific
interfaces, for robustness to link failures. We also gen-
erate warnings when the configuration relies on default
parameters, since the administrator may have unintention-
ally neglected to configure a value. For example, router
vendors typically assign interfaces a default OSPF cost
(e.g., inversely proportional to link capacity), but depend-
ing on the default may be unwise.

D. Visualizing the Network Design

EDGE creates accurate network diagrams, which pro-
vide immediate insight into not only the layer-3 topology
but also the routing architecture and misconfigurations.
Topology layout: Automatic layout tools are essential to
effective visualization. We adapt undirected graph layout
techniques to visualize the network topology, where ver-
tices or nodes in the graph represent routers and edges are
the layer-3 links. We employ layout techniques that im-
pose a model where each edge is a spring of the desired
length and the desired Euclidean distance between two

vertices is their graph-theoretic distance [17]. The layout
algorithm then tries to find the placement of the vertices
and edges that minimizes the potential energy of the sys-
tem, which places closely related vertices near each other.
Network design: Routers and links participate in vari-
ous protocols and have certain attributes, such as OSPF
area or BGP AS number. Our layout method can place all
routers in the same OSPF area in the same region, with,
for example, the backbone area (area 0) at the top or cen-
ter of the picture. For more complex networks with mul-
tiple routing protocols, the layout incorporates the role
played by each protocol, and the boundary points between
the protocols. For example, OSPF or EIGRP may be used
as an intradomain routing protocol in several regions, with
BGP sessions providing connectivity between the regions.
We use a variety of visual cues to convey network struc-
ture. For example, many enterprise networks have a hub-
and-spoke topology, with one or more hubs; options for
coloring the nodes can be used to distinguish the network
core (hubs) from the edge (spoke).
Graph compression: Large enterprise networks can have
hundreds of routers and thousands of links. We apply
three types of graph compression to reduce complexity
while still capturing the key features of the network de-
sign. First, with vertex clustering, routers with the same
network or physical attribute (e.g., OSPF area, BGP AS,
or geographic location) are represented by a single ver-
tex. Second, rather than representing shared media (such
as Ethernets or FDDI rings) as cliques in the graph, we
cluster these edges and replace them with single edges to
a separate distinguished vertex (such as an Ethernet hub).
This form of compression is just one criterion for edge
clustering. Third, we use edge collapse or vertex removal
to define the inherent structure of our network. This al-
lows us to remove low-degree vertices (typically access
routers) that are linked to high-degree vertices (typically
hub or backbone routers) while retaining the basic net-
work structure.

E. Extracting the Network’s Configuration Policies

Data mining can be used to identify patterns (and ex-
ceptions to the patterns) in the configuration files. This
analysis is a first step in codifying a network’s policies.
Graph mining: The representation of the network as a
graph (where nodes and edges have numerous attributes,
such as link capacity and OSPF weight/area) can drive
various kinds of clustering analysis. Nodes and links can
be compared in terms of their similarity. For example,
the analysis of a dual hub-and-spoke network might show
that nearly all spoke nodes connect to two hubs, drawing
attention to an isolated router that does not have a backup
connection to the second hub. Analysis of the OSPF area
attribute might show that nearly all links belong to area
0, except for one isolated link that is assigned to area 1.
Analysis of the OSPF link cost might suggest that links to
the primary hub have cost ����� while links to the backup
hub have cost 	
��� .
Feature mining: A more detailed analysis of the config-



6

uration commands can help in identifying the templates
that should drive certain aspects of router provisioning.
For example, the vast majority of the routers might have
the finger daemon disabled, suggesting that this is part of
a base configuration for initializing the routers. Similarly,
all frame-relay interfaces might be configured with a par-
ticular kind of encapsulation or framing. These rules can
be relatively complex and depend on the presence or ab-
sence of other commands. For example, a network might
assign an OSPF cost to all backbone interfaces that are
not administratively shutdown. Identifying these kinds of
patterns require an effective way to generate and evaluate
various candidate rules against the configuration data.
Common definitions: Often, the same definitions of
ACLs, routing policies, and other variables appear on
multiple routers. For example, BGP sessions to upstream
providers may have a small set of basic routing policies.
EDGE extracts and compares the definitions across files.
The definitions may be equivalent (representing a base
part of the router configuration) or have subtle inconsis-
tencies. For example, the same name (e.g., import policy
PROVIDER IN) may be defined in one way on 99 routers
and slightly differently on another router; the one excep-
tion may be a configuration error. Similarly, two names
corresponding to the same definition (e.g., import policy
PROVIDER OUT and PROV OUT) may be represent an
opportunity to normalize the configurations.
Provisioning use cases: Analyzing a network’s configu-
ration across time provides a way to identify specific pro-
visioning tasks that need to be included in the automated
provisioning system. For example, adding a new BGP
neighbor may proceed in several distinct steps: (i) adding
an edge link, (ii) associating a BGP session with that link,
and (iii) specifying routing policies for the session, with
explicit testing after each phase. When these practices are
applied repeatedly, they leave a clear signature in the con-
figuration data. In addition to aiding the design of the pro-
visioning system, making these tasks (and the individual
steps) explicit is important for subjecting the processes to
critique and, ultimately, to streamlining.

IV. CONCLUSION

Manual configuration of IP routers is expensive, time-
consuming, and error-prone. Automated provisioning is
the holy grail but does not address the very real problem
of getting from here to there. In this paper, we propose
a bottom-up approach based on a detailed analysis of the
router configuration state of the network. Our EDGE tool
follows this approach and provides valuable information
to the administrators of several large enterprise networks.
Still, challenging research problems remain:� Network modeling: Router configuration spans an im-
mense variety of complex network protocols and mech-
anisms. Designing models that accurately represent the
low-level configuration state of each of these technolo-
gies would be extremely useful, both for the data analysis
and for the eventual automation of router configuration.� Best common practices: Developing a set of best com-

mon practices (BCPs) for each technology (and the inter-
action between technologies) would be invaluable to net-
work administrators. This deeper understanding of BCPs
could drive queries that generate warnings when these
practices are violated and give administrators a sense of
the goodness of their network design.� Data mining: Uncovering the local rules for configur-
ing the routers depends on applying effective data-mining
techniques to the relatively flat models of the configura-
tion state. New analysis techniques that operate on graph
representations, sets of related database tables, or the raw
configuration files would all be quite valuable.� Data modeling: The third stage in our bottom-up ap-
proach involves designing the Technical Questionnaire
and the provisioning database. These tasks would ben-
efit greatly from innovation in automating portions of the
design process. This stage will probably always require
human intervention but any techniques for expediting the
design process would greatly simplify the problem.

Although the networking community has created a va-
riety of flexible protocols and mechanisms for routers, rel-
atively little attention has focused on helping network ad-
ministrators manage the resulting complexity. We believe
there is substantial scope for research in this area.

REFERENCES

[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra, “Routing Policy Speci-
fication Language (RPSL),” RFC 2622, IETF, August 1999.

[2] Network Configuration Working Group. http://www.ietf.
org/html.charters/netconf-charter.html.

[3] Z. Kerravala, “Configuration management delivers business re-
siliency.” The Yankee Group, November 2002.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do
Internet services fail, and what can be done about it?,” in Proc.
USENIX Symposium on Internet Technologies and Systems, 2003.

[5] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” in Proc. ACM SIGCOMM, August 2002.

[6] Gold Wire Tech. http://www.goldwiretech.com/.
[7] WANDL IP Analysis Tools. http://www.wandl.com/

html/ipat/IPAT_new.cfm.
[8] OPNET NetDoctor. http://www.opnet.com/products/

modules/netdoctor.html.
[9] Orchestream Service Activator. http://www.metasolv.

com/MSLV/CDA/General/ProdSrvs_FocusDetail/
1,2543,17%,00.asp.

[10] Cariden MATE Framework. http://www.cariden.com/
products/.

[11] OpNet SP Guru. http://www.opnet.com/products/
spguru/home.html.

[12] Arbor Networks Peakflow. http://www.arbornetworks.
com/products_sp.php.

[13] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Auto-
mated provisioning of BGP customers,” IEEE Network Magazine,
vol. 17, November/December 2003.

[14] A. Feldmann and J. Rexford, “IP network configuration for in-
tradomain traffic engineering,” IEEE Network Magazine, pp. 46–
57, September/October 2001.

[15] E. R. Gansner and S. C. North, “An open graph visualization
system and its applications to software engineering,” Software–
Practice and Experience, vol. 00, no. S1, pp. 1–5, 1999.

[16] F. Baker, “Requirements for IP Version 4 Routers,” RFC 1812,
IETF, June 1995.

[17] T. Kamada and S. Kawai, “An algorithm for drawing general undi-
rected graphs,” Information Processing Letters, vol. 31, pp. 7–15,
April 1989.


