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Abstract— Middleboxes are crucial for improving network
security and performance, but only if the right traffic goes
through the right middleboxes at the right time. Existing
traffic-steering techniques rely on a central controller to install
fine-grained forwarding rules in network elements—at the expense
of a large number of rules, a central point of failure, challenges in
ensuring all packets of a session traverse the same middleboxes,
and difficulties with middleboxes that modify the “five tuple.”
We argue that a session-level protocol is a fundamentally better
approach to traffic steering, while naturally supporting host
mobility and multihoming in an integrated fashion. In addition,
a session-level protocol can enable new capabilities like dynamic
service chaining, where the sequence of middleboxes can change
during the life of a session, e.g., to remove a load-balancer that is
no longer needed, replace a middlebox undergoing maintenance,
or add a packet scrubber when traffic looks suspicious. Our
Dysco protocol steers the packets of a TCP session through
a service chain, and can dynamically reconfigure the chain
for an ongoing session. Dysco requires no changes to end-host
and middlebox applications, host TCP stacks, or IP routing.
Dysco’s distributed reconfiguration protocol handles the removal
of proxies that terminate TCP connections, middleboxes that
change the size of a byte stream, and concurrent requests to
reconfigure different parts of a chain. Through formal verification
using Spin and experiments with our prototype, we show that
Dysco is provably correct, highly scalable, and able to reconfig-
ure service chains across a range of middleboxes.

Index Terms— Session protocol, NFV, middleboxes.

I. INTRODUCTION

IN THE early days of the Internet, end-hosts were stationary
devices, each with a single network interface, communicat-

ing directly with other such devices. Now most end-hosts are
mobile, many are multihomed, and traffic traverses chains of
middleboxes such as firewalls, network address translators, and
load balancers. In this paper, we argue that the “new normal”
of middleboxes warrants a re-examination of approaches,
as has happened with mobility [1].
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Most existing research proposals for middlebox insertion
or “service chaining” use a logically centralized controller to
install fine-grained forwarding rules in network elements, to
steer traffic through the right sequence of middleboxes [2]–[9].
The many weaknesses of these solutions are a direct result of
their reliance on forwarding rules for traffic steering:

• They rely on real-time response from the central con-
troller to handle frequent events, including link failures,
traffic fluctuations, and the addition of new middlebox
instances.

• They need network state that grows with the number of
policies, the difficulty of classifying traffic, the length of
service chains, and the number of instances per middle-
box type.

• Updates to rules due to changes in policy, topology,
or load may change the paths of ongoing sessions, yet all
packets of a session must traverse the same middleboxes
(“session affinity”).

• Fine-grained routing is inherently intra-domain. It is dif-
ficult to outsource middleboxes to the cloud [10] or other
third-party providers [11], since the controller cannot
control the entire path.

• Some middleboxes modify the “five-tuple” of packets in
unpredictable ways, so that forwarding rules matching
packets going into the middlebox might not match them
on the way out.

• Some middleboxes classify packets to choose which
middlebox should come next. These middleboxes should
be able to select the service chain for their outgoing
packets, which forwarding by network elements does not
allow them to do.

• Adding middleboxes to a secure session (e.g., TLS) is
challenging without cooperation with the end-hosts to
exchange the information needed to decrypt and reencrypt
the data [12].

• A multihomed host spreads traffic over multiple admin-
istrative domains (e.g., enterprise WiFi and commercial
cellular network), yet some middleboxes need to see all
the data in a TCP session (e.g., for parental controls [13]).
In the administrative domain where the paths converge,
this requires coordination between seemingly indepen-
dent paths.

Some of these problems can be ameliorated. Research has
shown how to reduce forwarding state [3], [5], [7], maintain
session affinity [5], [7], identify packets whose headers have
been changed by a middlebox [3], [6], [7], install forwarding
rules for modified packets [7], and allow classification by
middleboxes [6]. Yet all these mechanisms add complexity,
reduce rather than eliminate some problems, and leave other
problems untouched.
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The principal contribution of this paper is a detailed explo-
ration of an opposing viewpoint, that session protocols might
be a better mechanism for service chaining. By session pro-
tocol we mean any end-to-end protocol, one that establishes
and controls communication between end-hosts. There are two
major advantages to this approach, which appear in direct
contrast to the disadvantages of routing/forwarding above:

• Many of the requirements for service chaining—session
affinity, handling modified five-tuples, selective control
by middleboxes, and convergence—apply to specific indi-
vidual sessions. The need for inter-domain control arises
primarily because sessions often cross domain bound-
aries. A session protocol operates on individual sessions
rather than on aggregates of them, and can operate end-
to-end as well as separately in each domain.

• In the spirit of the end-to-end argument, all of the key
functions of a session protocol are performed by hosts—
whether end-hosts or middlebox hosts. Compared to
the session state that is already in these hosts, service
chaining requires little additional state. This provides
inherent scalability, relieves the pressure on controller
capacity, and eliminates the need for network state to do
service chaining.

In response to the difficulties with fine-grained forwarding,
emerging industry solutions are already replacing fine-grained
forwarding with encapsulation, so that forwarding through
the service chain is by destination addresses alone [14]–[16].
This is a step in the right direction, but these solutions are
intra-domain and some are proprietary. In contrast, we are
interested in service chaining that can work across domains
and can be added straightforwardly to existing deployments.
Session protocols already provide effective and efficient sup-
port for mobility [17]–[23] and multihoming [24], [25], and we
complete the exploration of this “design pattern” by focusing
on middleboxes.

Given the obvious flexibility of signaling in a session
protocol, it might be predicted that use of a session protocol
for service chaining would provide entirely new opportunities
for optimization and network management. This is indeed
the case. We introduce a session protocol that does dynamic
reconfiguration, which means changing the middleboxes in a
service chain mid-session. Dynamic reconfiguration could be
useful in many situations (see also [26]):

• After directing a request to a backend server, a load
balancer could remove itself from the path of the request.
The load balancer is no longer a possible point of failure,
and there is no need for custom optimizations, like direct
server return for response traffic to bypass the load
balancer [27].

• A Web proxy cache, ad-inserting proxy, or intrusion
detection system could remove itself after its work for
a session is done.

• When suspicious traffic is identified, ongoing sessions
could be redirected through a packet scrubber for further
analysis.

• When the network is congested, video sessions could be
redirected through compression middleboxes [28].

• A middlebox that is overloaded or undergoing mainte-
nance, could be replaced with another of the same type
(e.g., see [29], [30]).

• When an end-host moves to a new location, a middlebox
could be added temporarily to buffer and redirect traffic

from the old location. In addition, the old middleboxes in
the service chain could be replaced with new ones closer
to the new location.

Note that removing a middlebox removes the host machine
from the path entirely, rather than having the kernel simply
bypass the application. This improves performance and relia-
bility, while conserving middlebox resources for sessions that
actually need them.

In this paper we describe the Dysco session protocol for
service chaining with dynamic reconfiguration. Dysco is an
extension to TCP (already a session protocol by our definition)
requiring no alterations to end-host applications, middlebox
applications, host TCP stacks, or IP routing. Because service
chains need not span the entire TCP session, Dysco can be
deployed incrementally and across untrusted domains, with
conventional security techniques.

We have focused on TCP because of its dominance.
Although the Dysco approach will not work for connectionless
protocols such as UDP, Dysco does not interfere with forward-
ing in any way. Therefore existing forwarding solutions can
continue to steer all traffic through essential middleboxes such
as firewalls, while co-existing with Dysco for more-demanding
TCP service chaining.

In addition to design, implementation, and measurement of a
Dysco prototype, this paper makes the following contributions:

Highly distributed control: Service chaining and dynamic
reconfiguration of the service chain can be performed com-
pletely under the control of middlebox hosts. Autonomous
operation is valuable not only because it avoids controller
bottlenecks, but also because sometimes only the middlebox
itself knows which middlebox should be next in the chain for
a session, or when its job within a session has been completed.
During dynamic reconfiguration, Dysco manages possible con-
tention between different Dysco agents (representing different
middleboxes) attempting to reconfigure overlapping segments
of the same session at the same time.

Generalized dynamic reconfiguration: For maximum gen-
erality, dynamic reconfiguration of a service chain works even
if a middlebox being deleted has modified the TCP session,
most notably by acting as a session-terminating proxy. It also
works if the middlebox has changed the size of a byte stream
(e.g., by transcoding or adding/removing content). There is
no inherent need for packet buffering except in the case of
server migration, when server state must be frozen before it
can be transferred. Such packet buffering, when needed, can
be performed exclusively by hosts.

Protocol verification: Although the code for dynamic
reconfiguration is compact, it was difficult to design, and
covers many subtle cases. It would be wrong to assume it
is correct without some clear evidence. We have this evidence
because we designed the protocol using the modeling language
of the model-checker Spin [31], and used Spin to verify it at
every stage of design. By presenting an automated proof of
correctness, we show how to increase the power of session
protocols without sacrificing our confidence in them.

Transparent support for middleboxes: Our prototype
intercepts packets in the network interface, so it works trans-
parently with unmodified applications and a wide range of
middleboxes. The prototype also supports Linux namespaces,
which makes it suitable for virtualized environments (e.g.,
Docker [32]) and experimentation with Mininet [33].

Dysco allows service chains to span multiple routing and
administrative domains, so packets will likely traverse middle-
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Fig. 1. A TCP session with its Dysco subsessions. The session and each subsession have different five-tuples, including IP addresses and port numbers.

boxes that Dysco does not control. Some of these middleboxes,
such as NAT boxes and stateful firewalls, keep track of
sequence numbers and drop packets whose sequence numbers
fall out of an expected window, breaking the flow of packets
and halting the connection. In an improvement over the orig-
inal version in [34], our reconfiguration protocol makes sure
that a TCP subsession looks just like a regular TCP session
with consistent sequence numbers, making reconfiguration
transparent to the middleboxes in its path.

Scalable implementation: In [34], we presented and evalu-
ated a Dysco implementation using a Linux kernel module that
does not scale well, as the kernel imposes a large overhead and
cannot process packets at line rate for high-bandwidth links
(e.g., 10 Gbps and beyond). For this paper, we implemented
the Dysco prototype in BESS [35], a software switch that
bypasses the kernel and runs on user space with DPDK [36] for
fast packet processing. The new implementation scales better
for middleboxes and environments that have to support packet
processing at high speeds, e.g., 100 Gbps. Our experiments
show that session setup is fast, steady-state throughput is high,
and disruption during reconfiguration is small.

II. DYSCO ARCHITECTURE

In Dysco, agents running on the hosts establish, reconfigure,
and tear down service chains, relying only on high-level
policies and basic IP routing. In this section, we introduce
the Dysco architecture and give an overview of the protocol;
in §III, we expand on how Dysco can reconfigure an existing
service chain.

A. Basic Service Chaining

The basic Dysco concept is that a service chain for a
TCP session is a chain of middleboxes and subsessions, each
connecting an end-host and a middlebox or two middleboxes.
There can be any number of middleboxes in the chain. A
service chain is set up when the TCP session is set up.
The service chain often has the same endpoints as the TCP
session, as shown in Fig. 1. Each subsession is identified
by a five-tuple, just as the TCP session is. The unmodified
end-host applications and middleboxes see packets with the
original header of the TCP session; as such, Dysco works
with existing application-layer protocols. Fig. 2 shows that the
packets go through a TCP stack only at the session endpoints,
so that congestion control and retransmission are performed
end-to-end as usual. Dysco agents rewrite packet headers for
transmission so that packets traveling between hosts have the
subsession five-tuple in their headers. In this way, normal
forwarding steers packets through the service chain, and there
is no encapsulation to increase packet size.

Establishment of the service chain: Establishment of the
service chain in Fig. 1 begins when the Dysco agent at host
A intercepts the outbound SYN packet addressed to D. If the
SYN packet matches a policy predicate, the agent will get an
address list for the service chain such as [B, C]. The agent

Fig. 2. Data flow inside hosts A and B of Fig. 1.

then allocates local TCP ports for the subsession with the
next middlebox. The agent rewrites the packet header with
its own address as the source IP address, the address of the
next specified middlebox as the destination IP address, and
the new allocated TCP ports as source and destination TCP
ports. The agent also adds to the payload of the SYN packet
the original five-tuple of the session header and the address
list [B, C, D]. It creates a dictionary entry to map the original
session to the new subsession, and another entry to map the
subsession to the session on the reverse path. It then transmits
the modified SYN packet.

When the Dysco agent at host B receives the SYN packet
from the network, it checks to see if the payload carries an
address list. If it does, the agent removes the address list
from the payload (storing it), and rewrites the packet header
with the session information also stored in the payload. The
agent also creates dictionary entries to map the subsession
to the session and vice-versa, and delivers the packet to the
middlebox application. When the SYN packet emerges from
the middlebox, the agent retrieves the address list [B, C, D]
and removes its own address to get [C, D]. It then follows
the procedure above to create a new subsession from B to
C, rewrite the packet, and transmit the modified SYN packet.
This continues along the service chain until the SYN packet
reaches D, where it is delivered to the TCP end-host.

When D replies to the SYN, the SYN-ACK packet travels
back along the chain of subsessions and middleboxes to
continue the handshake. The forward and reverse paths of the
TCP session must go through exactly the same middleboxes.
Between middleboxes, however, the forward and reverse net-
work paths traversed by subsessions need not be the same.

Middleboxes that modify the five-tuple: If such a mid-
dlebox, e.g., a NAT, has a Dysco agent, header modification
makes it difficult to associate a SYN packet going into the
middlebox with a SYN packet coming out of it. To solve this
problem, the Dysco agent applies a local tag to each incoming
SYN packet, which it can recognize in the outgoing packet.
The agent then associates the incoming and outgoing five-
tuples, and removes the tag. (Note that Dysco tags are different
from tags in FlowTags [6] and Stratos [7], because they are
applied only to SYN packets, are never sent to the network,
and are meaningful only to the agent that uses them.)
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A middlebox that modifies the five-tuple, but has no Dysco
agent, can also become part of a service chain because
ordinary routing of subsession packets directs traffic through it.
This will not affect establishment of the Dysco service chain,
even though the subsession five-tuple will be different on each
side of the middlebox.

Flexible session teardown in each direction: The Dysco
protocol preserves TCP’s ability to send data in the two
directions independently. For instance, one end of a TCP
session can send a request, and then send a FIN to indicate
that it will send nothing more. It can then receive the response
through a long period of one-way transmission. When the TCP
session is torn down normally, the chain is torn down along
with it. A TCP session can also timeout rather than terminate
explicitly, particularly when a middlebox discards its packets,
or an end-host fails. In this case the agents will time out the
subsessions. If necessary, agents can use heart beat signals to
keep good subsessions alive.

B. Role of the Policy Server

We assume that a policy for service chaining combines
a pattern that matches five-tuples with an (ordered) list of
middleboxes or middlebox types to be traversed by packets
matching the pattern. A policy server determines the policies
in force, and can optionally trigger dynamic reconfiguration
of groups of service chains. Compared to an SDN controller,
the policy server has no involvement with individual sessions,
and does nothing to enforce its policies (such as installing
forwarding rules in network elements).

Selecting the service chain: The first Dysco agent in a ser-
vice chain needs the policy for the chain. Yet the policy server
need not be queried for individual sessions. For example,
initial policies can be pre-loaded or cached in Dysco agents.
Policies can specify middlebox types rather than instances, and
agents can choose the instances, e.g., in a round-robin fashion
or based on load. In addition, each agent can add middleboxes
to the untraversed portion of the list. This makes it possible for
any agent along the chain to inject policies. This also makes
it possible for a middlebox, such as an application classifier,
to itself select the next middlebox in the chain. The middlebox
communicates its choice to the local Dysco agent, and the
agent adds the next middlebox to the head of the policy list.

Initiating reconfiguration of a service chain: In some
use cases, Dysco agents initiate reconfiguration of the service
chain, without the involvement of the policy server (e.g.,
when a load balancer or Web proxy triggers the change).
In other cases, the policy server is involved, but only in a
coarse-grained way. For example, taking a middlebox instance
down for maintenance would involve the policy server sending
a single command to tell the associated Dysco agent to
replace itself in all of its ongoing sessions. Similarly, when a
measurement system suggests that certain traffic is suspicious,
the policy server can send a command to Dysco agents to
add a scrubber to the service chain for all sessions matching
a particular classifier. The agents handle the full details of
reconfiguring the session.

C. Agents Can Reconfigure a Session

The service chain of a session can be reconfigured while the
session is ongoing. Reconfiguration operates on a segment of
the service chain, consisting of some contiguous subsessions
and the hosts at their endpoints. When a session is pictured
with the client on the left and the server on the right, the Dysco

Fig. 3. Agents reconfigure a segment of a session, replacing an old path
with two middleboxes by a new path with one.

agent at the left end of the segment is called the left anchor,
and the Dysco agent at the right end of the segment is called
the right anchor. These terms are illustrated by Fig. 3. Any
Dysco agent in the service chain can serve as an anchor,
including an agent at a session endpoint.

Fig. 3 shows an old path and a new path, representing
the segment before and after reconfiguration. If the old path
consists of a single subsession (with no middleboxes), and the
new path has at least one middlebox, then middleboxes are
being inserted. Reverse old and new above, and middleboxes
are being deleted. If both old and new paths have middleboxes,
then the old ones are being replaced by the new.

During reconfiguration, the anchors cooperate by exchang-
ing control packets, and they remain in the service chain
afterwards. There is no need for packet buffering, because
new data can always be sent on one of the two paths.

D. Sessions and Service Chains Need Not Coincide Exactly

In Fig. 1 there is one TCP session and one service chain,
and both have the same endpoints. Dysco allows other usages,
making it both versatile and incrementally deployable.

When a middlebox modifies the five-tuple, as in §II-A,
the service chain spans multiple TCP sessions. For example,
a service chain that includes a session-terminating proxy (e.g.,
a layer-7 load balancer, Web cache, or ad-inserting proxy)
would encompass two TCP sessions. The Dysco agent of
the proxy simply presents data to the proxy application with
the TCP session identifier that applies at that point in the
service chain. Later, the proxy’s work may be completed, e.g.,
when the load balancer establishes a session to a backend
server, or the Web cache realizes the requested content is not
cacheable. The Dysco agent can then delete the host from the
service chain, in response to a trigger by the proxy. After
a session-terminating proxy has been deleted, the resulting
service chain would correspond to a single TCP session.

Another option is that a TCP session can be longer than
a service chain, or even encompass multiple separate service
chains. This is particularly important for partial deployment
of Dysco or when multiple administrative domains do not trust
each other. For example, an end-host that does not run Dysco
may connect to the Internet via an ISP edge router that does.
This edge router can initiate a Dysco service chain to the
remote end-host, or to the other edge of the ISP, on the client’s
behalf. In another example, a TCP session may access a server
in a cloud. The part of the session covered by a service chain
in the cloud would begin at some gateway or other utility
guaranteed to be in the path of all of the session’s packets as
they enter the cloud. A Dysco agent in this network element
would begin the service chain.

E. Security

Dysco agents use HMACs (Hash-based Message Authenti-
cation Codes) [37] with a shared secret key to authenticate and
check the integrity of signaling messages exchanged between
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them. We use the same approach as IPv6 segment routing [38],
which also uses HMACs to authenticate and check the integrity
of packets between segment routing nodes and assumes the
agents share a secret key. Unlike IPv6 segment routing, Dysco
authenticates only the signaling messages, as data packets
are processed by the Dysco agents only if they belong to
an established session. The sending agent uses the SHA-
256 cryptographic hash function to create a 32-byte signature
of the signaling message. The signature is computed over the
content of the payload of the signaling message plus the secret
key. Message authentication is optional and can be turned off
for faster reconfiguration and session setup.

III. DYNAMIC RECONFIGURATION

This section covers the most innovative part of Dysco,
which is its protocol for dynamic reconfiguration of an ongo-
ing service chain. First, we give an overview of the protocol’s
operation. Subsequent sections provide protocol details, orga-
nized by significant issues and challenges. Finally, we explain
the need for formal verification and how it was accomplished.

A. Protocol Overview

As mentioned in §II-B, reconfiguration can be triggered
by policy servers. It can also be triggered by middleboxes
in the service chain, e.g., by a load balancer that wants to
delete itself after choosing a server and observing that the
service chain to the server has been established. Either way,
the triggering element must communicate with the left anchor
of the reconfigured segment, which initiates the protocol.

Just as the Dysco agent for A in Fig. 1 needs the
address list [B, C, D] to set up the original service chain,
the left anchor of a reconfiguration needs an address list
[M1, M2, . . . , rightAnchor] with the middleboxes and right
anchor of the new path that will replace the old path. The
address list may be cached in the anchor agent or provided
by the triggering element. When a middlebox triggers its own
deletion, it sends a triggering packet to the agent on its left,
which becomes the left anchor. The triggering packet contains
an address list consisting only of the address of the agent to
the middlebox’s right, which becomes the right anchor. In this
case, after reconfiguration, the new path will consist of a single
subsession between the left and right anchors.

Once the left anchor has the address list, it executes the
reconfiguration protocol by exchanging control packets with
the right anchor. Each control packet carries in its body the
associated session identifier. Fig. 4 shows the control packets
exchanged by the anchors during the first phase of a simple,
successful reconfiguration. The red packets (packets of the
first handshake) travel on the old path, so they are forwarded
through the Dysco agents of current middleboxes (the right-
Delta field will be explained in §III-D). The blue three-way
SYN handshake sets up the new path within the service
chain. As in §II, the SYN carries the address list so that the
Dysco agents can include all the addressed middleboxes before
the right anchor. During this phase normal data transmission
continues on the old path.

In the second phase of reconfiguration, both paths exist. The
anchors send new data only on the new path, but continue to
send acknowledgments and retransmissions on the old path for
data that was sent on the old path. This prevents trouble with
middleboxes that might reject packets with acknowledgments
for data they did not send. This phase continues until all the
data sent on the old path has been acknowledged, after which
the old path is no longer used.

Fig. 4. Control packets exchanged for reconfiguration. Red packets travel
on the old path, blue on the new path.

Fig. 5. Contention to reconfigure overlapping segments. The state variables
below the subsessions are maintained in the agents at the left ends of the
subsessions.

B. Contention Over Segments

Dysco is designed to work even if middleboxes have
a great deal of autonomy, so that new solutions to
network-management problems can be explored. In the most
general case, two different Dysco agents might be triggered to
reconfigure overlapping segments at the same time. To prevent
this, reconfiguration begins with a request handshake, which
is the red (upper) handshake shown in Fig. 4. The handshake
is used to prevent simultaneous reconfiguration of overlapping
segments, as illustrated by Fig. 5.

For each subsession, the agent on its left maintains a state
that is one of unlocked, lockPending, or locked. If its value is
lockPending or locked, then variable requestor holds the left
anchor of the request for which it is pending or locked.

A left anchor can only send request-
Lock(leftAnchor,rightAnchor) when the subsession to
its right is in state unlocked. If an agent receives
requestLock(leftAnchor,rightAnchor) from the left, and
the agent is not rightAnchor, and its subsession to the right
is unlocked, then it forwards the packet to the right, while
setting the subsession state to lockPending and the requestor
variable to leftAnchor. If an agent receives requestLock in
the same situation except that its subsession to the right
is locked, it responds to the request with nackLock, which
propagates back to the requestor—which must abort or delay
its reconfiguration attempt. If an agent receives requestLock
in the same situation except that its subsession to the right is
lockPending, then it simply waits for further information.

Eventually (see below), a requestLock will reach its right
anchor, which will reply with ackLock. This packet propagates
leftward through the segment. As it reaches each agent on its
way, the agent changes the subsession state from lockPending
to locked. If the agent is holding a requestLock to which it has
not yet replied, it now replies to that request with nackLock.
When the left anchor receives ackLock, it begins the second
handshake in Fig. 4.

In Fig. 5, a request to lock the segment from X to Z has
propagated from X to Z (packets 1 and 2). Meanwhile agent
W has been triggered to lock the segment from W to Y . Its
request (packet 3) is blocked at X because the subsession to its
right is lockPending. Eventually X will receive ackLock, and
reply with nackLock to the request from W . If the scenario
were different and X received nackLock to its own request,
it would still reply with nackLock to W , so that both X and W
would have to abort or try again later. If either tries again later
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and its intended right anchor has been removed by the previous
reconfiguration, its request will be nacked by the agent at the
end of the service chain.

This protocol cannot deadlock because of the linear order of
the service chain. The rightmost request will never be blocked
by a lockPending subsession. Therefore it will always receive a
reply, which will unblock the blocked request to its immediate
left (if any). The unblocked request is now the rightmost
request, which will not be blocked again, and so on. Requests
could in theory be starved by a continual succession of new
requests, but this would not happen in an otherwise correct
implementation.

C. Control Signaling

Dynamic reconfiguration requires control signaling, e.g.,
to resolve contention over segments (§III-B) and to cancel
reconfiguration if a new path cannot be created (§III-G).

In [34], we used UDP packets to carry control messages.
In this new version of the protocol we use for control a
separate TCP session, following the old path, instead. This
has the advantage of allowing reconfiguration of service chains
that cross NAT boxes or stateful firewalls, which often reject
UDP packets. It has the further advantage of leaving the byte
stream of the primary TCP session unchanged. The control
session is very short, usually consisting of only requestLock
and ackLock messages carried in the payloads of TCP SYN
and ACK packets, respectively. These messages carry the
session of the session being reconfigured, so the Dysco agents
can direct them through the middleboxes of the old path.

A principal design goal for dynamic reconfiguration is to
disrupt data transfer as little as possible. We set up a new
TCP session on the new path with its own initial sequence
numbers, which we set as the last sequence numbers that the
anchors see on the old path before initiating setup of the new
path. This session looks completely new to any middlebox that
is inserted on the new path. While its three-way handshake
completes, data transfer continues on the old path.

When the new path is fully set up, the anchors begin to use
it for transfer of new data. Meanwhile, the anchors continue
to use the old path for acknowlegments and retransmissions
of data sent on the old path. After all the data sent on
the old path has been acknowledged, the path is no longer
used. We do not use an actual FIN handshake to tear down
the old path because it is too difficult for the anchors to
distinguish between tearing down the old path and tearing
down the entire session. This is due to the many possible
race conditions between these two cases, which is something
revealed by verification (see §III-H). Individual subsessions
of the old path can be allowed to time out, and the state kept
for them can be discarded.

D. Sequence-Number Deltas

Some middleboxes increase or decrease the size of a byte
stream (by transcoding, inserting, or deleting content). They
keep track of the difference (delta) between incoming and
outgoing sequence numbers (a signed integer) in the relevant
direction, so that they can adjust the sequence numbers of
acknowledgments accordingly. A session-terminating proxy
also has a delta because it begins sending in its TCP session
to the server with a different sequence number than the client
chose. If a middlebox with a delta is deleted, the discrepancy
in sequence numbers must be fixed elsewhere.

We make the assumption that once a middlebox is ready
for deletion from a session, its deltas do not change.1 The
middlebox’s Dysco agent must know the deltas, either through
an API or by reconstructing them. As the requestLock packet
traverses the old path, it accumulates the sum of the middlebox
deltas for that direction in the field rightDelta. As the ackLock
packet traverses the old path, it accumulates the sum of
the middlebox deltas for that direction in the field leftDelta.
Each anchor must remember the delta it has received in the
requestLock handshake.

For the remainder of the session after reconfiguration, each
former anchor must apply its delta to packets. Fig. 6 shows
how (for the moment ignore all mentions of beta). To simplify
the presentation, we assume that sequence numbers do not
wrap around to zero.

In Fig. 6, whenever a packet is coming into the middlebox
co-located with a former anchor, from the new path (reconfig-
ured segment), the Dysco agent adds its delta to the sequence
number (SN in the figure). This simulates what the old path
would have done if its middleboxes were still present. To
balance this adjustment, at the same point in the session path,
but in the opposite direction, the same Dysco agent subtracts
its delta from the acknowledgment number (AN in the figure).
The invariant preserved by these transformations is that all
middleboxes present in both old and new paths (not to mention
the endpoints) see continuous sequence and acknowledgment
numbers before and after reconfiguration.

E. Sequence-Number Betas

Using the old path for data transfer while the new one is
being set up is an important feature of our protocol. It means
that reconfiguration does not delay data transfer, and does not
require buffer space anywhere (except in cases where the state
of a middlebox in the old path must migrate to a middlebox
in the new path, making buffering inevitable). However, this
desirable feature creates the need for another adjustment of
sequence numbers.

The problem is that an anchor must choose an initial
sequence number for the new path before it has finished
sending on the old path. When the new path is ready for
use, the next sequence number sent may be greater than the
next sequence number expected on the new path by a number
beta, because beta bytes were sent on the old path while the
new one was being set up. This will not affect the sequence
and acknowledgment numbers observed by middleboxes that
were previously present, but new middleboxes may see a large
gap. Some middleboxes keep track of sequence numbers (e.g.,
Linux iptables firewalls), and would halt data transfer on the
new path because of this apparent error.

To remove the sequence-number gap, each anchor must
inform the other how many bytes have been sent on the old
path after they have selected their initial sequence numbers
for the session setup. Informing the other anchor is tricky.
If an anchor sends its beta in a control message, it can be
lost, or data packets can arrive on the new path before it
arrives on the old path. Also, we do not want to include a
new option in the data packets to avoid increasing packet size
and consequently having to fragment them.

To transmit betas, we use a property of the timestamp option
that says that its value must be monotonically non-decreasing.

1Without this assumption, there must be a wait while the last data passes
through the old path, during which new data cannot be sent on either path.
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Fig. 6. How former anchors modify TCP packets (dotted arrows) of new subsessions. Black refers to the forward path, while red refers to the reverse path.

When we send the TCP SYN or SYN+ACK between the
anchors, we set the value of the timestamp option (SEG.TSval)
to the last SEG.TSval sent on the old path. After we switch
to the new path, the anchors add their betas to the initial
timestamp values in all data packets until they receive an ACK
on the new path. The ACK confirms that the other anchor has
received the piggybacked beta. Note that the timestamp values
will be the same from the moment we switch to the new path
until the anchors receive an ACK on the new path. Finally,
the anchors have to translate the timestamp options before
the messages leave the new path to prevent the end hosts
from seeing a non-decreasing sequence of timestamp values.
Even though the timestamp option is not mandatory, all major
operating systems enable it by default to cope with today’s
high-speed networks. In the unlikely case that the timestamp
option was not negotiated on the old path, the Dysco agents
can negotiate it on the new path. But, in this case, fragmenta-
tion and reassembly on the new path are unavoidable, as the
timestamp option must also be included in the data packets.

The use of betas from the left and right anchors (beta(L)
and beta(R), respectively) is also shown in Fig. 6. As a packet
enters the new path from an anchor, the anchor subtracts its
own beta from the sequence number. As the packet exits the
new path going into a middlebox co-located with the other
anchor, the anchor adds the other anchor’s beta. Clearly this
affects sequence numbers observed within the new path only.
To balance these adjustments, at the exact same points in the
path, wherever the Dysco agent adds [subtracts] a beta to a
sequence number, it subtracts [adds] the same beta from the
acknowledgment number in the other direction.

Do the deltas and betas interact with each other? Fortunately
not, because they affect the data stream in different places. In
Fig. 6, consider adjustments to the sequence numbers in the
forward direction. The left anchor subtracts beta(L) so it will
be observed by middleboxes within the new path. The right
anchor adds beta(L) to cancel what the left anchor did, and
adds delta(R) to the sequence numbers to be observed outside
the new path. Similarly, concerning sequence numbers in the
reverse direction, the right anchor subtracts beta(R) so it will
be observed by middleboxes within the new path. The left
anchor adds beta(R) to cancel what the right anchor did, and
adds delta(L) to the sequence numbers to be observed outside
the new path.

F. Packet Handling on Two Paths

In the second phase of reconfiguration, both old and new
paths exist. To handle packets correctly, the anchors must

decide which path to use when sending data or acknowl-
edgments, and must know when the old path is no longer
needed. The following algorithm is independent of deltas and
betas. It should be visualized as executing “in the middle” of
the anchors as they perform reconfiguration. The delta and
beta adjustments should be visualized as executing “at the
interface” between the anchors and the new path. So, for
example, the black adjustments in Figure 6 are applied to
packets by the left anchor after middlebox processing and after
the algorithm in this section. The black adjustments are applied
by the right anchor before the algorithm in this section and
before middlebox processing.

To make these decisions, an anchor maintains the follow-
ing variables (the “plus one” follows TCP conventions for
sequence numbers):

• oldSent: highest sequence number of bytes sent on old
path, plus one (this is known at the beginning of the
phase, as no new data is sent on the old path);

• oldRcvd: highest sequence number of bytes received on
old path, plus one;

• oldSentAcked: highest sequence number sent and
acknowledged on old path, plus one;

• oldRcvdAcked: highest sequence number received and
acknowledged on old path, plus one;

• firstNewRcvd: lowest sequence number received on the
new path, if any.

A byte sent by an anchor is allocated to a path according
to the following rules. If a packet contains data for both paths
(both new and retransmitted bytes), then the data must be
divided into two new packets.

predicate on byteSeq where to send byte
byteSeq < oldSent old path
byteSeq ≥ oldSent new path

Acknowledgment numbers are a little different because their
meaning is cumulative. For these the rules are:

predicate on packetAck where to send ack
packetAck ≤ oldRcvd ∧

packetAck > oldRcvdAcked old path
packetAck > oldRcvd ∧

oldRcvd = oldRcvdAcked new path
packetAck > oldRcvd ∧ new path, also

oldRcvd > oldRcvdAcked ack oldRcvd on old path

If the two sets of rules imply that the data of a packet goes
to one path and its acknowledgment goes to another, then the
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packet must be divided into two. These rules need not consider
deltas, as deltas are already applied to incoming packets, and
not yet applied to outgoing packets.

For an anchor to decide that it no longer needs the old
path, of course it must have received acknowledgments for
everything it sent on the old path, or oldSentAcked = oldSent.
Knowing that it has received everything on the old path is
harder, unless it has received a FIN on the old path, because it
does not have direct knowledge of the cutoff sequence number
at the other anchor. The first byte received on the new path is
not a reliable indication, because earlier data sent to it on the
new path may have been lost. The correct predicate is:

oldRcvdAcked = oldRcvd ∧ oldRcvd = firstNewRcvd

The first equality says that everything received has been
acknowledged. The second says that the cutoff sequence
number must be oldRcvd. When the old path is no longer
needed, reconfiguration is complete.

If a stateful middlebox in the session is being replaced,
additional delay must be introduced. First, all use of the old
path must be completed. Second, the stateful middlebox on
the old path must export its state for that session to the
new stateful middlebox, using existing mechanisms [30]. Then
and only then can data be sent on the new path. During
the interval when the old path is being emptied and state
is being migrated, the anchors must buffer incoming data.
Note that the Dysco protocol does not use buffering during a
reconfiguration, but in this case it needs to buffer the packets
to prevent them from arriving at a middlebox before its state
has been migrated. We evaluated middlebox replacement with
state transfer in [34].

G. Failures

The old path must be fully operational for reconfiguration
to work. If the old path fails during reconfiguration, then
the entire session will be lost, which is exactly what would
happen if there were no Dysco and no reconfiguration. Unfor-
tunately, this means that dynamic reconfiguration cannot be
used to recover from the failure of a middlebox. The utility
of reconfiguration is limited to policy change and resource
management, rather than fault-tolerance.

The most significant failure during reconfiguration is failure
to set up the new path, which can happen because of host
failure or network partition. The remedy is to cancel the
reconfiguration, so the session continues to use the old path.
A cancellation handshake through the control session on the
old path (§III-C), initiated by the left anchor, unlocks the links
of the old path and informs the right anchor.

If control packets are lost, then the protocol detects this and
retransmits them. The control session is used only for a short
time, to initiate reconfiguration and possibly to cancel it if the
new path cannot be set up. After this, the session is allowed
to time out.

H. Design and Verification

In designing the original reconfiguration protocol, we had
to solve a number of related problems simultaneously. We had
to decide how to make the cutoff between the old and
new paths for maximum efficiency (§III-A), how to exercise
distributed control among conflicting reconfiguration attempts
(§III-B), how to compute and use deltas to accommodate the
broadest range of middlebox applications (§III-D), how to split
acknowledgments across the two paths and determine when the

use of the old path is completed (§III-F), and how to handle
failures (§III-G). We had to decide whether any particular
packet should be TCP or UDP (§III-C) [34]. We also had to
deal with many race conditions—for example, an anchor might
receive a FIN going in either direction in almost any state, and
the FIN might indicate the completion of data transmission
on the old path or the completion of end-to-end TCP data
transmission.

We did not believe that we could design such a protocol
correctly without help, so we designed it in Promela, which
is the modeling language of the model-checker (verifier)
Spin [31]. In Promela, each Dysco agent is a concurrent
process that communicates with other processes through
message queues. The messages represent both TCP and
UDP packets, with fields for sequence numbers and other
metadata. Each agent is structured as a finite-state machine
that can react to the receipt of a message by reading and
writing local variables, sending other messages, and/or
changing state. Choices made by end-hosts and middlebox
applications are modeled by nondeterminism in the program.
As a result, the Promela program for a Dysco agent has
a straightforward structure that translates easily to actual
implementation code.

The great advantage of using Promela for design is that we
were able to verify the model at every step, obtaining immedi-
ate feedback on bugs and unresolved issues. It was necessary
to verify each configuration separately, where a configuration
is an initial service chain and a set of attempted reconfig-
urations. For each configuration, Spin checks the model for
all possible executions, meaning all possible network delays
and scheduling decisions, which in turn generates all possible
interleavings of modeled events. In a typical verification run
for a typical configuration, Spin constructs a global state
machine of all possible execution behaviors with 100 million
state transitions.

What can verification tell us? Any run of Spin will find
errors such as deadlocks and undefined cases. In addition,
it is possible to check stronger properties by putting assertions
at appropriate points in the model. If execution reaches an
assertion point and the assertion evaluates to false, that will
also be flagged as an error. Using this technique, we were
also able to verify that each configuration has the following
desirable properties:

• When multiple left anchors contend to lock overlapping
segments, exactly one of them succeeds.

• No data is lost due to reconfiguration.
• Unless the new path cannot be set up, an attempted

reconfiguration always succeeds.
• The sequence and acknowledgment numbers received by

end-hosts are correct.
• The original TCP session terminates cleanly.

In the new version of the protocol described in this
paper, the only significant change is the addition of beta
adjustments as described in §III-E. Fig. 6 and the expla-
nations based on it in §III-D, §III-E, and §III-F form
a “proof by picture” that the beta adjustments are cor-
rect and independent of other aspects of the modeled
protocol.

The model, along with extensive documentation of design,
modeling abstractions, and Spin runs, can be found at [39].
It shows that with modern tools, protocol design can be more
ambitious without sacrificing robust operation.
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Fig. 7. Dysco prototype implementation, where solid orange lines represent
the data path, blue dashed lines the control path, and red dashed lines the
management path for distributing policies.

IV. DYSCO PROTOTYPE

Our Dysco prototype consists of user-level BESS modules2

that work on the data path (agent) and control path (daemon).
The Dysco daemon communicates with an external policy
server to receive the policies the agents must enforce. Fig. 7
shows the high-level architecture of our implementation.

A. Dysco Components and Interfaces

Agent: The Dysco agent supports unmodified end-host
applications, middleboxes, and host network stacks by inter-
cepting packets going to/coming from the network. The agent
could be implemented in various ways, including a modified
device driver, a Linux kernel module [34], or a software
switch. In [34], we implemented Dysco in a Linux kernel
module that received and sent packets directly to the NIC
driver. However, the Linux kernel is not fast enough to cope
with the current high-speed networks, as it can barely handle
a million packets per second. In this new implementation of
the protocol, the Dysco agents are user-space BESS modules
that intercept packets at the ports exported by the BESS
switch. We decided to use BESS because of its modularity
and to provide fast packet processing using DPDK. Also,
by intercepting packets at the port level, we can support
applications and middleboxes transparently and do not have
to change the NIC drivers. As the Dysco agent processes all
packets from a TCP session, it can change how TCP behaves in
several ways. For example, it can advertise a smaller receive
window to throttle a sender during reconfiguration or even
prevent it from sending data at all by advertising a window
of size zero. Our prototype also supports network namespaces
for virtualized environments, such as Docker and Mininet.

Middleboxes: Dysco supports unmodified middlebox
applications, and we have successfully run with NGINX [41],
Iptables/Netfilter [42], Linux tc [43], and libpcap-based
middleboxes. Most middleboxes send and receive data via
libpcap, user socket, Linux sk_buff, or DPDK. Some
middleboxes only read the packets (e.g., PRADS [44],
Bro [45], Snort [46], Suricata [47], Linux tc [43], Ipta-
bles/Netfilter Firewall [42]) while some others modify the TCP
session identifier or sequence numbers (e.g., Iptables/Netfilter
NAT [42], HAProxy [48], Squid [49]). Middleboxes that only
read the packets and use libpcap, sk_buff or DPDK
run transparently and unmodified with Dysco. To support
the removal of TCP-terminating applications (e.g., load
balancers), we provide a library function (dysco_splice)

2These modules can be easily ported to Click modules [40], for instance.

that a (modified) middlebox can use to trigger its removal.
Dysco also supports middleboxes that can import and
export internal state as part of migrating a session from one
middlebox instance to another, inspired by OpenNF [29].

Daemon: The Dysco agent performs session setup and
teardown, as well as data transfers. As we now use only TCP
packets in our protocol, locking and reconfiguration operations
are triggered by a user-space daemon but are processed by the
agents directly on the data path. To speed up the identification
of the Dysco control packets on the data path, we use TCP
segments with the URG and ACK flags set to one and with
option 254 (reserved for experimentation). The control packets
carry information to identify the left and right anchors for the
locking phase, and a service chain for setting up the new path.

Policy server: The policy server provides a simple
command-line interface for specifying the service-chaining
policies and trigger reconfiguration of live sessions. A policy
includes a predicate on packets, expressed as BPF filters,
and a sequence of middleboxes. The policy server distributes
these commands to the relevant Dysco agents. Commands
can be batched and distributed to different hosts using shell
scripts. The policy server and the Dysco agent and daemon
consist of over 7,500 lines of C and C++. The source code
of Dysco as well as the shell scripts used for the evaluation
are available at [39].

B. Protocol Details

Tagging SYN packets: The local tags added to SYN
packets, as described in §II-A, are implemented with TCP
option 253 (reserved for experimentation). The option carries
a unique 32-bit number to identify the session. SYN packets
are tagged only when they are inside a middlebox host.

Packet rewriting for data transmission: During data
transmission, the agent simply rewrites the five-tuple of each
incoming or outgoing TCP packet and applies any necessary
sequence and acknowledgment number delta, timestamp delta,
and window scaling. Since the agent rewrites the packet
header, it has to recompute the IP and TCP checksums. All
checksum computations are incremental to avoid recomputing
the checksum of the whole packet.

TCP packets for reconfiguration: The agents implement
the reconfiguration protocol using TCP packets. We decided
to use TCP in this new implementation to allow NAT crossing,
a limitation of our previous implementation [34]. We use TCP
SYN and SYN+ACK segments to carry the control messages.
The control messages carry the five-tuples of the TCP sessions
going through the reconfiguration so that the Dysco agents
can associate the control message with the session state. If a
middlebox is inserted during the reconfiguration, the Dysco
agent removes the payload, tags the SYN packet, rewrites
the session, and forwards the SYN segment to the host.
We forward the three-way handshake segments to the hosts
so the middleboxes in the new path can create the necessary
state for the session as if it were a new session in that segment
of the service chain.

Triggering a reconfiguration using “splice”: To deal with
middleboxes that terminate TCP sessions and want to remove
themselves, Dysco offers a library function that receives two
sockets and a delta representing how much data was added to
or removed from the first socket before delivering the data to
the second socket:

intdysco_splice(intfd_in, intfd_out, intdelta)
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A positive delta indicates that data were added to, and a
negative delta indicates that data were removed from fd_in.
This option requires the modification of a middlebox to call
the library function. In [34], we also discussed a module
for transparently removing middleboxes that use the Linux’s
“splice” system call.

Differences in TCP options for two spliced TCP sessions:
When a Dysco agent initiates a “splice” of two TCP sessions,
the Dysco agents on the left and right anchors need to translate
not only the sequence and acknowledgment numbers of each
packet but also the TCP options that differ between the two
sessions or have a different meaning. The relevant options are
window scaling, selective acknowledgment, and timestamp.
Window scaling is easy to convert, as the anchors record
the scale factor negotiated during the session setup. The
Dysco agent first computes the actual receiver window of a
packet using the scale factor of its incoming subsession and
then rescales the calculated value by the scale factor of the
outgoing subsession. The translation of the selective acknowl-
edgment (SACK) blocks is particularly important because the
blocks of one session have no meaning to the other session
(if blocks are not translated, the Linux kernel will discard all
packets that contain blocks with invalid sequence numbers).
To convert the sequence numbers of SACK blocks, the anchors
add to (or subtract from) each sequence number the delta that
they receive during session reconfiguration. Timestamps are
used for protection against wrapped sequence numbers and
RTT computation. The Linux kernel keeps track of the highest
timestamp received and discards packets whose timestamps are
too far from it. To avoid packets being discarded by the kernel,
Dysco translates timestamps in the same way as it does with
sequence numbers.

NAT crossing: Because we used UDP packets to send
control messages, a critical limitation in our previous imple-
mentation [34] was that we could not reconfigure a session
going through a NAT box. The use of TCP packets helps us
solve this problem, but we still need to identify segments of
a session that cross a NAT box. Now, each agent inserts the
five-tuple of the subsession in the payload of the TCP SYN
segment of a reconfiguration message. When the agent on
the other end of the subsession receives the control message,
it compares the subsession in the payload with the five-tuple
of the packet. If they differ, the sending agent is on the
private side of a NAT. The agent on the public side of the
NAT has to change the private IP address and TCP source
port of the session to their correspondent public values that
are in the packet header before forwarding the packet to the
application and the subsequent hosts along the service chain.
On the returning SYN+ACK segment, the public session is
propagated back to the hosts that are on the private side of
the NAT. We use the public session as the session identifier in
all locking and reconfiguration messages. If a reconfiguration
crosses a NAT box, only a host on the private side can start
the reconfiguration.

V. PERFORMANCE EVALUATION

We evaluate Dysco in the three main phases of a ses-
sion across different network settings. First, we measure
the latencies for session setup to quantify Dysco overhead,
which includes processing middlebox address lists in the SYN
packets and signing and checking the control messages with
HMAC. Second, we measure the throughput of a session
during normal data transfer to show that the Dysco agents

Fig. 8. Latencies for session initiation.

can forward packets at high speed. Third, we show that
dynamic reconfiguration improves end-to-end performance
and introduces minimal transient disruptions. Finally, we eval-
uate reconfigurations that cross NATs and stateful firewalls.

The testbed consists of three servers with two Intel Xeon
Silver 4114 (10-cores @2.2GHz), each with 96GB of RAM
and two Mellanox ConnectX-5 EN 100Gbe NICs connected to
an Edge-Core Wedge 100BF-32X switch that performs either
layer-two forwarding or layer-three routing, depending on the
experiment. We use the BESS software switch [35] and DPDK
18.08 for composing the modules that implement the data
path between the hosts. Finally, we use qemu-v2.11.1 for
hardware virtualization.

A. Session Initiation

Fig. 8 shows the session setup latency between client and
server under three scenarios: without Dysco, with Dysco, and
secure Dysco using HMAC for signing and checking the
control messages. The number of middleboxes varies from
0 to 4. The measurements represent the time for a TCP
socket connect() at the client, which is the round-trip for
establishing the TCP session to the server with a confidence
interval of 95%. The client and server are virtual machines that
run on different servers, and all four middleboxes are virtual
machines that run on the third server. The middleboxes simply
route the IP packets using the Linux kernel.

On regular Dysco, the agents perform lookups, rewrite
packet header fields, and recalculate checksums for each SYN
and SYN-ACK segment along the service chain. In the secure
Dysco, the agents also have to check the integrity of the
received messages with the HMAC code and sign the outgoing
messages after the changes in each hop along the service chain.
The overhead introduced in the worst case (secure Dysco ×
no Dysco) is only 22µs when we have four middleboxes. Note
that the RTT in the testbed is under 110µs in the worst case,
so the overhead is insignificant in real scenarios where RTTs
are expected to be in the order of milliseconds.

B. Data-Plane Throughput

We first evaluate the ability of the Dysco agents to saturate
a 100 Gbps link, using one server as the sender and another
as the receiver. We create 60k different TCP sessions between
the sender and the receiver. Figs. 9 and 10 show the number
of packets per second (left y-axis) and the throughput (right
y-axis) as a function of the packet size. We vary the packet
sizes from 64 bytes up to 1518 bytes and use one logical
core (Fig. 9) and 16 logical cores (Fig. 10). Because we
assume servers in the wild use logical cores as well as physical
cores, we do not disable hyperthreading for this experiment
as it is the common practice in performance evaluations
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Fig. 9. Performance of Dysco using one logical core.

that measure packets per second. Dysco introduces a perfor-
mance penalty of up to 27.85% with one logical core and
64-byte packets, because table lookup, packet modifications,
and checksum computation are expensive tasks that the Dysco
agents have to perform in each packet. Wang et al. show
that hash table lookup is the most time-consuming stage
during packet processing [50]. We use the Google dense hash
map for the lookup operation. Performance improvements in
this data structure will automatically translate to performance
improvements in Dysco. However, Fig. 10 shows that Dysco
saturates a 100Gbps link with 128-byte packets and 16 cores.

We also measured the number of requests that NGINX [41],
a popular HTTP server, can sustain under Dysco, and com-
pared the results with the baseline. The measurement was
performed with wrk [51], an HTTP benchmarking tool, with
16 threads and 400 persistent connections, as recommended
in [51]. NGINX can serve more than 180,000 connections
per second when the client and the server are connected
directly, and a little under 175,000 connections per sec-
ond when four middleboxes are between the client and the
server. The largest difference between Dysco and the baseline
is less than 4.08%.

C. Dynamic Reconfiguration

In this section, we investigate a few scenarios of dynamic
reconfiguration. We use the logical topology of Fig. 12; the
clients, servers, and TCP proxy are virtual machines running
on different physical servers.

We run TCP sessions from four Clients to four Servers,
passing through the Router and Middlebox1, which is running
a TCP proxy. After 40, 60, 80, and 100 seconds, we trigger
reconfigurations that remove Middlebox1 from a client-server
pair and direct the traffic of all TCP sessions between them
directly from the client to the server passing only through
the Router. Each client-server pair has a bundle of 125 TCP
sessions for a total of 500 simultaneous sessions.

Fig. 10. Performance of Dysco using 16 logical cores.

Fig. 11. Number of HTTP requests per second NGINX can serve under
Dysco and the baseline.

Fig. 12. Testbed topology for the performance evaluation of the reconfigu-
ration experiments.

The top of Fig. 13 shows the goodput before and after
each reconfiguration. The time series represents measures of
application data (goodput) at one-second intervals. After each
reconfiguration, the goodput of the sessions that no longer go
through the proxy increases significantly. We can see that after
100 seconds when all 500 sessions no longer go through the
proxy, the overall goodput increases from the time interval
before the reconfigurations started. The bottom of Fig. 13
shows the CPU utilization at the proxy. We can see that the
CPU utilization decreases at the instants 40, 60, 80, and 100,
going to zero after all the reconfigurations end.
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Fig. 13. Goodput of TCP sessions (top) and CPU utilization of the
proxy (proxy) before and after multiple reconfigurations.

Fig. 14. CDF of the reconfiguration time for the proxy removal.

Fig. 15. Stateful firewall evaluation.

Fig. 13 shows that the reconfigurations are successful and
the traffic reaches steady-state behavior after each reconfigura-
tion. The Dysco agent on the proxy advertises a small window
to the senders during reconfiguration to reduce the amount
of traffic on the receivers. Note that during reconfiguration,
packets are received from both paths causing a surge of
traffic at the receivers. We initially tested a zero window
advertisement, but the performance degraded significantly. The
best strategy was to advertise the minimum of the actual
advertised window and a small constant (16K), allowing
the flow of packets to continue without overwhelming the
receivers. Fig. 14 shows that reconfiguration time is short:
almost 80% of reconfigurations took less than 0.06ms, and
the worst time was less than 0.22ms. The larger values happen
when control messages are lost and need to be retransmitted.

Finally, we evaluate Dysco when a reconfiguration has to
go through a NAT box and a stateful firewall that do not run
Dysco agents. Fig. 15 shows the topologies we use in the
evaluation in different moments before and after reconfigura-
tions. The client, server, and middleboxes are virtual machines

Fig. 16. Inserting and removing middleboxes through a NAT.

running on different physical servers. They use Dysco agents
to create the service chain and to reconfigure an ongoing
session. Each client establishes a TCP session with the same
server, and both sessions cross a stateful firewall, a NAT box,
and a flow monitor. The clients send data to the server using
iperf. The RateLimiter1 and RateLimiter2 forward packets
and use Linux tc [43] to limit the bandwidth to 1 Gbps and
2.5 Gbps, respectively. The firewall uses iptables with the
conntrack module enabled and sequence number tracking.

Fig. 16 shows the goodput of both sessions before and after
a few reconfigurations. At time t = 0, Client1 sends packets
at its maximum bandwidth (red dashed line) while Client2
sends packets through RateLimiter1 (blue line). We trigger a
reconfiguration at t = 50 in which we remove RateLimiter1

from the Client2 ↔ Server session and insert it into the
Client1 ↔ Server. In this case, we can see that the goodput
of the first session (red dashed line) decreases to 1 Gbps while
the goodput of the second session (blue line) increases to
∼4.4 Gbps. At time t = 100, we trigger a new reconfiguration
in which we insert RateLimiter2 to the Client2 ↔ Server
session. In this case the goodput decreases to 2.5 Gbps. Fig. 16
shows that the reconfigurations do not disrupt the sessions, and
a steady state is reached afterwards.

The experiments in this section highlight the new features of
the Dysco protocol as well as the performance improvements
of a user-level implementation with DPDK. In [34], we show
results for reconfiguration with state migration, and other per-
formance results specific to the kernel-level implementation.

VI. RELATED WORK

A. Service Chaining by Forwarding

The vast majority of service-chaining implementations and
research proposals use forwarding to steer packets through
middleboxes. The motivation for the CPR tool [52] reminds
us just how error-prone this can be! Here we mention a few
of these schemes with special relevance to Dysco.

BGP: Early solutions to dynamic service chaining manipu-
late BGP to “hijack” traffic, either within a single domain [53]
or across the wide area [11]. But manipulating BGP is risky
in the wide area, and it operates coarsely on destination IP
prefixes rather than individual sessions. Plus, it is difficult to
use BGP to insert multiple middleboxes in a service chain.

Stratos and E2: Stratos [7] and E2 [54] are designed for
middlebox deployment within clouds. They use fine-grained
forwarding rules for (static) service chaining, inheriting the
scaling challenges mentioned in §I. They also offer integrated
solutions for managing middleboxes, including elastic scaling
of middlebox instances, fault-tolerance, and placement. Dysco
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is not concerned with middlebox management and can be
readily combined with any approach to it.

OpenNF: OpenNF [29] (and also Split-Merge [30])
assumes that dynamic service chaining is provided by updating
how SDN switches forward packets. The special contribution
of OpenNF is efficient, coordinated control of forwarding
changes and middlebox state migration, so that middleboxes
can be replaced quickly and safely. Our Dysco prototype was
easily extended to support importing and exporting middlebox
state. As a session protocol, Dysco can naturally handle a
wider range of reconfiguration scenarios than OpenNF can,
including removing proxies. OpenNF is designed for use in
an SDN environment, while Dysco places no constraints on
the choice of the control plane. Also, there is a risk of
performance problems with OpenNF controllers because they
are responsible for packet buffering.

B. Service Chaining by Session Protocols

DOA: Like Dysco, DOA [55] uses a session protocol for
service chaining. Dysco and DOA differ as follows: (i) DOA
requires a new global name space, while Dysco does not;
(ii) DOA does not support dynamic reconfiguration of the
service chain; (iii) DOA inserts middleboxes only on behalf of
end-hosts (ignoring those inserted on behalf of administrators),
and (iv) DOA uses encapsulation, so that both high- and
low-level addresses are included in each packet. This increases
packet size, which may cause MTU problems.

NUTSS: In the NUTSS architecture [56], session setup
begins with an end-to-end handshake between end-hosts with
high-level names. The handshake signals are routed by the
high-level names through an overlay network of servers. These
servers are not middleboxes, however, but rather policy servers
that provide name authentication, negotiation of encryption,
and distribution of credentials. After the handshake in the over-
lay network, packets in the ordinary network carry credentials
they can use to be accepted by middleboxes such as firewalls
that they are routed through. NUTSS requires changes to all
end-hosts and middleboxes.

Connection Acrobatics: Nicutar et al. [57] use Multipath
TCP to insert middleboxes into sessions. However, mid-
dleboxes cannot be inserted until a TCP session is estab-
lished end-to-end. Subsequently a second end-to-end path is
established going through a middlebox, and the first path is
removed. A second middlebox can then be inserted between
an end-host and the first middlebox, and so on. This approach
takes dynamic insertion too far—because middleboxes are not
included as the session is formed, middleboxes cannot protect
an end-host from unwanted sessions as a firewall does, cannot
choose the end-host of a session as a load balancer does, and
are not guaranteed to see all packets within a session.

NSH: Network Service Header [14] is an encapsulation
format for service chaining without the use of forwarding
rules, so in this list it is most closely related to DOA. NSH is
an intra-domain format only, and there is no mechanism for
dynamic reconfiguration.

C. Research Complementary to Dysco

Mute [58] is a technology for utilizing resources in multiple
edge clouds, and its use is made possible by Dysco.

Encrypted content: Multi-context TLS (mcTLS) [12]
enables middleboxes to operate on encrypted traffic, through a
signaling protocol that (i) establishes a TCP session for each
hop in the service chain and (ii) exchanges keys for decrypting

and reencrypting the data. Like Dysco, mcTLS has a list of
middleboxes in a session setup message. In mcTLS, however,
the list is carried in the TLS Hello message rather than the TCP
SYN packet. mcTLS illustrates clearly that if middleboxes
are to operate on encrypted sessions then they must receive
encryption keys through the session protocol. Fine-grained
routing and forwarding can never be sufficient to enable such
middleboxes to do their jobs.

Mobility and multihoming: End-to-end signaling protocols
have been widely used for supporting end-host mobility [1].
Of these, ECCP [17], TCP Migrate [18], Quic [59], and
msocket [60] are TCP-oriented. ECCP, TCP Migrate, and
Quic are oblivious to middleboxes. msocket explicitly uses
signaling at the application layer to deal with the complexities
introduced by middleboxes. Likewise signaling protocols have
been used for supporting multihoming, notably ECCP [17] and
Multipath TCP [24]. All of these protocols are intrinsically
compatible with Dysco, which suggests that merging the
approaches would be fruitful.

Middlebox implementation: There has been much recent
research on making middleboxes more efficient, particularly
those that depend on TCP session states or reconstruct TCP
byte streams. Microboxes [61] re-arrange the functional mod-
ules of a collection of middleboxes, so they are compatible
with Dysco when used within what Dysco sees as a single
middlebox. mOS [62] provides new implementation abstrac-
tions, e.g., for monitoring TCP states, so might be helpful for
producing middleboxes with integrated Dysco agents.

VII. CONCLUSION

In this paper we have presented motivations for using a
session protocol as the mechanism for TCP service chaining.
Our Dysco protocol meets the requirements of a wide variety
of use cases. The protocol interoperates smoothly with the use
of routing and forwarding for service chaining, so there is no
need to exclude either approach.

Dysco introduces a very general capability for dynamic
reconfiguration of a service chain, along with a number of
use cases for it (§I). Correctness of this capability has been
formally verified, including the property that no data is lost due
to reconfiguration. Concerning the demand for new capabilities
such as dynamic reconfiguration, the question to ask is not,
“Is this capability being demanded now?”, when even much
simpler things are difficult to deploy. A fairer question might
be, “Would good uses for this capability be found if it were
readily available?”

Because Dysco agents have a great deal of autonomy,
the load on centralized policy servers is relatively light.
Our experiments show that session setup and teardown are
fast, steady-state throughput is high, and disruption due to
dynamic reconfiguration is minimized. Many middleboxes can
run unmodified in the Dysco architecture. Future work will
include more measurements, prototyping of new use cases,
and deployment of Dysco in a real network.

Some limitations remain, particularly in the realization of
Dysco’s potential for inter-domain service chaining. How-
ever, the Dysco approach has received far less attention than
fine-grained forwarding, which cannot be extended across
domains, as a mechanism for service chaining. A fair question
for comparison might be, “If the same amount of research
effort were put into this approach as has gone into fine-grained
forwarding, which alternative would look better?”
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