
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Scaling the Internet Routing System Through
Distributed Route Aggregation

João Luís Sobrinho, Senior Member, IEEE, Member, ACM, Laurent Vanbever, Member, IEEE, ACM,
Franck Le, André Sousa, and Jennifer Rexford, Senior Member, IEEE, Fellow, ACM

Abstract— The Internet routing system faces serious scalability
challenges due to the growing number of IP prefixes that needs
to be propagated throughout the network. Although IP prefixes
are assigned hierarchically and roughly align with geographic
regions, today’s Border Gateway Protocol (BGP) and operational
practices do not exploit opportunities to aggregate routing infor-
mation. We present DRAGON, a distributed route-aggregation
technique whereby nodes analyze BGP routes across different
prefixes to determine which of them can be filtered while respect-
ing the routing policies for forwarding data-packets. DRAGON
works with BGP, can be deployed incrementally, and offers
incentives for Autonomous Systems (ASs) to upgrade their router
software. We illustrate the design of DRAGON through a number
of examples, prove its properties while developing a theoretical
model of route aggregation, and evaluate its performance. Our
experiments with realistic AS-level topologies, assignments of
IP prefixes, and routing policies show that DRAGON reduces the
number of prefixes in each AS by at least 70% with minimal
stretch in the lengths of AS-paths traversed by data packets.

Index Terms— Inter-domain routing, routing scalability, BGP,
routing algebra.

I. INTRODUCTION

AROUTING system scales if the amount of state infor-
mation needed to support data-packet forwarding grows

sub-linearly with the number of destinations. There is a long
history of work on scalable routing systems that assumes
full control over the format of data-packets, network topol-
ogy, and address assignment, along with centralized routing
decisions [1]–[3]. However, none of these premises apply to
the Internet routing system. The headers of data-packets carry

Manuscript received May 24, 2015; revised November 10, 2015;
accepted January 21, 2016; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor N. A. L. Reddy. This work was supported in part by
the Fundação para a Ciência e Tecnologia within the Portuguese Ministry of
Science and Higher Education under Grant UID/EEA/50008/2013, in part by
the National Science Foundation under Grant CNS-1409056, and in part by
the U.S. Army Research Laboratory and the U.K. Ministry of Defence under
Grant W911NF-06-3-0001.

J. L. Sobrinho is with the Instituto de Telecomunicações and the Instituto
Superior Técnico, Lisbon 1049-001, Portugal (e-mail: joao.sobrinho@lx.it.pt).

L. Vanbever is with ETH Zürich, Zürich 8092, Switzerland (e-mail:
lvanbever@ethz.ch).

F. Le is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 USA (e-mail: fle@us.ibm.com).

A. Sousa is with Prodrive Technologies B. V., Eindhoven 5501,
The Netherlands (e-mail: andre.magalhaes.sousa@gmail.com).

J. Rexford is with Princeton University, Princeton, NJ 08540-5233 USA
(e-mail: jrex@cs.princeton.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2016.2527842

IP addresses identifying the final end-points of communica-
tion. Each component network, or Autonomous System (AS),
of the Internet makes its own decisions about where to connect,
how to acquire IP address space, and which routing policies to
use, with the Border Gateway Protocol (BGP) maintaining the
routing system in the presence of frequent changes. Against
this scenario, the vast majority of the IP prefixes assigned to
the various ASs of the Internet are routed globally. The Internet
routing system does not scale.

At the same time, the number of globally routed IP prefixes
continues to grow at a fast pace [4], with serious conse-
quences for the performance and cost of the Internet routing
system. This number determines the size of forwarding-tables,
or Forwarding Information Bases (FIBs), stored in expensive
high-speed memory on the routers, as well as the time it
takes to look-up an address in those tables [5]. Recently,
on August 12, 2014, the Internet suffered outages because the
forwarding-tables of some older routers could not support the
more than 512K IPv4 prefixes that they were receiving [6], [7].
The number of globally routed IP prefixes also determines the
size of routing-tables, or Routing Information Bases (RIBs),
the time it takes to bring up a single BGP session, the churn,
and the convergence time of BGP [5], [8], [9]. The evolution
towards IPv6 may exacerbate the scalability problems of the
Internet routing system. IPv6 enlarges the size of IP addresses
from 32 bits to 128 bits [10]. Without an allocation and
assignment plan for IPv6 that takes routing scalability into
account, many more IPv6 prefixes than IPv4 prefixes are
potentially injected into the Internet routing system.

While the current Internet routing system does not scale,
there is an underlying structure to the system which ought
to allow for better aggregation of routing information. There
are two sides to this structure. First, the AS-hierarchy, as
determined by the provider-customer relationships, aligns with
the prefix-hierarchy, in the sense that customer ASs acquiring
address space from provider ASs originate prefixes that are
more specific than those originated by the providers. Second,
ASs that originate aggregatable address space are roughly
clustered together, since address space is allocated by Regional
Internet Registries (RIRs) to ASs in a given geographic region
and ASs tend to connect to providers in the same geographic
region.

Existing implementations and configurations of BGP do not
exploit these opportunities for route aggregation. According
to best current practices, an Internet Service Provider (ISP)
configures its routers to filter prefixes from single-homed

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

customers with address space assigned out of the ISP’s own
address space, but not from customers that are multi-homed or
have been allocated prefixes directly from a RIR. The reason is
simple: network operators cannot reason about the way more
aggressive filters would affect how other parts of the Internet
reach their customers. In the face of uncertainty, ISPs are
understandably conservative in applying route filters. Worse
yet, some ISPs do not filter at all, out of ignorance, sloppy
operational practices, or legitimate concerns that a previously
single-homed customer might later become multi-homed.

In this paper, we present a route aggregation solution
to scale the Internet routing system called DRAGON—
Distributed Route Aggregation on the GlObal Network.
At heart, DRAGON is a distributed algorithm that exploits
the inherent structure of the Internet routing system to sig-
nificantly reduce the amount of routing and forwarding state
that needs to be stored and exchanged. Thus, it contrasts with
forwarding-table aggregation techniques [11]–[13], which are
based on sequential algorithms executed independently at each
AS affecting only the forwarding state. DRAGON augments
the usual BGP routing decisions with a filtering strategy and
an aggregation strategy, while relying on standard BGP rout-
ing messages to exchange routing information. The filtering
strategy provides criteria for ASs to discard prefixes that are
covered by less specific prefixes, effectively confining their
propagation to a vicinity of the ASs that originate them. The
aggregation strategy provides criteria for the introduction of a
few aggregation prefixes, each covering a number of existing
prefixes, thereby allowing the latter to be subject to the filtering
strategy.

DRAGON exactly respects network-wide routing
policies whenever these policies satisfy the isotonicity
property [14], [15]. In loose terms, isotonicity means that if
an AS prefers one route over another, then a neighbor AS does
not have the opposite preference after its local processing of
the two routes. Isotonicity is a common property of routing
policies even if network operators are not explicitly aware
of this fact. For instance, the Gao-Rexford (GR) routing
policies [16], which provide a baseline of understanding
for how network operators set their policies, are isotone.
Our experiments with realistic AS-level topologies, IP prefix
assignments, and the GR routing policies show, for example,
that DRAGON dispenses with at least 70% of the IP prefixes
in the forwarding-table of each AS.

In a previous conference paper [17], we presented an
overview of the filtering and aggregation strategies of
DRAGON, and we discussed some preliminary performance
results. Here, we expound the theoretical underpinnings of
DRAGON building up from the framework provided by the
algebraic theory of routing [15]. In addition, we present a com-
prehensive set of stable-state results, including an assessment
of the savings in the sizes of forwarding-tables and routing-
tables, and an assessment of the (small) stretch induced in the
lengths of AS-paths followed by data-packets. Due to space
limitations, a comprehensive evaluation of the dynamics of
DRAGON is left for a future publication.

The fundamentals of DRAGON are valid beyond inter-AS
routing. We honor the generality of DRAGON by using

generic terms such as network, prefix, node, routing vector
protocol, instead of Internet, IP prefix, AS or router, BGP, even
if our examples and experiments pertain to inter-AS routing.
The remainder of the paper is organized as follows. Section II
presents the routing and forwarding model. Section III intro-
duces DRAGON’s filtering strategy and aggregation strategy
through examples. Section IV rigorously proves the properties
of DRAGON. Section V provides an assessment of the stable-
state performance of DRAGON. Section VI discusses related
work and Section VII draws final conclusions.

II. ROUTING AND FORWARDING

A network is composed of nodes joined by links. Addresses
are strings of bits of fixed length. A prefix is a string of bits of
length shorter than that of the addresses, representing all the
addresses whose first bits coincide with those of the prefix.
Prefixes are assigned to nodes and made known to all other
nodes in the network through a routing vector protocol.

A route is an association between a prefix and an attribute,
with the set of all possible attributes totally ordered by
preference.1 A route pertaining to prefix p is called a p-route.
The node to which p has been assigned is the origin of p.
A standard routing vector protocol instantiates a different
computation process for each prefix p, which starts when the
origin of p forms a p-route that it sends to all its neighbors.
Whenever a node receives a p-route from a neighbor it extends
the attribute of that route into the attribute of a candidate
route to reach p via that neighbor. Among the candidate
p-routes learned from its neighbors, the node elects the one
with the most preferred attribute and sends it to its neighbors.
Every time a node elects a p-route, it makes an entry in its
forwarding-table associating p to the forwarding neighbors
for p, those being the neighbor nodes for which the candidate
p-route coincides with the elected p-route. Routing policies
specify the relative preference among attributes and how the
attribute of an elected route at one node is extended to the
attribute of a candidate route at a neighbor node. A rigorous,
algebraic formulation of a routing vector protocol for arbitrary
routing policies is given in [15] and reviewed in Section IV.

The prototypical inter-AS routing policies are the
Gao-Rexford (GR) routing policies [16], which postulate
that neighbor nodes establish either a provider-customer or
a peer-peer relationship. The policies are supported on just
three attributes, which we will call the GR attributes: “learned
from a customer,” “learned from a peer,” and “learned from
a provider.” Following standard terminology, we use the
term “customer route” as shorthand for “route with attribute
‘learned from a customer’,” and similarly for the terms “peer
route” and “provider route,” and we talk about the preference
among routes signifying the preference among their attributes.
A customer route is preferred to a peer route which is preferred
to a provider route.2 Customer routes are exported to all
neighbors, all routes are exported to customers, and these

1Our use of the term “attribute” is generic and not meant to single out the
parameters of BGP, such as LOCAL-PREF and AS-PATH.

2Peer routes do not have to be preferred to provider routes [16]. We make
this extra assumption because it seems to be valid in practice and it simplifies
the exposition.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 3

Fig. 1. Providers are drawn above customers and joined to them with
solid lines. Peers are joined with dashed lines. Node u6 is multi-homed to
u3 and u4. Node u4 originates p and its customer u6 originates q. Prefix q
is more specific than p. Left. Standard stable state. Checks mark nodes that
satisfy the premise for filtering q. Right. Stable state after all nodes execute
code CR in whatever order, with light-shaded nodes forgoing q.

are the only exportations allowed. The origin of a prefix
can be assumed to form a route with attribute “learned from
a customer,” since such a route is subjected to the same
treatment as if it were learned from a customer, namely, the
route is exported to all of the origin’s neighbors.

A routing vector protocol is correct in a network if it
terminates in a stable state that guides data-packets to their
destinations. In general, the correctness of a routing vector
protocol depends upon the configuration of routing policies
around the cycles of a network. In the particular case of the
GR routing policies, a routing vector protocol is correct if
there is no cycle in the network where each node is a customer
of the next around the cycle. Not all paths in a network can
transport data-packets. Those that can are called usable. In the
case of the GR routing policies, the usable paths are of the
form PRC, where P is either trivial or a path where each
link joins a customer to a provider, R is either trivial or a link
joining one peer to another, and C is either trivial or a path
where each link joins a provider to a customer. A network is
policy-connected if there is a usable path from every node to
every other.

In the network of Figure 1, nodes operate a routing vector
protocol with GR routing policies. Solid lines join a provider
and a customer, with the provider drawn higher than the
customer, and a dashed line joins two peers. For instance,
u2 is a provider of both u3 and u4, and a peer of u1.
Node u6 is multi-homed to two providers, u3 and u4. The
address space assigned to u4 is represented by prefix p.
Node u4 is the origin of p. Once the routing vector protocol
terminates, u2 elects a customer p-route, learned from u4,
which becomes u2’s forwarding neighbor for p; u1 elects a
peer p-route, learned from u2; and u5 elects a provider p-route,
learned both from u1 and u3.

A prefix q is more specific than a prefix p if it is longer
than p and its first bits coincide with those of p. Routes
for prefixes at different levels of specificity are propagated
throughout the network. The longest prefix match rule [18]
prescribes that data-packets are forwarded at a node according
to the elected route of the most specific of the prefixes
that contains the destination address of the data-packet.

In Figure 1, u6 acquired address space from its provider u4,
represented by prefix q which is more specific than p. Node u6

is the origin of q. Node u3 elects a customer q-route, learned
from u6, and a provider p-route, learned from u2. Data-packets
arriving at u3 with destination in q are forwarded to u6,
whereas those arriving with destination in p but not in q are
forwarded to u2.

III. MECHANISMS

DRAGON relies on standard routes to convey routing infor-
mation between neighbor nodes and augments local routing
decisions with a filtering strategy and an aggregation strategy.
Section III-A presents basic filtering code for DRAGON and
Section III-B presents a rule for originating prefixes that
ensures that the filtering code does not create black holes.
Section III-C introduces a property of routing policies known
as isotonicity and illustrates its implications on the optimal-
ity and the partial deployment of DRAGON. Section III-D
discusses the filtering strategy in the context of inter-
AS routing policies that take path-lengths into account.
Section III-E concerns multiple levels of prefixes. Section III-F
presents the aggregation strategy. Last, Section III-G shows the
reaction of DRAGON to network events such as link failures.

A. Filtering Code

The goal of DRAGON is for many nodes to dispense with
routes pertaining to the more specific prefixes with little or no
change in the properties of paths traversed by data-packets.
Towards this goal, nodes filter some prefixes. Filtering of a
prefix means that no entry for the prefix is installed in the
forwarding-table of the node and the prefix is not announced
to neighbor nodes. Candidate routes for the prefix are still kept
in the routing-table of the node and we still say that the node
elects the candidate route with the most preferred attribute.

Let prefix q be more specific than prefix p. We investigate
the following code to filter q, to be executed autonomously at
every node.

Code CR:
In the presence of p, filter q if and only if the node
is not the origin of p and the attribute of the elected
q-route equals or is less preferred than the attribute
of the elected p-route.

This code is intuitively reasonable as it maintains or improves
the attribute of the route according to which data-packets
are forwarded at a node. Certainly, the origin of p should
not filter q. If it did, then data-packets arriving there with
destination in q would have nowhere to go and would have
to be dropped. For a node other than the origin of p, if the
attribute of the elected q-route equals that of the elected
p-route, then the node filters q. On filtering, the node saves
on forwarding state while it still forwards data-packets with
destination in q according to an elected route—that for
p—whose attribute is the same as that of the elected q-route
without filtering. If the attribute of the elected q-route is less
preferred than the attribute of the elected p-route, then all
the more reason for the node to filter q. On filtering, the
node saves on forwarding state and improves the attribute of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

the route according to which it forwards data-packets with
destination in q. Last, if the attribute of the elected q-route is
preferred to that of the elected p-route, then filtering would
worsen the attribute of the route used to forward data-packets
with destination in q. Thus, in this case, the node does not
filter q.

Throughout the paper, we will study the global,
network-wide effects of local code CR. For now, we exem-
plify that effect with Figure 1. Recall that nodes follow the
GR routing policies. Both p and q are propagated by the
routing vector protocol throughout the network. The stable
state is depicted on the left-hand side of the figure and
described next alongside the possibility of filtering q upon
execution of code CR.

• Node u4 is the origin of p. Thus, u4 cannot filter q.
• Node u6, which is the origin of q, elects a customer

q-route (formed by itself) and a provider p-route. Thus,
u6 cannot filter q.

• Node u3 elects a customer q-route, learned from u6, and a
provider p-route, learned from u2. Thus, it cannot filter q.

• Node u2 elects both a customer q-route, learned from
u3 and u4, and a customer p-route, learned from u4. Thus,
it can filter q.

• Node u1 elects both a peer q-route and a peer p-route,
both routes learned from u2. Thus, it can filter q.

• Node u5 elects both a provider q-route and provider
p-route, both routes learned from u1 and u3. Thus,
it can filter q.

Suppose that u2 executes CR, thereby filtering q. Despite
the absence of an entry for q in its forwarding-table, u2 still
forwards data-packets with destination in q according to a
customer route, that elected for p. Because u2 filters q,
u1 no longer receives a q-route from u2 and, hence, does not
elect any q-route. It forwards data-packets with destination
in q according to the elected p-route which was also learned
from u2. Since u1 does not elect a q-route, it exports none to
its customer u5. Node u5 still elects a provider q-route learned
from u3. In this routing state, suppose that u5 executes CR.
It, too, filters q and starts forwarding data-packets with desti-
nation in q according to the elected provider p-route, learned
from u1 and u3. In summary, if u2 then u5 execute CR, then
we arrive at the routing state depicted on the right-hand side
of Figure 1 and commented upon next.

• Nodes u2 and u5 filter q while u1 is oblivious of q. We
say that a node forgoes q if either it filters q or is oblivious
of q. In realistic Internet topologies, most nodes forgo q.
Of these, a few will filter q, while the majority will be
oblivious of q. In other words, routing state pertaining to
q only needs to be disseminated in some small vicinity
of the origin of q.

• Data-packets are delivered to their destinations, there
being no route oscillations, forwarding loops, or black
holes. When this happens, we say that DRAGON is
correct.

• Data-packets are forwarded at each node according to an
elected route whose attribute equals that of the elected
route used to forward them when there was no fil-
tering. Such a desirable global routing state is called

Fig. 2. Prefix q is more specific than prefix p. Node u3 is the origin of p,
exporting p to all its neighbors. Node u1 is the origin of q exporting q to
all its neighbors. When u2 executes code CR, it creates a black hole at u3,
indicated by the cross. Arrows indicate the expedition of data-packets with
destination in q.

route-consistent. A route-consistent state is optimal if the
set of nodes forgoing q is maximal. The routing state
depicted on the right-hand side of Figure 1 is optimal
route-consistent.

• Node u2 lost u3 as a neighbor to which it could forward
data-packets with destination in q, since u3 is a forward-
ing neighbor for q that is not a forwarding neighbor
for p. It is possible to refine the filtering code with the
aim of preserving not only the attributes of the routes
used to forward data-packets, but also the forwarding
neighbors [19]. With the refined filtering code, u2 would
not be allowed to filter q.

B. Origination Rule

Through code CR, DRAGON subordinates the propagation
of q-routes to the elected p-routes. Therefore, even if the
routing vector protocol is correct for p and q, taken individu-
ally as two unrelated prefixes, it is legitimate to ask whether
DRAGON is correct, always delivering data-packets to their
destinations. The main concern is that filtering of q by some
nodes may create a black hole for data-packets with destination
in q. In Section IV, we prove that the following origination
rule guarantees correctness of DRAGON.

Rule RO:
In the presence of q, the origin of p announces p in
a p-route whose attribute is equal to or less preferred
than the attribute of the elected q-route.

The necessity of rule RO can be appreciated with the
example of Figure 2. Node u1 is the origin of q and
u3—which a customer of a customer of u1—is the origin
of p. Node u3 elects a provider q-route. Suppose that it
announces p with a customer route, thus violating rule RO:
the attribute of the p-route with which u3 originates p (“learned
from a customer”) is preferred to the attribute of the elected
q-route (“learned from a provider”). Node u2 elects a provider
q-route and a customer p-route. On executing CR, u2 filters q.
As a consequence, no q-route arrives at u3 and u4.
Data-packets arriving at u2 and u4 with destination in q are
forwarded to u3 by the elected p-route to be dropped there.
Node u3 becomes a black hole for q. In order to satisfy
rule RO, u3 can originate p only with a provider route,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 5

Fig. 3. Prefix q is more specific than prefix p. Node u5 is the origin of p
and u6 is the origin of q. Left. Standard stable state. Checks mark nodes
that satisfy the premise for filtering q. Right. Node u4 executes code CR,
worsening the elected q-routes at u2 and u3. This worsening reinforces u2’s
and u3’s incentive to execute code CR. Arrows indicate the expedition of
data-packets with destination in q.

meaning that it can export p-routes only to its customers; in
this case, to node u4. If u3 does export a p-route to u4, then u4

elects both a provider q-route and a provider p-route. Node u4

may filter q-routes that data-packets with destination in q will
be delivered through u3 to u1.

It must be noted that the assignment of prefixes in Figure 2
is unlikely to be found in the Internet where address space is
delegated from providers to customers rather than the other
way round.

C. Isotonicity, Optimality, and Partial Deployment

The routing policies of link uv are isotone [14], [15]
whenever the relative preference among attributes of elected
routes at v is respected among attributes of candidate routes
derived from them at u (see Section IV-C).

The GR routing policies are isotone. For instance, suppose
that u is a customer of v. All of a customer route, a peer route,
and a provider route at v are exported by v to u, and all become
provider routes at u. Thus, isotonicity holds. Suppose, instead,
that u is a provider of v. A customer route is preferred to both
a peer route and a provider route at v. The customer route is
exported by v to u where it becomes a customer route too,
whereas the peer route and the provider route are not exported
by v to u. Clearly, the customer route at u is preferred to no
route. Isotonicity holds as well. A similar argument can be
made if u is a peer of v. Many other routing policies used in
practice or proposed are isotone [20], [21].

We illustrate the implications of isotonicity on DRAGON
with the network of Figure 3. Node u6 is the origin of q and
u5 is the origin of p. Node u1 is a provider of both u3 and u6,
and a peer of u2. Node u2 is a provider of u4 and a peer of
both u1 and u3. The left-hand side of the figure shows the
initial stable state, before DRAGON is deployed. Nodes u2,
u3, and u4 will filter q if they execute code CR: u2 elects a
customer q-route and a customer p-route, both routes learned
from u4; u3 elects a peer q-route and a peer p-route, both
routes learned from u2; and u4 elects a customer q-route and
a customer p-route, both routes learned from u5.

Suppose that u4 is the first node to execute code CR,
thereby filtering q. As a consequence, the elected q-route
at u2 worsens from customer to peer, the latter learned

from u1, and the elected q-route at u3 worsens from peer
to provider, as shown on the right-hand side of the figure.
The resulting routing state is not route-consistent. Node u2,
say, will now forward data-packets with destination in q to
its peer u1 rather than to its customer u4. However, u2

and u3 gained an extra incentive to execute code CR. If,
say, u2 executes code CR, then it saves on forwarding
state and it reverts to forwarding data-packets with desti-
nation in q to its customer u4 on account of the elected
p-route. Once u2 and u3 execute code CR, thereby fil-
tering q, DRAGON reaches a final state that is optimal
route-consistent.

With isotonicity, it is even possible to sequence the adoption
of DRAGON among the nodes such that all intermediate
routing states are route-consistent. In the particular case of
the GR routing policies, all sequences of adoption obeying
the following condition ensure continual route-consistency.

Route-consistent partial deployment
First, execute CR at nodes that elect either a peer or
a provider q-route, in whatever order. Next, execute
CR at nodes that elect a customer q-route top-down
in the provider-customer hierarchy, that is, only exe-
cute CR at a node that elects a customer q-route
after the code has been executed at its providers.

In Figure 3, agreement with the previous condition would
have u3 be the first node to execute code CR. The consequent
filtering of q would still allow u3 to forward data-packets with
destination in q to a peer, u2, guided by the elected p-route,
and it would not affect the elected q-routes at other nodes.
After u3, node u2 would execute the filtering code and, last,
u4 would do so.

The role played by isotonicity on DRAGON can be
summarized as follows.

• DRAGON attains an optimal route-consistent state after
all nodes execute code CR in whatever order.

• The incentive to filter is embodied in code CR. However,
that incentive is exacerbated when some nodes execute
code CR, because filtering can only worsen the attribute
of elected routes at other nodes. Nodes at which the
attribute of elected routes worsen can recover the attribute
of the route used to forward data-packets by filtering as
well.

• There is a sequence for adoption of DRAGON that
is route-consistent throughout all intermediate stages of
deployment.

• The correctness of DRAGON does not depend on
isotonicity. It follows from rule RO and from the same
property of routing policies around the cycles of a
network that guarantees correctness of a routing vector
protocol (see Section IV).

• Despite ensuring an optimal route-consistent state,
isotonicity by itself does not say if that state is efficient,
in the sense of having many nodes forgoing q.

D. Path-Lengths and Relaxation of the Filtering Code

BGP registers the AS-path traversed by routes as they prop-
agate away from their origins, with inter-AS routing policies



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. GR-with-path-lengths routing policies. Prefix q is more specific than
prefix p. Node u10 originates a q-route with 0 hops, while u2 originates a
p-route with 1 hop. Left. Standard stable state. Checks mark nodes that satisfy
the premise for filtering q. Right. Stable state after u5 filters q. Arrows indicate
the expedition of data-packets with destination in q.

using AS-path-length to break ties among routes with the
same GR attribute. The GR-with-path-length routing policies
have attributes composed of GR attributes and hop-counts.
A GR-with-path-length attribute is preferred to another if
the GR attribute of the former is preferred to that of the
latter, or the two GR attributes are the same, but the hop-
count of the former is smaller than that of the latter.
A GR-with-path-length attribute extends to another by extend-
ing the GR attribute of the former and incrementing its
hop-count. The GR-with-path-length routing policies are not
isotone and, as a consequence, do not yield route-consistent
global states after filtering, in general. In addition, use of code
CR with those routing policies does not lead to big savings in
routing state, in general. We will discuss a relaxed use of code
CR that leads to very efficient routing states while accepting a
small stretch in the lengths of paths traversed by data-packets.

In the network of Figure 4, nodes operate a routing vector
protocol with GR-with-path-lengths routing policies. We first
observe that the routing policies of link u5u4 are not isotone.
At u4, a customer route with 4 hops is preferred to a provider
route with 2 hops. Both routes are exported by u4 to u5.
At u5, the customer route with 4 hops becomes a provider
route with 5 hops whereas the provider route with 2 hops
becomes a provider route with 3 hops. Since a provider route
with 5 hops is less preferred than a provider route with 3 hops,
isotonicity is violated.

In the figure, node u10 is the origin of q, announcing q in
a q-route with 0 hops. Hence, u2 elects a customer q-route
with 1 hop. In order to satisfy rule RO, node u2, which is
the origin of p, announces p in a p-route with 1 hop (in BGP
practice, this would be accomplished with AS pre-pending).

The initial stable state is shown on the left-hand side
of the figure. Node u5 elects the provider q-route with
4 hops learned from u3, to the detriment of the provider
q-route with 5 hops learned from u4. Data-packets with
destination in q arriving at u5 traverse path u5u3u1u2u10

to reach q. At the same time, u5 elects the provider p-route
with 3 hops learned from u4, to the detriment of the
provider p-route with 4 hops learned from u3. Suppose that
u5 executes code CR leading to the stable state depicted on
the right-hand side of the figure. Since the elected q-route is
less preferred than the elected p-route at u5, this node filters q.

From then on, it forwards data-packets with destination
in q according to the elected p-route, that is, it forwards
them to u4 which deflects them on path u4u6u7u8u10.
In short, before filtering, data-packets with destination
in q arriving at u5 traverse path u5u3u1u2u10 of length 4 hops;
after filtering, they traverse path u5u4u6u7u8u10 of
length 5 hops. Nodes u1 and u3 also filter q upon execution
of code CR. After all nodes execute code CR, the resulting
routing state is still route-consistent with respect to the
GR attributes alone, but node u5 experiences a stretch in the
length of the path traversed by data-packets with destination
in q due to the lack of isotonicity.

More importantly than the absence of isotonicity, applying
DRAGON to the GR-with-path-lengths routing policies may
not lead to efficient routing states. In Figure 4, u9 elects a
provider q-route with 3 hops learned from u7 and a provider
p-route with 5 hops learned as well from u7. The elected
q-route is preferred to the elected p-route. Thus, u9 does
not filter q upon execution of code CR. However, u9 would
not even witness any distortion in the path traversed by
data-packets if it filtered q.

As a matter of fact, we know that a compact routing state
is not possible, in general, with shortest paths without some
stretch [3], [22]. Therefore, we relax code CR by applying it
only to the GR attributes, disregarding hop-counts. In Figure 4,
since u9 elects both a provider q-route and a provider p-route,
it filters q upon execution of the relaxed code CR. As before,
the resulting routing state obtained after all nodes execute
the relaxed code CR is route-consistent in terms of the
GR attributes, but more efficient than if nodes executed code
CR on the full attributes of the GR-with-path-lengths routing
policies. Rule RO can also be relaxed to apply only to the
GR attributes. In Figure 4, u2 could form and send to all its
neighbors a p-route with a hop-count of 0 instead of 1.

We can even tradeoff efficiency with stretch by allowing a
node with equal GR attributes for the q-route and the p-route
to filter q only if the hop-count of the elected q-route is not
shorter than that of the elected p-route by more than some
pre-specified number of hops. However, simply neglecting hop
counts in the filtering code already yields very small stretch
(see Section V).

E. Multiple Levels of Prefixes

A very large number of prefixes at different levels of
specificity is globally routed in the network. We define the
parent of a prefix q in a set of prefixes as the most specific
of the prefixes that are less specific than q in the set. Prefix q
is a child of its parent prefix. DRAGON operates by having
every node contrast each prefix q against its parent prefix in
the set of prefixes learned from the routing vector protocol, in
the same way that q is contrasted against p in code CR.

We can impose that every node executes code CR on the list
of prefixes it learns from the routing vector protocol from the
least specific to the most specific one. However, the executions
of code CR at different nodes are uncorrelated in time and
may depend on route dynamics outside the control of network
operators. Thus, the parent of a prefix may vary from node



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 7

to node at any given time, and throughout time. Despite the
asynchrony, DRAGON remains correct for the same condition
on the routing policies around the cycles of a network that
guarantee correctness of a routing vector protocol. In addition,
if routing policies are isotone, then DRAGON leads to an
optimal route-consistent state after network-wide deployment.

F. Aggregation Strategy

Provider-Independent (PI) prefixes, which are those
acquired directly from a RIR, do not have a parent prefix in
the routing system which would allow them to be filtered at
ASs far-away from their origin ASs. The aggregation strategy
of DRAGON authorizes nodes to originate so called aggrega-
tion prefixes thereby potentiating the filtering of PI prefixes.
An aggregation prefix must satisfy the following two condi-
tions:

• it does not create new routable address space;
• it becomes the parent of as many PI prefixes as possible

and at least of two of them.
As with any other prefix, an aggregation prefix is subjected
to rule RO. In a previous conference paper [17], we describe
examples to illustrate how the routing system self-organizes if
more than one node originates the same aggregation prefix.

G. Reaction to Network Events

DRAGON reacts automatically to network events, such as
link failures and additions. We illustrate that reaction calling
again on the network of Figure 1 and starting from the state
depicted on its right-hand side. Most link failures do not
trigger either code CR or rule RO. For example, if any of
the links u1u2, u2u1, u1u5, u5u1, u2u3, or u3u2 fails, then
there is no change whatsoever in the routing state pertaining
to prefix q. If u5u3 fails, then u5 becomes oblivious to q and
if u3u6 fails, then u3 becomes oblivious to q.

A few link failures trigger code CR alone. For instance,
if link u2u4 fails, then node u2 no longer elects a p-route.
Faithful to code CR, u2 re-installs the elected customer
q-route learned from u3, which it exports to all its neighbors.
Eventually, nodes u1, u3, and u5 stop electing a p-route and
re-elect a q-route.

The rarest, but more challenging failure is the one of the link
joining the origin of p to a unique forwarding neighbor for q.
Such a failure summons both code CR and rule RO. Suppose
that link u4u6 fails. Node u4 no longer elects a q-route.
It cannot announce p as such an action would violate rule RO.
Hence, u4 withdraws p. As a consequence, u2 stops electing
a p-route and re-installs the elected customer q-route learned
from u3, which it exports to all its neighbors. Eventually, every
node stops electing a p-route and re-elects a q-route.

While u4 withdraws p upon the failure of u4u6,
it re-aggregates the address space of p to the exclusion of
that represented by q into sub-prefixes that can be announced
in customer routes. For instance, suppose that p = 10 and
q = 10000. Node u4 announces the three prefixes 10001, 1001,
and 101 to all its neighbors, which together with the missing
prefix q = 10000 partition the address space of p. Node u2

elects customer routes for 10001, 1001, and 101, all learned

from u4. It also elects a customer 10000-route, learned from
u3. If the aggregation strategy is active at u2, then this node
pieces together prefixes 10001, 1001, 101, and q = 10000 to
originate aggregation prefix p = 10, allowing a subsequent
filtering of q at u1 and u5.

The failure of a link that joins the origin of p to a
unique forwarding neighbor for q may temporarily create
a black hole for q at the origin of p, and it generates
more routes than any other type of link failure. Such links
ought to be built with added redundancy or protected with a
timer.

IV. THEORY

The design of DRAGON is grounded on the solid
foundations provided by the algebraic theory of routing [15].
Section IV-A presents the basic elements of this theory.
Sections IV-B and IV-C briefly review correctness and
optimality of routing vector protocols, respectively.
Sections IV-D and IV-E prove correctness and optimality
of DRAGON, respectively, for isotone routing policies.
Section IV-F discusses the correctness of DRAGON in the
absence of isotonicity. The appendix to the paper contains
notation concerning paths and cycles.

A. Attributes and Labels

Route attributes form a finite set Σ equipped with a linear
order �. If α ≺ β (resp. α � β), then we say that α is
preferred to β (resp. α is less preferred than β). From the
linear order, we define an election operation � which yields
the most preferred of two attributes: α � β = α, if α � β;
and α � β = β, otherwise. Binary operation � is selective,
associative, and commutative. Thus, there is always a most
preferred attribute from among a set T of attributes, which is
denoted by �T . There is a special attribute • to indicate that
a prefix is not reachable. Attribute • is the least preferred of
all attributes.

A link uv represents the possibility of forwarding
data-packets from node u to node v. Routes travel in the
opposite direction. The routing policies of link uv tell how the
attribute of a route elected at v is extended into the attribute of
a candidate route stored at u to reach the prefix announced in
the route via v. They subsume the export policy of v with
regard to u and the import policy of u with regard to v.
We assume that routing policies do not depend on the prefix.
Therefore, the routing policies of link uv are modeled by a
map on the set of attributes which we denote by L[uv] and call
the label of uv. Label L[uv] extends attribute α into attribute
L[uv](α). If v cannot reach a prefix, then u cannot reach that
same prefix via v. Therefore, L[uv](•) = •.

Given walk u0u1 · · ·un, we say that a route propagates
from un to u0 along the walk if ui elects the route learned
from ui+1 and sends it to ui−1, for every 0 < i < n.
The label of walk u0u1 · · ·un, denoted by L[u0u1 · · ·un], is
the composition of the labels of its links, L[u0u1 · · ·un] =
L[u0u1]L[u1u2] · · ·L[un−1un], and describes how attributes
of routes at un propagated from un to u0 along the walk
transform into attributes of routes at u0. The label of a trivial



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

walk composed of a single node is, by definition, the identity
map.

B. Correctness of Routing Vector Protocols

A routing vector protocol is correct in a given network if it
terminates in a stable state devoid of forwarding loops, what-
ever the initial global routing state and whatever the delays
in the delivery of routes between neighbor nodes. Correctness
of a routing vector protocol depends on how routing policies
are configured around the cycles of the network. A cycle
C = u0u1 · · ·un−1u0 is strictly absorbent [15] if

∀α0≺•,α1≺•,...,αn−1≺• ∃0≤i<n αi ≺ L[uiui+1](αi+1), (1)

where indexes are modulus n. In words, a cycle is strictly
absorbent if, for every combination of routes learned by its
nodes externally to the cycle and sent to their neighbors around
the cycle, at least at one of the nodes the attribute of the route
learned externally to the cycle is preferred to the attribute of
the route learned from the neighbor around the cycle. The
following theorem is proven in [15].

Theorem 1: If all cycles in a network are strictly absorbent,
then the routing vector protocol terminates in a stable state that
is free of forwarding loops.

Under the hypothesis that all cycles in the network are
strictly absorbent, we provide a characterization of the stable
states. Let tp be the origin of p and R∗[tp; p] be the attribute of
the p-route formed by tp; R∗[u; p] = • if u �= tp. Let R[u; p]
be the attribute of the elected p-route at u in the stable state.
Elected p-routes satisfy the following system of fixed-point
equations:

R[u; p] = �{L[uv](R[v; p]) | v neigh. of u} � R∗[u; p],
(2)

with R[tp; p] = R∗[tp; p], meaning that tp elects the p-route it
formed. Directly from the fixed-point equations, we deduce,
for every link uv, that

R[u; p] � L[uv](R[v; p]). (3)

If u elects a p-route, R[u; p] ≺ •, then v is forwarding
neighbor of u for p if

R[u; p] = L[uv](R[v; p]). (4)

Path P = u0u1 · · ·un with un = tp is a forwarding path for
p if ui+1 is a forwarding neighbor of ui for p, for 0 ≤ i < n.
An elementary proof by induction shows that R[ui; p] =
L[uiP ](R∗[tp; p]), for 0 ≤ i ≤ n.3 Generally, we say that
P is a walk for p if it terminates at tp. The attribute of walk
P is L[P ](R∗[tp; p]).

C. Optimality of Routing Vector Protocols Under Isotonicity

A label L of a link or of a walk is isotone if it is an
increasing map on the ordered set of attributes:

∀α,β α � β ⇒ L(α) � L(β). (5)

3See the appendix for the notation concerning paths and cycles.

A link, and a walk, is isotone if its label is isotone.
The composition of isotone labels is itself isotone. Thus,
a walk all links of which are isotone is isotone. We first
state the implication of isotonicity on strictly absorbent
cycles [15].

Theorem 2: Let C be a cycle all links of which are isotone,
and let u be an arbitrary node of the cycle. Then, C is strictly
absorbent if and only if every route propagated by u all the
way around C arrives back at u with an attribute that is less
preferred than the one it started out with:

∀α≺• α ≺ L[uCu](α).

Isotonicity is associated with optimality of the routing
vector protocol computation in the sense made precise by
following theorem [15].

Theorem 3: Suppose that all links in the network are iso-
tone and all cycles are strictly absorbent. Then, the attribute of
the elected p-route at an arbitrary node u equals or is preferred
to the attribute of any walk P for p starting at u:

R[u; p] � L[P ](R∗[tp; p]).

D. Correctness of DRAGON Under Isotonicity

In this section, we prove correctness of DRAGON under
the assumption that all cycles in the network are strictly
absorbent and all links are isotone. In particular, correctness
stays proven for the GR routing policies if there is no cycle in
the network where each node is a customer of the next around
the cycle. It also stays proven for the GR-with-path-lengths
routing policies (see Section III-D) under the same con-
dition on the cycles, since path-lengths are only used as
tie-breaks for any given GR attribute and, thus, do not influ-
ence correctness.

We consider the following scenario. There is a prefix p and
a prefix q that is more specific than p. Node tp is the origin
of p, forming a p-route with attribute R∗[tp; p]; tq is the origin
of q, forming a q-route with attribute R∗[tq; q]. In the initial
(stable) state, rule RO is satisfied and none of the nodes has
yet executed code CR. Starting from the initial state, nodes
execute code CR one at a time until all of them have done so.
A sequence of nodes executing code CR is called a filtering
sequence. Filtering sequences correspond to permutations of
the nodes of the network.

A node that executes code CR but does not filter q leaves
the routing state unchanged. On the other hand, a node that
executes code CR and filters q leads the routing system to a
new stable state. As nodes of a sequence execute code CR,
the routing system progresses through a sequence of stable
states. Every stable state is fully characterized by the set of
nodes that filter q. We denote by RS [u; q] the attribute of the
elected q-route at node u when a set S of nodes filters q. The
stable state obtained at the end of a filtering sequence is called
a final state. Stable states, other than the initial and final ones,
are called intermediate states. They correspond to stages in
the deployment of DRAGON.

We start with three lemmas that will be used in this section
and the next. The first lemma allows us to conclude that if the
premise for filtering q embodied in code CR is not satisfied



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 9

at a given node u, then it is also not satisfied at any node
along a forwarding path for q starting at u.

Lemma 4: Suppose that a set of nodes filters q. If the
attribute of the elected q-route is preferred to the attribute of
the elected p-route at node u, then, as well, the attribute of
the elected q-route is preferred to the attribute of the elected
p-route at every node along a forwarding path for q starting
at u.

Proof: Let S be the set of nodes that filters q. Let P be a
forwarding path for q under S starting at u. In order to obtain
a contradiction, assume that there is a node w along P such
that the attribute of its elected p-route equals or is preferred
to the attribute of its elected q-route:

RS [w; p] � RS [w; q]. (6)

Further assume that w is the first node along P satisfying
the previous condition. Clearly, w �= u, since, by hypothesis,
RS [u; p] � RS [u; q]. Let v be the predecessor of w along
P , RS [v; q] = L[vw](RS [w; q]). We write (iso. stands for
isotonicity)

RS [v; p] � L[vw](RS [w; p]) (from (3)),

� L[vw](RS [w; q]) (from (6) and iso. of vw),

= RS [v; q].

The previous inequality contradicts the choice of w as the first
node along P for which the attribute of the elected p-route
equals or is preferred to the attribute of its elected q-route.

Filtering q at a node is equivalent to removing the node
from the network insofar as the election of q-routes at all other
nodes is concerned. The next two lemmas scrutinize the effect
of filtering q at a node on the attributes of elected q-routes of
all nodes.

Lemma 5: Suppose that a set of nodes filters q. If a new
node z filters q, then the attribute of the elected q-route at an
arbitrary node u remains the same or becomes less preferred.

Proof: Let S be the set of nodes that filters q before
z does. Let P be a forwarding path for q under S starting
at u, RS [u; q] = L[P ](R∗[tq; q]), and Q be a forwarding
path for q under S + z starting, as well, at u, RS+z[u; q] =
L[Q](R∗[tq; q]). Path Q is also a path for q under S.4

We write

RS [u; q] = L[P ](R∗[tq; q])
� L[Q](R∗[tq; q]) (Theorem 3),

= RS+z[u; q].

Lemma 6: Suppose that a set of nodes filters q. If a new
node z filters q, then the attribute of the elected q-route remains
the same at every node along a forwarding path for q that does
not contain z.

Proof: Let S be the set of nodes that filters q before z
does. Let P be a forwarding path for q under S not containing
node z. In order to obtain a contradiction, assume that there

4The inverse need not be true. If z is a node of P other than u, then P is
not a forwarding path for q under S + z.

is a node u along P that does not preserve the attribute of its
elected q-route after filtering by z:

RS+z [u; q] �= RS [u; q]. (7)

Further assume that u is the last node along P satisfying
the previous condition. Clearly, u �= tq , since RS+z[tq; q] =
R∗[tq; q] = RS [tq; q]. Let v be the successor of u along P ,
RS [u; q] = L[uv](RS [v; q]). Because u is the last node along
P satisfying Inequality (7), we have

RS+z[v; q] = RS [v; q]. (8)

We write

RS+z[u; q] � L[uv](RS+z[v; q]) (from (3)),

= L[uv](RS[v; q]) (from (8)),

= RS [u; q].

On the other hand, from Lemma 5, we know that RS+z[u; q] �
RS [u; q]. Hence, RS+z[u; q] = RS [u; q], contradicting
Inequality (7).

The following theorem proves that any forwarding path for q
starting at tp is an invariant, the theorem being the cornerstone
of the subsequent proof of correctness of DRAGON.

Theorem 7: A forwarding path for q starting at tp remains
a forwarding path for q after a new node executes code CR.

Proof: Consider an arbitrary filtering subsequence.
We will show that if P is a forwarding path for q starting at tp

at the end of the subsequence, then P remains a forwarding
path for q after the next node in the sequence executes
code CR.

Of the nodes of the subsequence, a set S filters q. If a
new node not on path P executes code CR and filters q,
then Lemma 6 asserts that P remains a forwarding path for q.
We now show that any node on path P does not satisfy the
premise for filtering q embodied in code CR, leaving the
routing state intact after execution of the code. As a matter
of fact, it suffices to show that the attribute of the elected
q-route is preferred to the attribute of the elected p-route
at the first node after tp along P . Then, from Lemma 4,
we conclude that the attribute of the elected q-route is
preferred to the attribute of the elected p-route at all
nodes of P .

Let u be the first node after tp along P and let Q be a
forwarding path for p starting at u, R[u; p] = L[Q](R∗[tp; p]).
We assume that the premise for filtering q is satisfied,

RS [u; q] � R[u; p], (9)

to arrive at the contradiction that cycle tpuQtp is not strictly
absorbent. We write (iso. stands for isotonicity)

R∗[tp; p] � RS [tp; q] (rule RO),

= L[tpu](RS [u; q])
� L[tpu](R[u; p]) (from (9); iso. of tpu),

= L[tpu](L[Q](R∗[tp; p]))
= L[tpuQtp](R∗[tp; p]).

Therefore, there is an attribute α, α = R∗[tp; p] ≺ •, such that
α � L[tpuQtp](α). From Theorem 2, we deduce that tpuQtp

is not strictly absorbent.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Theorem 8: DRAGON is correct, always delivering
data-packets to their intended destinations.

Proof: Both the stable states for p and q are devoid of
forwarding loops. A data-packet with destination in q arriving
at a node that does not elect a q-route is forwarded according
to the elected p-route. The data-packet is guided along elected
p-routes until it arrives at a node that elects a q-route. From
then on, the data-packet is forwarded along elected q-routes
to the origin of q. Therefore, DRAGON never introduces
forwarding loops. Whenever tp satisfies rule RO, it is not
a black hole for q, because if it elects a p-route it also
elects a q-route. By hypothesis, rule RO is satisfied in the
initial state. Theorem 7 implies that rule RO remains valid
through all intermediate states and final state of every filtering
sequence.

E. Optimality of DRAGON Under Isotonicity

Again, we assume that all cycles in the network are strictly
absorbent and all links are isotone. A state is route-consistent
if the attribute of the route used to forward data-packets is the
same as that in the initial stable state, without any filtering.
A route-consistent state is optimal if any additional filtering
would break route-consistency. We shall prove two results.
First, that the final state of every filtering sequence is optimal
route-consistent, meaning that the attribute of the route used
to forward data-packets is the same as that in the initial state.
Second, that there is a filtering sequence all intermediate states
of which are route-consistent. We start with a lemma that
allows us to classify nodes into those that elect a q-route with
an attribute that equals that of the elected p-route in the initial
state, represented by set F , and those that elect a q-route with
an attribute that is preferred to that of the elected p-route in
the initial state, represented by set F .

Lemma 9: In the initial state, the attribute of the elected
q-route equals or is preferred to the attribute of the elected
p-route at every node.

Proof: We want to show that R[u; q] � R[u; p] for
every node u. Let P be a forwarding path for q starting
at u, R[u; q] = L[P ](R∗[tq; q]); Q be a forwarding path
for p starting at u, R[u; p] = L[Q](R∗[tp; p]); and T be a
forwarding path for q starting at tp, R[tp; q] = L[T ](R∗[tq; q]).
Walk QtpT is a walk from u to tq. We write (iso. stands for
isotonicity)

R[u; q] = L[P ](R∗[tq; q])
� L[QtpT ](R∗[tq; q]) (Theorem 3),

= L[Q](L[T ](R∗[tq; q]))
= L[Q](R[tp; q])
� L[Q](R∗[tp; p]) (rule RO; iso. of Q),

= R[u; p].

The following theorem proves that the attribute of elected
q-routes of nodes in F is an invariant, and so is the worsening
of the attribute of elected q-routes of nodes in F . The theorem
is the basis for the proof of optimal route-consistency of
DRAGON.

Theorem 10: A node at which the attribute of the elected
q-route is preferred to the attribute of the elected p-route sees
the attribute of the elected q-route remain the same when a
new node executes code CR. A node at which the attribute of
the elected q-route equals or is less preferred than the attribute
of the elected p-route sees the attribute of the elected q-route
either remain the same or worsen when a new node executes
code CR.

Proof: Consider an arbitrary filtering subsequence and
let z be the next node to execute code CR. Let u be any node
such that the attribute of the elected q-route is preferred to the
attribute of the elected p-route before z executes code CR.
From Lemma 4, we learn that any node along a forwarding
path P for q starting at u also has an attribute of the elected
q-route that is preferred to the attribute of the elected p-route.
Therefore, if z is a node along P , then it does not satisfy
the premise for filtering q, it does not filter q, and the routing
state remains the same. On the other hand, if z is not a node
along P , and z ends up filtering q, then, from Lemma 6,
we conclude that the attribute of the elected q-route at any
node of P , in particular that of u, is unchanged by the filtering.

Now, let u be any node such that the attribute of
the elected q-route equals or is less preferred than the
attribute of the elected p-route. Directly from Lemma 5,
we obtain that the attribute of the elected q-route either
remains the same of becomes less preferred.

Theorem 11: DRAGON is optimal route-consistent.
Proof: Set F is the set of nodes such that the attribute of

the elected q-route equals the attribute of the elected p-route
in the initial state, and F is the set of nodes such that the
attribute of the elected q-route is preferred to the attribute of
the elected p-route in the initial state. From Lemma 9, we
know that every node u belongs either to F or to F .

Consider any filtering sequence. Suppose, first, that u
belongs to F . From Theorem 10, the attribute of the elected
q-route remains preferred to the attribute of the elected p-route
throughout all intermediate states and final state of the filtering
sequence. Thus, u does not forgo q in the final state.

Now, suppose that u belongs to F . If u becomes oblivious
of q at some intermediate state, then, from Theorem 10,
we conclude that it remains oblivious of q throughout all
succeeding intermediate states and the final state. If u has
not become oblivious of q when its turn arrives of executing
code CR, then, again from Theorem 10, we deduce that the
attribute of its elected q-route equals or is less preferred than
the attribute of its elected p-route. Therefore, upon execution
of code CR, u filters q.

In summary, in the final state, nodes in F forgo q while
nodes in F do not forgo q. A node u that forgoes q forwards
data-packets according to the elected p-route, which, from the
definition of set F , has an attribute equal to that of the elected
q-route in the initial state: the final state is route-consistent.
In addition, no node in F could dispense with q-routes
without breaking route consistency: the final state is optimal
route-consistent.

The proof of the following, and last, theorem exhibits
a filtering sequence for which all intermediate states are
route-consistent. In practice, any filtering sequence where each



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 11

node u executes code CR after all nodes that have u as
forwarding neighbor for q have done so yields route-consistent
intermediate states.

Theorem 12: There is a filtering sequence for which all
intermediate states are route-consistent.

Proof: In the initial state, the set of nodes that elect a
q-route and their forwarding neighbors for q form an acyclic
digraph. We construct a filtering sequence to validate the
following invariant: the state is route-consistent, and the set
of nodes that do not forgo q and the set of links joining those
nodes to their forwarding neighbors for q form an acyclic
digraph.

Consider a filtering subsequence, letting S be the set of
nodes that filters q and D(S) be the acyclic digraph formed
by nodes that do not forgo q and by links joining those nodes
to their forwarding neighbors for q. We choose the next node
to execute code CR to be a node belonging to F without links
pointing to it in D(S). If there is a such node u, then, upon
execution of code CR, it filters q. Since all nodes that have
u for forwarding neighbor for q already forgo q, filtering of
q by u does not affect the elected q-routes of any other node,
while D(S+u) remains an acyclic digraph composed of nodes
that do not forgo q and links joining them to their forwarding
neighbors. In addition, since u belongs to F , filtering of q
preserves route-consistency. If, on the other hand, all nodes
without links pointing to them in D(S) belong to F , then,
from Lemma 4, we conclude that none of the nodes of D(S)
satisfy the premise embodied in code CR. Hence, the optimal
route-consistent state has been reached: nodes of D(S) can
complement the filtering sequence in any order.

F. Correctness of DRAGON Without Isotonicity

Without isotonicity, route-consistency in the final state
is lost, in general. However, correctness is valid, depend-
ing exclusively on all cycles of the network being strictly
absorbent. The proof of correctness given in Section IV-D was
supported on the invariance of forwarding paths for q starting
at tp. That invariance also depends exclusively on strict-cycle-
absorbency. In turn, the invariance was supported on the fact
that a node that filters q does not affect a forwarding path
for q that does not contain that node (Lemma 6). The latter
statement no longer holds without isotonicity, in general.

We omit the general proof of correctness of DRAGON
without isotonicity because of space limitations. Instead,
we carry out the proof for the specific example of Figure 5,
highlighting the proof strategy that can be used in the general
case. In the figure, the origins of p and q are u1 = tp and
u4 = tq, respectively. The attributes of the p-route and the
q-route formed by u1 and u4 are denoted by βp = R∗[tp; p]
and βq = R∗[tq; q], respectively. Path u2u0u1u3u4 is a
forwarding path for q and u2u0u1 is a forwarding path for p.
If the routing policies of link u3u2 are not isotone, then
the following sequence of events can be conceived. Node u0

executes code CR and filters q. As a consequence, u2 no
longer learns a q-route from u0. It elects the q-route learned
directly from u4. That q-route is sent to u3, with u3 electing
the q-route learned from u2 to the detriment of the q-route

Fig. 5. Arrows point to forwarding neighbors for q. In addition, u1 is a
forwarding neighbor of u0 for p and u0 is a forwarding neighbor of u2 for p.
For an execution of code CR at u0 to destroy forwarding path u1u3u4, cycle
u3u2u0u1u3 would have to be non-strictly-absorbent.

learned directly from u4 along the forwarding path for q before
filtering by u0. Hence, filtering of q by u0 ends up affecting
forwarding path u1u3u4. The q-route now elected at u3 could
possibly not be exported to u1 creating a black hole there.

However, we show that the sequence of events described
above implies that cycle u3u2u0u1u3 is not strictly absorbent.
After u0 filters q and u2 elects the q-route learned from
u4, u3u4 stops being a forwarding path for q and u3u2u4

becomes one. Thus,

L[u3u4](βq) � L[u3u2u4](βq). (10)

Because path u3u2u4 has a different attribute from that
of u3u4, path u2u0u1u3u4 must have a different attribute from
that of u2u4. Path u2u0u1u3u4 is a forwarding path for q
before u0 filters q. Hence,

L[u2u4](βq) � L[u2u0u1u3u4](βq). (11)

Since u0 filtered q, it satisfied the premise embodied in
code CR. Therefore,

L[u0u1u3u4](βq) � L[u0u1](βp). (12)

Rule RO is satisfied at u1. So,

βp � L[u1u3u4](βq). (13)

Let

α3 = L[u3u4](βq);
α2 = L[u2u4](βq);
α0 = L[u0u1u3u4](βq);
α1 = βp.

Then, Inequalities (10), (11), (12), and (13) become,
respectively,

α3 � L[u3u2](α2);
α2 � L[u2u0](α0);
α0 � L[u0u1](α1);
α1 � L[u1u3](α3).

The previous set of inequalities reveal that cycle u3u2u0u1u3

is not strictly absorbent.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. CCDF of FIB and RIB filtering efficiencies. Without and with aggregation prefixes, the maximum filtering efficiencies are 49% and 78%, respectively,
marked by vertical dashed lines. Left. CCDF for all ASs. Around 87% of them reach the maximum FIB filtering efficiency. Right. CCDF for non-stub ASs.
Around 63% of them reach the maximum FIB filtering efficiency.

The general proof of correctness follows the strategy above.
We start with a node z that satisfies the premise embodied in
code CR and presume that a forwarding path for q starting
at the origin of p is affected. Then, we will be able to find an
alternate sequence of forwarding paths for q, before and after
z filters q, which, together with a forwarding path for p starting
at z, are entangled in such a way that has to presuppose the
presence in the network of a cycle that is not strictly absorbent.

V. EVALUATION

We evaluate the stable-state performance of DRAGON
when deployed on all ASs. Section V-A describes the net-
work topologies, prefix assignments, and routing policies that
were used. The savings in the sizes of forwarding-tabes and
routing-tables are presented in Section V-B. The stretch in
AS-path-lengths is discussed in Section V-C.

A. Data-Sets and Methodology

We ran DRAGON on data-sets of inferred Internet
topologies and data-sets of IPv4-prefixes-to-origin-AS
mappings made available by CAIDA [23], [24].
We experimented with several topologies and several
mappings, corresponding to different dates, and concluded
that the results are consistent across them. We present results
for the inferred topology and IPv4-prefixes-to-origin-AS
mappings of February 2015.

The topology data-set contains a list of pairs of ASs clas-
sified into “customer-provider” or “peer-peer.” Accordingly,
we used the GR routing policies. We fixed some inaccuracies
in the data-set. Cycles where each AS is a customer of
the next around the cycle were broken. ASs that prevented
the topology from being policy-connected were removed.
From 49,755 ASs and 379,674 links, we ended up with
48,999 ASs (keeping 98% of them) and 364,916 links (keeping
96% of them). Of the 48,999 ASs, 41,664 are stubs (85% of
them). Of the 364,916 links, 93,695 join a customer to
a provider (26% of them), 93,695 join a provider to a customer

(26% of them), and 177,526 join a peer to another peer
(48% of them).

The IPv4-prefixes-to-origin-AS mappings data-set mapped
a few prefixes to ASs that were not present in the topology.
These prefixes were removed. The data-set also contained a
few prefixes with more than one origin AS. Without loss of
generality, we chose just one origin AS per prefix. Last, the
data-set also contains a few pairs of child-prefix-parent-prefix
where the origin of the child prefix is higher up in the
AS-hierarchy. In this case, either the child prefix or the parent
prefix were removed. From 562,467 IPv4 prefixes, we ended
up with 530,444 IPv4 prefixes (keeping 94% of them). Out
of these prefixes, 51% have no parent prefix in the routing
system and 40% have the same origin AS as their parent
prefix. In order to subject the prefixes without a parent to the
filtering strategy, we included 58,843 prefixes according to the
aggregation strategy discussed in Section III-F, increasing
the total number of prefixes by 11%.

B. Filtering Efficiency

The filtering efficiency of a FIB (of a RIB) is the nor-
malized difference between the number of entries in the FIB
(in the RIB) before and after DRAGON is deployed on all ASs.
The size of a FIB is reduced by one for every prefix forgone at
the AS. The size of a RIB is reduced by one for every prefix
forgone at a neighbor AS that announced the prefix when
DRAGON was not deployed. The maximum filtering efficiency
of a FIB (of a RIB) is obtained when only the prefixes without
a parent prefix in the routing system are stored in the FIB
(in the RIB). The maximum filtering efficiency is the same for
FIBs and RIBs. Its value is 49% without aggregation prefixes
and 78% with aggregation prefixes.

Figure 6 plots filtering efficiencies of FIBs and RIBs without
and with aggregation prefixes, orig curves and agg curves,
respectively. Results are presented as Complementary Cumula-
tive Distribution Functions (CCDFs). A point (x, y) of a curve
means that y% of ASs have a filtering efficiency of more



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 13

than x%. The left-hand side plot shows filtering efficiencies
across all ASs, whereas the right-hand side plot focuses on
non-stub ASs.

DRAGON enables near-maximum FIB filtering efficiency
at each AS. Without aggregation prefixes, each AS has a
FIB filtering efficiency of at least 47%, differing from the
maximum possible by 2%. This is partially explained by the
predominance of child prefixes that have the same origin AS
as their parent prefix (84% of all child prefixes; 40% of
all prefixes). Such child prefixes are filtered, rather trivially,
by the neighbors of the ASs that originated them. However,
with the introduction of aggregation prefixes, child prefixes
and parent prefixes are invariably originated at different ASs,
while DRAGON still attains near-maximum FIB filtering
efficiencies. With aggregation prefixes, each AS has a FIB
filtering efficiency of at least 69%, differing from the maxi-
mum possible by 9%.

Without and with aggregation prefixes, DRAGON enables
approximately 87% of the ASs to attain the maximum
FIB filtering efficiency. This is partially explained by the
prevalence of stub ASs without peers (75% of all ASs).
Because the topology is policy-connected, these stub ASs
elect provider routes for all prefixes. Hence, they forgo all
prefixes which have a parent prefix in the routing system,
thereby reaching the maximum filtering efficiency. However,
interestingly, many non-stub ASs also attain the maximum FIB
filtering efficiency. The plot on the right-hand side of Figure 6
shows that to be the case for 63% of all non-stub ASs. The
FIB efficiency results fare well with those obtained through
FIB aggregation techniques [17], while DRAGON scales all
the routing state and not just the FIBs.

The RIB filtering efficiency is slightly worse than the FIB
filtering efficiency, offset, in the worst case, by 2% without
aggregation prefixes and by 10% with aggregation prefixes.
This is expected since when an AS filters a prefix it is already
saving on its FIB size but not on its RIB size. It will only
save on the RIB size of its neighbor ASs (see Section III-A).

C. AS-Path-Length Stretch

We applied the filtering code to the GR-attributes alone,
ensuring route-consistency with respect to these attributes,
but accepting a distortion in the AS-paths traversed by
data-packets (see Section III-D). AS-path distortion can only
affect data-packets whose destination address match to a
child prefix, since only these prefixes are subject to filtering.
Thus, in order to better appreciate the small stretch intro-
duced by DRAGON, we focus exclusively on child prefixes.
We consider pairs composed of an AS and a child prefix, and
determine the number of hops in the AS-path followed by data-
packets that start at the AS with destination address matching
the child prefix, when DRAGON is deployed and when it is
not. The stretch of an AS-child-prefix pair is the ratio between
the two numbers defined above. When DRAGON is not
deployed, data-packets are guided by elected routes pertaining
to the child prefix throughout their journeys. The number
of hops associated with an AS-child-prefix pair is read off
directly from the route that the AS elects for the child prefix.

Fig. 7. CCDF of stretch, with a logscale y-axis. Without and with aggregation
prefixes, 97% and 65% of all AS-child-prefix pairs, respectively, have no
stretch.

However, when DRAGON is deployed, data-packets may be
guided by elected routes pertaining to ever more specific
prefixes throughout their journey ending at the AS that orig-
inated the child prefix. We computed the number of hops in
such AS-paths by emulating the forwarding decisions made at
each AS. When there was more than one forwarding neighbor
to choose from, we used a uniform distribution to randomly
select just one. Although this procedure adds a random factor
to the results, the emulation was run multiple times to guar-
antee robustness of the results, and it showed little variation
across different executions.

The median AS-path-length of an AS-child-prefix pair
when DRAGON is not deployed is 4. When DRAGON is
fully deployed it remains at 4 without aggregation prefixes
and increases to 5 with aggregation prefixes. Figure 7 plots
the stretch over all AS-child-prefix pairs without and with
aggregation prefixes, orig curves and agg curves, respectively.
Results are presented as CCDFs, where each point (x, y)
means that for y% of the AS-child-prefix pairs, the stretch is
greater than x. Without aggregation prefixes, we see that 97%
of the AS-child-prefix pairs bear no stretch at all. Again, this is
partially explained by the predominance of child prefixes that
are originated by the same AS as their parent prefixes. With
aggregation prefixes, 65% of the AS-child-prefix pairs bear
no stretch, whereas 94% of the AS-child-prefix pairs have a
stretch not greater than 2.

VI. RELATED WORK

A. Scalability Limits of Routing

Existing work on the scalability limits of routing [1]–[3]
presuppose full control over the parameters of routing. More-
over, almost all of that work is premised on shortest-path
routing, exploring the fundamental trade-off between the size
of forwarding-tables and the stretch in the lengths of paths
traversed by data-packets. A recent paper embarks on the scal-
ability limits of policy-based routing [25], suggesting that the
export rules of the GR routing policies lead to efficient routing,
a result that is consistent with our findings. In contrast to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

previous work, DRAGON is a distributed algorithm proposed
for the Internet’s existing IP addressing scheme and has been
framed for arbitrary routing policies.

B. Characterizing Growth of the Internet Routing System

Measurement studies track the growth in the number of
IP prefixes and BGP update messages over time [4], [26],
and identify the causes of growth such as multi-homing,
traffic engineering, and address allocation policies [27]–[31].
DRAGON reduces the number of globally routed IP prefixes
and BGP update messages.

C. Reducing Forwarding-Table Size

As the number of globally routed IP prefixes grew,
researchers explored ways to reduce the size of forwarding-
tables by aggregating related entries [11]–[13], keeping entries
only for recently used prefixes [32], compressing informa-
tion [33], or directing some traffic to routers with room
for larger tables [34]. These optimization techniques do not
reduce the size of routing-tables or the number of BGP update
messages, and require re-optimizations when routing decisions
change.

D. Reducing Routing-Table Size

Best current practices for reducing the size of routing-tables
rely on the diligence of network operators to apply static filters
to BGP routes learned from each neighbor. However, these
techniques cannot aggregate routes originated several hops
away, and can sometimes lead to black holes and loops [35].
Other techniques for reducing the size of routing-tables work
only within a single AS, missing opportunities for global
scalability gains [9].

VII. CONCLUSIONS

DRAGON is a distributed route-aggregation algorithm that
operates with standard routes of a routing vector protocol.
It comprises a filtering strategy and an aggregation strategy.
The filtering strategy is composed of filtering code and an
origination rule that together allow nodes to dispense with
many prefixes without creating black holes in a stable state.
DRAGON works with any routing policies, but if these
policies are isotone, then DRAGON leads to an optimal
route-consistent state, reachable through intermediate stages
of deployment all of which can be made route-consistent
as well. DRAGON’s aggregation strategy boosts the filtering
possibilities within the network.

Applied to the Internet, DRAGON harnesses whatever hier-
archical structure there is in inter-AS routing to create an
efficient routing system. Evaluation of DRAGON on inferred
topologies of the Internet with realistic prefix assignments and
routing policies show reductions in the amount of routing
and forwarding state close to 70% in each ASs, reaching up
to 80% in some ASs, with minimal stretch in the lengths of
AS-paths traversed by data-packets. We leave for future work
an evaluation of DRAGON under partial deployment and an
evaluation of its dynamics upon link failures and additions.

Toward this end, we developed a simulator and are currently
implementing DRAGON in the open source router software
BIRD.

APPENDIX

NOTATION

A path P is a network with node-set {u0, u1, . . . , un} and
link-set {u0u1, u1u2, . . . , un−1un}. We refer to path P by
its linear sequence of nodes, P = u0u1 · · ·un. A walk in a
network is a linear sequence of nodes P = u0u1 · · ·un such
that uiui+1 is a link in that network, for 0 ≤ i < n. If the
nodes of a walk are all distinct, then the walk defines a path.
Given walk P = u0u1 · · ·un, we write, for 0 ≤ i ≤ j ≤ n:

uiPuj = uiui+1 · · ·uj ;
uiP = uiui+1 · · ·un;
Puj = u0u1 · · ·uj.

A cycle C is a network obtained by linking the last node
of a path to its first. Its node-set and link-set are of the form
{u0, u1, . . . , un} and {u0u1, u1u2, . . . , un−1u0}, respectively.
We refer to cycle C by its circular sequence of nodes,
C = u0u1 · · ·un−1u0. The walk around cycle C starting and
ending at node u, crossing each link exactly once, is denoted
by uCu.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for comments
that led to a better presentation of their work. The views and
conclusions contained in this paper are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the funding agencies.

REFERENCES

[1] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks
performance evaluation and optimization,” Comput. Netw., vol. 1, no. 3,
pp. 158–174, Jan. 1977.

[2] P. F. Tsuchiya, “The landmark hierarchy: A new hierarchy for routing in
very large networks,” in Proc. ACM SIGCOMM, Aug. 1988, pp. 35–42.

[3] D. Krioukov, K. C. Claffy, K. Fall, and A. Brady, “On compact routing
for the Internet,” ACM SIGCOMM Comput. Commun. Rev., vol. 37,
no. 3, pp. 41–52, Jul. 2007.

[4] BGP Routing Table Analysis Reports. [Online]. Available: http://bgp.
potaroo.net

[5] G. Huston, “What’s so special about 512?” Internet Protocol J., vol. 17,
no. 2, pp. 2–18, Dec. 2014.

[6] C. Edwards. (Sep. 2014). Internet Routing Failures Bring Architecture
Changes Back to the Table, ACM News. [Online]. Available: http://
cacm.acm.org/news/178293-internet-routing-failures-bring-architecture-
changes-back-to-the-table/fulltext

[7] R. Lemos. (Aug. 2014). Internet Routers Hitting 512K Limit, Some
Become Unreliable, ArsTechnica. [Online]. Available: http://ars.to/
1r9AbxJ

[8] Z. B. Houidi, M. Meulle, and R. Teixeira, “Understanding slow BGP
routing table transfers,” in Proc. Internet Meas. Conf., Nov. 2009,
pp. 350–355.

[9] E. Karpilovsky, M. Caesar, J. Rexford, A. Shaikh, and J. van der Merwe,
“Practical network-wide compression of IP routing tables,” IEEE Trans.
Netw. Service Manage., vol. 9, no. 4, pp. 446–458, Dec. 2012.

[10] R. Hinden and S. Deering, IP Version 6 Addressing Architecture,
document RFC 4291, Feb. 2006.

[11] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill, “Constructing
optimal IP routing tables,” in Proc. IEEE INFOCOM, Mar. 1999,
pp. 88–97.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO et al.: SCALING THE INTERNET ROUTING SYSTEM THROUGH DISTRIBUTED ROUTE AGGREGATION 15

[12] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability
of router forwarding tables,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[13] Z. A. Uzmi et al., “SMALTA: Practical and near-optimal FIB aggrega-
tion,” in Proc. ACM CoNEXT, 2011, pp. 29:1–29:12.

[14] B. Carré, Graphs and Networks. Oxford, U.K.: Clarendon, 1979.
[15] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”

IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, Oct. 2005.
[16] L. Gao and J. Rexford, “Stable Internet routing without global coordi-

nation,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 681–692, Dec. 2001.
[17] J. L. Sobrinho, L. Vanbever, F. Le, and J. Rexford, “Distributed route

aggregation on the global network,” in Proc. ACM CoNEXT, Dec. 2014,
pp. 161–172.

[18] V. Fuller and T. Li, Classless Inter-Domain Routing (CIDR): The Inter-
net Address Assignment and Aggregation Plan, document RFC 4632,
Aug. 2006.

[19] J. L. Sobrinho and F. Le, “A fresh look at inter-domain route aggrega-
tion,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2556–2560.

[20] M. Schapira, Y. Zhu, and J. Rexford, “Putting BGP on the right path:
A case for next-hop routing,” in Proc. ACM SIGCOMM Workshop Hot
Topics Netw., Oct. 2010, pp. 3:1–3:6.

[21] Y. Liao, L. Gao, R. Guérin, and Z.-L. Zhang, “Safe interdomain routing
under diverse commercial agreements,” IEEE/ACM Trans. Netw., vol. 18,
no. 6, pp. 1829–1840, Dec. 2010.

[22] M. Thorup and U. Zwick, “Compact routing schemes,” in Proc. ACM
Symp. Parallel Algorithms Archit. (SPAA), 2001, pp. 1–10.

[23] The CAIDA AS Relationships Dataset. [Online]. Available:
http://www.caida.org/data/active/as-relationships/, accessed Feb. 2015.

[24] The CAIDA Routeviews Prefix to as Mappings Dataset for IPv4 and
IPv6. [Online]. Available: http://www.caida.org/data/routing/routeviews-
prefix2as.xml, accessed Feb. 2015.

[25] A. Gulyas, G. Retvari, Z. Heszberger, and R. Agarwal, “On the scala-
bility of routing with policies,” IEEE/ACM Trans. Netw., vol. 23, no. 5,
pp. 1610–1618, Oct. 2014.

[26] G. Huston, “Analyzing the Internet’s BGP routing table,” Internet
Protocol J., vol. 4, no. 1, pp. 2–15, Mar. 2001.

[27] H. Narayan, R. Govindan, and G. Varghese, “The impact of address
allocation and routing on the structure and implementation of routing
tables,” in Proc. ACM SIGCOMM, Aug. 2003, pp. 125–136.

[28] T. Bu, L. Gao, and D. Towsley, “On characterizing BGP routing table
growth,” Comput. Netw., vol. 45, no. 1, pp. 45–54, May 2004.

[29] X. Meng et al., “IPv4 address allocation and the BGP routing table
evolution,” ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 1,
pp. 71–80, Jan. 2005.

[30] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of
BGP: The role of topology growth,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 8, pp. 1250–1261, Oct. 2010.

[31] L. Cittadini et al., “Evolution of Internet address space deaggregation:
Myths and reality,” IEEE J. Sel. Areas Commun., vol. 28, no. 8,
pp. 1238–1249, Oct. 2010.

[32] Y. Liu, S. O. Amin, and L. Wang, “Efficient FIB caching using minimal
non-overlapping prefixes,” SIGCOMM Comput. Commun. Rev., vol. 43,
no. 1, pp. 14–21, Jan. 2013.

[33] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Com-
pressing IP forwarding tables: Towards entropy bounds and beyond,” in
Proc. ACM SIGCOMM, Aug. 2013, pp. 111–122.

[34] H. Ballani, P. Francis, T. Cao, and J. Wang, “Making routers last longer
with ViAggre,” in Proc. USENIX NSDI, 2009, pp. 453–466.

[35] F. Le, G. G. Xie, and H. Zhang, “On route aggregation,” in Proc. ACM
CoNEXT, Dec. 2011, Art. ID 6.

João Luís Sobrinho received the Licenciatura and
Ph.D. degrees in electrical and computer engineering
from the Instituto Superior Técnico, Universidade
de Lisboa, Portugal, in 1990 and 1995, respectively.
Before joining academia in 1997, he was with Bell
Labs, Lucent Technologies, for two years. He is cur-
rently an Associate Professor with the Department
of Electrical and Computer Engineering, Instituto
Superior Técnico, and a Senior Researcher with the
Instituto de Telecomunicações.

He won an Internet Society Applied Networking
Research Prize 2015, the IEEE Communications Society William R. Bennett
Prize 2006, and an IEEE PIMRC 1994 Best Ph.D. Student Paper Award.

Laurent Vanbever received the Ph.D. degree in
computer science from the University of Louvain,
Belgium, in 2012. He was a Post-Doctoral Research
Associate with Princeton University, where he col-
laborated with Prof. J. Rexford. He is currently an
Assistant Professor with ETH Zürich, where he leads
the Networked Systems Group since 2015.

He won several awards for his research, includ-
ing the ACM SIGCOMM 2015 Best Paper Award,
the ACM SIGCOMM Doctoral Dissertation Award
(runner-up), the University of Louvain Best Thesis

Award, the ICNP 2013 Best Paper Award, and three Internet Society Applied
Networking Research Prizes for his work on inter-domain routing and
software-defined networking.

Franck Le received the Diplome d’Ingénieur degree
from the École Nationale Supérieure des Télécom-
munications de Bretagne, France, in 2000, and
the Ph.D. degree in electrical and computer engi-
neering from Carnegie Mellon University, in 2010.
He is currently a Research Scientist with the
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY.

He won the ICNP 2007 Best Paper Award and a
NSF Graduate Research Fellowship.

André Sousa received the B.S. and M.S. degrees
in electrical and computer engineering from the
Instituto Superior Técnico, Universidade de Lisboa,
Portugal, in 2012 and 2014, respectively. He was
an M.S. Research Associate with the Instituto
de Telecomunicações. He is currently a Software
Engineer with Prodrive Technologies B.V., Son,
The Netherlands.

Jennifer Rexford received the B.S.E. degree in
electrical engineering from Princeton University, in
1991, and the Ph.D. degree in electrical engineering
and computer science from the University of Michi-
gan, in 1996. She was with AT&T Labs-Research
for eight years. She joined Princeton University in
2005, where she is currently the Gordon Y. S. Wu
Professor of Engineering and the Chair of Computer
Science.

She has co-authored the book entitled Web Proto-
cols and Practice (Addison-Wesley, 2001). She was

an ACM Fellow (2008), and a member of the American Academy of Arts
and Sciences (2013) and the National Academy of Engineering (2014). She
was the 2004 winner of ACM’s Grace Murray Hopper Award for outstanding
young computer professional. She served as the Chair of ACM SIGCOMM
from 2003 to 2007.


