
DEFT: Distributed Exponentially-weighted Flow Splitting

Dahai Xu
Dept. of EE, Princeton University

Email: dahaixu@princeton.edu

Mung Chiang
Dept. of EE, Princeton University

Email: chiangm@princeton.edu

Jennifer Rexford
Dept. of CS, Princeton University

Email: jrex@cs.princeton.edu

Abstract— Network operators control the flow of traffic
through their networks by adapting the configuration of the
underlying routing protocols. For example, they tune the integer
link weights that interior gateway protocols like OSPF and IS-
IS use to compute shortest paths. The resulting optimization
problem—to find the best link weights for a given topology
and traffic matrix—is computationally intractable even for the
simplest objective functions, forcing the use of local-search
techniques. The optimization problem is difficult in part because
these protocols split traffic evenly along shortest paths, with
no ability to adjust the splitting percentages or direct traffic
on other paths. In this paper, we propose an extension to
these protocols, called Distributed Exponentially-weighted Flow
SpliTting (DEFT), where the routers can direct traffic on non-
shortest paths, with an exponential penalty on longer paths.
DEFT leads not only to an easier-to-solve optimization problem,
but also to weight settings that provably perform no worse than
OSPF and IS-IS. Furthermore, in our optimization problem, both
link weights and flows of traffic are integrated as optimization
variables into the formulation and jointly solved by a two-
stage iterative method. Our novel formulation leads to a much
more efficient way to identify good link weights than the
local-search heuristics used for OSPF and IS-IS today. DEFT
retains the simplicity of having routers compute paths based on
configurable link weights, while approaching the performance of
more complex routing protocols that can split traffic arbitrarily
over any paths.

Keywords: Interior gateway protocol, traffic engineering, routing,
OSPF, network optimization, mathematical programming.

I. INTRODUCTION

A. Motivation

Managing a large IP network is immensely challenging,
in large part because the existing protocols and mechanisms
were not designed with management in mind. For example, the
design of existing protocols and mechanisms typically induces
optimization problems that are computationally intractable,
forcing the use of local-search techniques to identify good
parameter settings. In this paper, we argue for “Design for
Optimizability”: protocols should be designed with the result-
ing optimization problems in mind, with enough flexibility
and optimizability provided in the first place so as to enable
efficient and easy-to-operate solutions. In particular, we show
how to extend existing link-state routing protocols for more
effective traffic engineering [1] within a single Autonomous
System (AS), such as a company, university campus, or
Internet Service Provider (ISP).

Most large IP networks run Interior Gateway Protocols
(IGPs) such as OSPF (Open Shortest Path First) or IS-IS
(Intermediate System-Intermediate System) that select paths
based on link weights. Routers use these protocols to exchange

link weights and construct a complete view of the topology
inside the AS. Then, each router computes shortest paths
(where the length of a path is the sum of the weights on
the links) and creates a table that controls the forwarding of
each IP packet to the next hop in its route. When multiple
shortest paths exist, a router typically splits traffic roughly
evenly over each of the outgoing links along a shortest path
to the destination. The link weights are configured by the
network operators or automated management systems, through
centralized computation, to satisfy traffic-engineering goals,
such as minimizing the maximum link utilization or the sum
of link cost [2]. We will use the sum of link cost as the primary
comparison metric and the optimization objective. A typical
link cost function of link utilization is illustrated in Fig. 1 to
model retransmission delays caused by packet losses [3].

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

Link Utilization

C
os

t

Fig. 1. Link cost as a function of the load for a unit link capacity

Tuning the link weights under OSPF and IS-IS1 is a form of
link-weight-based traffic engineering, where the link weights
uniquely determine the flow of traffic in a distributed manner
within the network for any given traffic matrix. The traffic
matrix can be computed based on traffic measurements (e.g.,
[4]) or may represent explicit subscriptions or reservations
from users. Link-weight-based traffic engineering has two key
components: a centralized approach for setting the routing
parameters (i.e., link weights) and a distributed way of using
these link weights to compute the routes to forward packets.
Setting the routing parameters based on a network-wide view
of the topology and traffic, rather than the local views at each
router, can achieve better performance [5].

1The integer link weight could be 1 ∼ 216 − 1 for OSPF and 1 ∼ 26 − 1
for IS-IS (or 1 ∼ 224 − 1 for the new version). We use OSPF to represent
OSPF and IS-IS thereafter.

Link-weight-based schemes are appealing alternatives to
more complex load-sensitive routing protocols for several
reasons [5]. Link-weight schemes are compatible with existing
link-state routing protocols, and link weights are a concise
form of configuration state, with one parameter on each
unidirectional link. The weights have natural default values
(e.g., inversely proportional to link capacity or proportional
to propagation delay). If the topology changes, the routers
can automatically compute new routes based on the current
topology and link weights. In addition, the resulting routing
protocols have low overhead and are intrinsically stable, since
the routers do not adapt automatically to locally-constructed
(and potentially out-of-date views) of the traffic. Finally, link
weights offer a great deal of flexibility for controlling the
flow of traffic; often, changing just one or two link weights is
sufficient to alleviate congestion in the network.

Evaluation of various traffic engineering schemes, in terms
of total link cost minimization, can be made against the
performance benchmark of optimal routing (OPT), which can
direct traffic along any paths in any proportion. OPT models
an idealized routing scheme that can establish one or more
explicit paths between every pair of nodes, and distribute an
arbitrary amount of traffic on each of the paths.

It is easy to construct examples where OSPF with the best
link weighting performs substantially (5000 times) worse than
OPT in terms of minimizing the sum of link cost [2]. In
addition, finding the best link weights under OSPF is NP-
hard [2]. Although the best OSPF link weights can be found by
solving an integer linear program (ILP) formulation (as shown
in Appendix A), such an approach is impractical even for a
mid-size network. Many heuristics, including local search [2]
and simulated annealing [6], [7] have been proposed to search
for the best link weights under OSPF. Among them, local-
search technique is the most attractive method in finding a
good setting of the link weights for large networks. Even
though OSPF with a good setting of the weights performs
within a few percent of OPT for some practical scenarios [2],
[6], [7], there are still many realistic situations whereas the
performance gap between OSPF and OPT could be significant
even at low utilization [2], [8].

In summary, OSPF’s failure to achieve optimal routing has
two underlying causes:

1) The protocol limitation on even splitting of traffic across
multiple shortest-path routes;

2) The computational intractability of finding the best link
weights.

We present an example to illustrate these two effects. For the
network in Fig. 2, which has 5 nodes and 8 bi-directional edges
(for a total of 16 links), the link capacities are all 5 units,
and the traffic demand between each node pair is randomly
chosen from [0, 5] units. The objective value (in terms of
the sum of link cost) of optimal routing is 379.86 units. In
contrast, the objective value from using the Best OSPF (ILP)
is 631.16 units (with an optimality gap of 66.2%) and that
from Heuristic OSPF (Local Search) is 3615.29 units (with a
performance gap of 851.7%).

0 1

4 2

3

Fig. 2. An illustrative example to show Optimal Routing > BEST OSPF
(ILP) > Heuristic OSPF (Local Search) in minimizing total link cost

Although OPT could be realized by some non-link-weight-
based traffic engineering (e.g., [8]–[10]) each router cannot
independently compute the flow splitting only based on link
weights, and additional centralized signaling has to be imple-
mented. Therefore, it is useful but challenging to search for
a routing protocol with which the resulting link-weight-based
traffic engineering can realize OPT.

B. Overview of DEFT

In light of the difficulty of tuning OSPF for consistently
good performance, we wonder how close to optimal routing
a link-state protocol could be. In this paper, inspired in part
by Fong et al.’s work in [11], we explore the potential of
link-weight-based traffic engineering by relaxing the constraint
of shortest path routing as in OSPF. The proposed routing
scheme is called Distributed Exponentially-weighted Flow
SpliTting (DEFT), where the routers can direct traffic on
non-shortest paths, with an exponential penalty on longer
paths. DEFT’s flexibility of routing on non-shortest paths can
bring tremendous improvement in approaching network-wide
traffic engineering objective and still keep the simplicity and
scalability of link-state routing protocols. For the example
scenario in Fig. 2, DEFT can achieve a flow with total link
cost of 383.31 units (within 0.9% of optimality).

The second innovation of DEFT is a novel formulation of
the optimization problem and a two-stage iterative solution
method. Most existing methods of searching for good link
weights under a link-state protocol, e.g., the local search OSPF
in [3], start from a set of link weights that accordingly deter-
mine the flow of traffic, and tune the weights of some links to
diversify the traffic. In this work, we develop an optimization
formulation where both link weighting and traffic flows are
variables at the same time, coupled through constraints in
the formulation. Thus the solution to the formulation will
bring an optimal link weighting at once and the searching
procedure could be carried out much more efficiently. The
detailed description of DEFT will be covered in Sec. II-III.

In the most relevant related work, Fong et al. [11] propose
to forward traffic on paths in inverse proportion to (or strictly
decreasing with) the sum of the weights. Accordingly, optimal

routing for single-destination (sink) can be realized under
the scheme within polynomial time. However, the approach
may lead to loops in the routes, and its applicability and
performance for the more crucial scenarios (with multiple-
destinations) were not addressed.

C. Summary of Contributions

DEFT overcomes the two limitations of conventional OSPF
traffic engineering because: (i) in the routing protocol, traffic
can be routed on non-shortest paths and (ii) in the computation
of link weights, the two-stage iterative method for optimizing
the link weights is very effective. As a result, DEFT has the
following desirable properties:

• It determines a unique flow of traffic for a given link
weight setting in polynomial time.

• It is provably no worse than OSPF in terms of minimizing
the maximum link utilization or the sum of link cost.

• It is readily implemented as an extension to the existing
link-state protocols (e.g., OSPF).

• The two-stage iterative method realizes near-optimal flow
of traffic even for large topologies.

• The optimization procedure for DEFT converges much
faster than that for OSPF local search.

In summary, DEFT maintains the simplicity of link-state-
based routing while attaining close-to-optimal congestion cost
value through a link weight computation that runs as fast as
today’s OSPF local search.

The rest of the paper is organized as follows. We introduce
the framework and prove the basic properties of DEFT in
Sec. II, followed by the novel optimization formulation and
its solution algorithms in Sec. III. Then we present results
from extensive numerical experiments in Sec. IV, comparing
DEFT with OSPF in terms of optimality gap, maximum link
load, convergence behavior and complexity of the optimization
procedure. We conclude and discuss future work on DEFT in
Sec. V. Details of a reference optimization formulation and
interior-point methods are outlined in the Appendix.

II. DEFT: FRAMEWORK AND BASIC PROPERTIES

In this section, we introduce the framework and prove
the basic properties of the DEFT routing scheme. Table I
summarizes the key notation used throughout this paper.

A. Link-weight-based Traffic Engineering and DEFT

Given a directed graph G = (V, E) with capacity cu,v

for each link (u, v), let D(s, t) denote the traffic demand
originated from node s and destined to node t. Φ(fu,v, cu,v)
is a strictly increasing convex function of flow fu,v on link
(u, v) (typically a piece-wise linear cost [2], [8] as shown in
equation (1), or in Fig. 1). The network-wide objective is to
minimize

∑
(u,v)∈E

Φ(fu,v, cu,v).

Φ(fu,v , cu,v) =




fu,v fu,v/cu,v ≤ 1/3
3fu,v − 2/3 cu,v 1/3 ≤ fu,v/cu,v ≤ 2/3
10fu,v − 16/3 cu,v 2/3 ≤ fu,v/cu,v ≤ 9/10
70fu,v − 178/3 cu,v 9/10 ≤ fu,v/cu,v ≤ 1
500fu,v − 1468/3 cu,v 1 ≤ fu,v/cu,v ≤ 11/10
5000fu,v − 16318/3 cu,v 11/10 ≤ fu,v/cu,v

(1)

In link-weight-based traffic engineering, each router u needs
to make an independent decision on how to split the traffic
destined to node t among its outgoing links only using link
weights. Therefore, it calls for a function (Γ(·) ≥ 0) to
represent the traffic allocation.

In the case of shortest-path routing (e.g., OSPF), each router
evenly splits flow across all the outgoing links as long as
they are on shortest paths. First of all, we need a variable
to indicate whether link (u, v) is on the shortest path to t or
not. Denote wu,v as the weight for link (u, v), and dt

u as the
shortest distance from node u to node t, then dt

v +wu,v is the
distance from u to t when routed through v. Thus the gap of
the two distances, ht

u,v � dt
v + wu,v − dt

u is always greater
than or equal to 0. Then (u, v) is on the shortest path to t
if and only if ht

u,v = 0. Accordingly, we can use a unit step
function of ht

u,v to represent the traffic allocation for OSPF:

Γ(ht
u,v) =

{
1 if ht

u,v = 0
0 if ht

u,v > 0 (2)

The flow proportion on the outgoing link (u, v) destined to t,
at u is Γ(ht

u,v)/
∑

(u,j)∈E
Γ(ht

u,j). Denote f t
u,v as the flow on

link (u, v) destined to node t and f t
u as the flow sent along

the shortest path of node u destined to t, then

f t
u,v = f t

u Γ(ht
u,v). (3)

The Γ(ht
u,v) function (2) is in part responsible for the

difficulty of optimizing the link weights under OSPF. For
DEFT, we define a new Γ(ht

u,v) function to allow for flow
on non-shortest paths. Intuitively, we should send more traffic
on the shortest path than on a non-shortest path. Moreover,
the traffic on a non-shortest path should be 0 if the distance
gap between the non-shortest path and the shortest path is
infinitely large. Based on the above intuition, Γ(ht

u,v) should
be a strictly decreasing continuous function of ht

u,v bounded
within [0, 1]. The exponential function:

Γ(ht
u,v) =

{
e−ht

u,v if dt
u > dt

v

0 otherwise
(4)

is one of the natural choices and the performance of using such
function turns out to be excellent. From (4), we can easily
verify that no packet would ever traverse a loop since the
flow always makes forward progress towards the destination.
In contrast, Fong et al. [11] propose to forward traffic on
all paths in inverse proportion to (or exponentially decreasing
with) path lengths. However, this approach may lead to loops
in the routes, and its applicability and performance for routing
with multiple destinations are not clear yet.

B. Sample Link Weighting in DEFT

To demonstrate the advantage of using DEFT over conven-
tional OSPF, consider the example in Fig. 3 where all the
traffic is travelling from node A to node B. The ratio of the
traffic on the two paths with optimal routing could be x : 1−x
for any 0 ≤ x ≤ 1 if the capacities on path A→ 1→ B and
A → 2 → B can be arbitrarily specified. On the other hand,

TABLE I

SUMMARY OF KEY NOTATION

Notation Meaning
wu,v Weight assigned to link (u, v)
wmin Lower bound of all link weights
dt

u The shortest distance from node u to node t. dt
t = 0

ht
u,v Gap of shortest distance, ht

u,v � dt
v + wu,v − dt

u

Γ(ht
u,v) Traffic allocation function

f t
u,v Flow on link (u, v) destined to node t
f t

u Flow along the shortest path of node u destined to t
fu,v Flow on link (u, v)
cu,v Capacity of link (u, v)

D(s, t) Traffic demand from source s to destination t

such ratio under OSPF could only be 0 : 1, 1 : 1, or 1 : 0.
Therefore, to realize optimal routing, we have to send traffic
along a non-shortest path.

For the example in Fig. 3, without loss of generality, path
A → 1 → B is assumed to be the shortest path with 1-unit
length and its traffic fraction is x ≥ 0.5. Therefore, we just
need to assign 1+log x

1−x units2 as the length (weight) for path
A → 2 → B, which will determine 1 − x traffic proportion
on it under DEFT.

1

2
A B

Fig. 3. A simple example of implementing optimal routing under DEFT

C. Realizing DEFT in Practice

The DEFT scheme can be easily implemented as a small
extension to existing link-state routing protocols (like OSPF).
First, the network operator or management system calculates
the best link weights within DEFT for a given traffic matrix.
Second, after receiving the updated link weights using link
state advertisement (LSA) packets, each router independently
determines the flow allocation across shortest and non-shortest
paths to each destination according to (4). Thus the routing
table stores several next hops (nodes) for each destination
associated with the desired flow proportion. Such desired flow
splitting can be approximately achieved by using pseudo-
random methods (e.g., hashing the source and destination
addresses and port number of the packet header [8], [12]
to ensure that packets from the same TCP/UDP connection
traverse the same path).

Although DEFT does not limit link weights to integer
values, DEFT can also be efficiently implemented with integer

2It is derived from x
1−x

=
Γ(hA→1→B)
Γ(hA→2→B)

= e0

e−(wA→2→B−1) where
wA→2→B is the weight for path A → 2 → B. Although 1 + log x

1−x
could be infinitely large when x reaches 1, a large enough weight assigned
to path A → 2 → B will make the traffic on the path negligible.

weights. More specifically, assume the link weight for link
(u, v) is set to wu,v ∈ [wmin, wmax] as the result of traffic
engineering, we just to need to specify a global parameter, p,
to convert wu,v into an integer weight by rounding p wu,v . Let
n be the number of bits to represent an integer weight in a
routing protocol (e.g., n = 16 in OSPF), p could be specified
as � 2n−1

wmax
�. For consistency, the rule of flow splitting in (4)

can be replaced with (5) below.

Γ(ht
u,v) =

{
e−ht

u,v/p if dt
u > dt

v

0 otherwise
(5)

If n is sufficiently large, the difference between using
integer or non-integer link weights under DEFT is negligible.
For n = 16 and all the scenarios tested in this work, the
difference in terms of total link cost is usually less than 0.05%
(with a single outlier of 0.4%).

Note that, by enabling the use of non-shortest paths, DEFT
may direct some flows on paths with longer propagation delay.
Fortunately, the exponential penalty in DEFT significantly
limits the number of flows that traverse long paths. To tighten
the bound on worst-case delay, the routers could limit the use
of paths beyond a maximum target IGP distance. In general,
most applications are not especially sensitive to delay, as long
as delay stays below a target value. This allows DEFT to
strike an attractive balance in achieving higher throughput than
conventional link-state routing protocols, in exchange for a
small increase in propagation delay for some flows.

D. Key properties

We prove the following key properties for DEFT.
Theorem 1: DEFT can realize any acyclic flow for a

single-destination demand within polynomial time.
Proof: The links without flow can be assigned infinitely large
weights and excluded from further processing. Denote f t

u =
max(u,v)∈E f t

u,v , where f t
u,v is the amount of flow on link

(u, v). The nodes are processed in their reverse topological
order in the acyclic flow where the first node should be the
destination t. When node u is processed, we set the shortest

distance from node u to t, dt
u = min(u,v)∈E(dt

v − log ft
u,v

ft
u

),

and assign the weight of link (u, v) as − log ft
u,v

ft
u

+ dt
u − dt

v .
It is easy to verify that the above link weighting satisfies the
definition of DEFT (4) 3. �

Theorem 2: DEFT can achieve optimal routing with a
single destination within polynomial time.
Proof: The optimal routing for a strictly increasing convex
cost function can be achieved within polynomial time since
all the constraints are linear and the resulting formulation (see
Appendix A) is a convex optimization problem [3]. Obviously,
such optimal flow for single destination is acyclic. From
Theorem 1, such optimal flow can be realized using DEFT.
�

Note that, in contrast, OSPF cannot even realize optimal
single destination flow for some scenarios [2] including the
simple example (Fig. 3) introduced in Sec. II-B.

3All dt
v have been determined since the nodes are processed in the reverse

topological order and dt
t ≡ 0

Theorem 3: DEFT is no worse than OSPF in terms of
minimizing total link cost or the maximum link utilization.
Proof: Given any integer link weighting and the corresponding
flow for OSPF, assuming integer wu,v is chosen as the weight
for link (u, v), we can assign weight a ·wu,v to link (u, v) for
DEFT whereas a is a constant number. Since wu,v is integer,
the gap of shortest distance of a link along a non-shortest path
is at least 1 for OSPF and such gap is at least a for DEFT.
Thus the flow proportion of a link along a non-shortest path
will be less than e−a of the flow proportion of the link along
the shortest path from (4). When a is large enough, e−a is very
close to 0, e.g., e−16 ≈ 10−7. Therefore, the flow along any
non-shortest path is negligible and DEFT has almost the same
flow as OSPF. i.e., DEFT degenerates into OSPF. Therefore,
DEFT is no worse than OSPF. �

In addition, from Theorem 2, DEFT can realize optimal
routing for some scenarios where OSPF cannot.

Theorem 4: For any traffic matrix, DEFT can determine a
unique flow for a given link weighting within polynomial time.
Proof: Given any link weighting W, the splitting of the
flow destined to node t is independent of that of other
destinations. For a particular destination and link weighting
W, we can determine and split the incoming flow of each
node in the decreasing order of its shortest distance to (i.e.,
starting from the farthest node). This procedure completes
within polynomial time. �

III. DEFT: OPTIMIZATION FORMULATION AND SOLUTION

In this section, we address how to determine link weights
for an arbitrary network topology and traffic matrix, i.e.,
the scenario with multiple destinations. It is also the most
challenging part of all link-weight-based traffic engineering
schemes. Previous schemes (e.g., [3], [6], [7]) start from a
set of link weights which determine the flow of traffic, and
then tune the weights of some links to diversify the traffic. In
this work, we develop an optimization formulation where both
link weighting and traffic flows are variables at the same time,
coupled through constraints in the formulation. Therefore,
the solution to the formulation will bring the optimal link
weights at once. The resulting optimization problem could
be solved as fast as OSPF local search and leads to a much
lower congestion cost value. We will present the optimization
formulation under DEFT and propose a two-stage iterative
method to solve the problem.

A. Novel Optimization Formulation

First, note that it is still difficult to directly integrate the
exponentially-weighted flow splitting (4) of DEFT into an
optimization formulation because of its discrete feature, i.e. the
traffic destined to node t can be sent through link (u, v) if and
only if dt

u > dt
v . Instead of introducing some binary variables,

we relax (4) into (6) first, and then by properly setting the
lower bound of all link weights, a constant parameter wmin,
make such a relaxation as tight as we want.

Γ(ht
u,v) = e−ht

u,v (6)

For example, in a flow solution satisfying (6), if there is a link
(u, v) where dt

v ≥ dt
u and f t

u,v > 0, then f t
u,v ≤ f t

u e−ht
u,v =

f t
u e−(dt

v+wu,v−dt
u) ≤ f t

u e−wmin . If wmin is large enough, this
flow portion, which is infeasible to DEFT on link (u, v), could
be neglected.

Therefore, we present the following optimization problem
ORIG (7) using the relaxed rule of flow splitting (i.e., (6)) as
the approximation for the traffic engineering under DEFT.

minimize
∑

(u,v)∈E

Φ(fu,v, cu,v) (7a)

subject to
∑

z:(y,z)∈E

f t
y,z −

∑
x:(x,y)∈E

f t
x,y = D(y, t), ∀y �= t (7b)

fu,v =
∑

t∈V

f t
u,v, (7c)

ht
u,v = dt

v + wu,v − dt
u, (7d)

f t
u,v = f t

u e−ht
u,v , (7e)

f t
u = max(u,v)∈E f t

u,v, (7f)

variables wu,v ≥ wmin, f t
u, dt

u, ht
u,v, f t

u,v, fu,v ≥ 0 (7g)

Constraint (7b) is to ensure flow conservation at an inter-
mediate node y. Constraint (7c) is for flow aggregation on
each link. Constraint (7d) is from the definition of the gap of
shortest distance. Constraints (7e)-(7f) come from (3) and (6).
In addition, (7e) and (7f) also imply that f t

u,v ≤ f t
u and ht

u,v

should be 0 for at least one outgoing link (u, v) of node u
destined to node t, i.e., the link (u, v) is on the shortest path
from node u to node t.

B. Two-Stage Iterative Method

Problem ORIG (7) is non-smooth and non-convex due to the
non-smooth constraint (7f) and the nonlinear equality (7e). No
tractable general-purpose solver can be applied to this problem
directly. We propose a new two-stage iterative method to solve
problem ORIG.

First, we relax constraint (7f) into (8) below

f t
u ≤

∑
(u,v)∈E

f t
u,v, ∀t ∈ V, ∀u ∈ V. (8)

Eqs. (7a)-(7e), (7g) and (8) constitute problem APPROX.
Note that we only need to obtain a “reasonably” accurate

solution (link weighting W) to problem APPROX since the
inaccuracy caused by the relaxation (8) will be compensated
by the successive refinement process. From the W, we can
derive the shortest path tree T(W, t)4 for each destination
t, and all other dependent variables (dt

u, ht
u,v, f t

u, f t
u,v, fu,v)

within DEFT according to Theorem 4. We then use these
values as the initial point (which is also strictly feasible) for a
new problem REFINE, which consists of Eqs. (7a)-(7e), (7g)
and (9) below:

f t
u = f t

u,v,∀t ∈ V ∩ ∀u ∈ V ∩ (u, v) ∈ T(W, t). (9)

With the two-stage iterative method, we are left with two
optimization problems, APPROX and REFINE, both of which

4To keep T(W, t) as a tree, only one downstream node is chosen if a node
can reach the destination through several downstream nodes with the same
distance.

have convex objective functions and twice continuously dif-
ferentiable constraints. To solve the large-scale non-linear
problems APPROX and REFINE (with O(|V ||E|) variables
and constraints), we extend the primal-dual interior point filter
line search algorithm, IPOPT [13], by solving a set of barrier
problems for a decreasing sequence of barrier parameters µ
converging to 0. (See more discussion in Appendix B.)

In summary, in solving problem APPROX, we mainly want
to determine the shortest path tree for each destination (i.e.,
deciding which outgoing link should be chosen on the shortest
path). Then in solving problem REFINE, we can tune the link
weights (and the corresponding flow) with the same shortest
path trees as in APPROX.

Note that the line search approach adopted to solve both
APPROX and REFINE could update all link weights si-
multaneously within one iteration using the general descent
method. In contrast, for the local-search techniques [2], each
iteration of the search evaluates a candidate solution (i.e., an
assignment of the link weights) and sets the stage for exploring
a neighborhood of solutions by changing one, or a few, link
weights. Therefore, our approach requires fewer iterations than
the local-search techniques in general.

C. Pseudocode for Two-Stage DEFT

The pseudocode of the proposed two-stage iterative method
for DEFT is shown in Algorithm 1 and 2. Most instructions
are self-explanatory. Function DEFT FLOW(W) is described
in Theorem 4 to derive a flow from a set of link weights,
W. Given the initial and ending values for barrier param-
eter µ, maximum iteration number, with/without initial link
weighting/flow, function DEFT IPOPT() returns a new set of
link weights as well as a new flow. Note that, as shown
in Algorithm 2, when DEFT IPOPT() is used for problem
APPROX, it returns with the last iteration rather than the
iteration with the best Flowi in terms of the objective value
as in problem REFINE. This is because problem APPROX
has different constraints from problem ORIG and an over-
aggressive method may leave small search freedom for the
successive REFINE problem. Finally, to execute function
Two Stage() as in Algorithm 1, we need to specify initial
and terminative µ values, (µinit ≥ µend approx ≥ µend refine),
and maximum iteration number Iterapprox ≥ Iterrefine. As to
be shown in the later performance evaluation, it is straight-
forward to specify these parameters.

Algorithm 1 Two Stage(µinit, µend approx, µend refine, Iterapprox, Iterrefine)

1: (µ,W)← DEFT IPOPT(µinit, µend approx, Iterapprox, nil)
2: Initial Point← (W,DEFT FLOW(W))
3: (µ,W)←

DEFT IPOPT(µ, µend refine, Iterrefine, Initial Point)
4: return (W,DEFT FLOW(W))

IV. PERFORMANCE EVALUATION

In this section, we present the numerical results of various
schemes under many practical scenarios. We employ the same

Algorithm 2 DEFT IPOPT (µstart, µend, Itermax, Initial Point)
1: if Initial Point �= nil then
2: Initiate the problem with Initial Point /*REFINE*/
3: end if
4: for each iteration i ≤ Itermax with µstart ≥ µ ≥ µend do
5: µi ← current value for µ
6: Wi ← current values for all wu,v

7: Flowi ← DEFT FLOW(Wi)
8: end for
9: if Initial Point = nil then

10: return (µi,Wi) of the last iteration /*APPROX*/
11: else
12: return (µi,Wi) of the iteration with the best Flowi in

terms of objective value /*REFINE*/
13: end if

cost function (1) as in [3]. The primary metric used is the
optimality gap, in terms of total link cost, compared against
the value achieved by optimal routing (determined by the
centralized solution to the linear program in Appendix A
using CPLEX 9.1 [14] via AMPL [15]). The secondary
metric used is the maximum link utilization. We do not
reproduce the performance of some obvious link-weight-
based traffic engineering approaches for OSPF, e.g., UnitOSPF
(setting all link weights to 1), RandomOSPF (choosing the
weights randomly), InvCapOSPF (setting the weight of an
link inversely proportional to its capacity as recommended
by Cisco), L2OSPF (setting the weight proportional to its
physical Euclidean distance) [3], since none of them performs
as well as the state-of-the-art local-search method in [3]. In
addition, since DEFT is never worse than OSPF in terms
of minimizing the maximum link utilization or the sum of
link cost (Theorem 3), we bypass the scenarios where OSPF
can achieve near optimal solution. Instead, we are particularly
interested in those scenarios that OSPF does not perform well.

For fair comparisons, we use the same topology and traffic
matrix as those in [3]. The 2-level hierarchical networks were
generated using GT-ITM, which consists of two kinds of links:
local access links with 200-unit capacity and long distance link
with 1000-unit capacity. And in the random topologies, the
probability of having an link between two nodes is a constant
parameter and all link capacities are 1000 units.

Although AT&T’s proprietary code for local search used
in [3] is not publicly available, there is an open-source soft-
ware project with IGP weight optimization, TOTEM 1.1 [16].
It follows the same approach as [3], and has similar quality
of the results. It is slightly slower due to the lack of the
implementation of dynamic Dijkstra algorithm. We use the
same parameter setting for local search as in [2], [3] where
link weight is restricted as an integer from 1 to 20, initial link
weights are chosen randomly, and the best result is collected
after 5000 iterations.

To implement the proposed two-stage iterative method for
DEFT as shown in Algorithms 1 and 2, we modify another
open source software, IPOPT 3.1 [17], and adjust its AMPL

interface to integrate it into our test environment. We choose
µinit = 0.1 for most cases except for µinit = 10 for the 100-
node network with heavy traffic load (the last three points
of DEFT shown in Fig. 8). We also choose µend approx =
10−4, µend refine = 10−9, and maximum iteration number
Iterapprox = 1000, Iterrefine = 400. The code terminates earlier
if the optimality gap has been less than 0.1%.

A. Optimality Gap and Max Link Utilization in Minimizing
Total Link Cost

The results for a 2-level topology with 50 nodes and 212
links with seven different traffic matrices are shown in Table II.
The results are also depicted graphically in Fig. 4. Besides
the two metrics (maximum link utilization and optimality gap
in terms of total link cost), we also show the average link
utilization under optimal routing as an indication of network
load. From the results, we can observe that the gap between
OSPF and optimal routing can be very significant (up to
222.8%) for a practical network scenario, even when the
average link utilization is not very high (≤ 27%). In contrast,
DEFT can achieve almost the same performance as the optimal
routing in terms of both total link cost and maximum link
utilization.

TABLE II

Results of 2-level topology with 50 nodes and 212 links

Total Demand 1700 2000 2200 2500 2800 3100 3400
Ave Link Load-OPT 0.128 0.148 0.17 0.192 0.216 0.242 0.267
Max Link Load-OPT 0.667 0.667 0.667 0.9 0.9 0.9 0.9
Opt. Gap-OSPF 2.8% 4.4% 7.2% 9.4% 20.7% 64.2% 222.8%
Opt. Gap-DEFT 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Similar observation hold for other scenarios as shown in
Fig. 4-8. Without exception, the curves of the DEFT scheme
(the horizontal lines coinciding with x-axes) almost completely
match those of optimal routing measured by total link cost and
maximum link utilization. Note that, within those figures, the
maximum optimality gap of OSPF is as high as 252% in Fig. 7
and that of DEFT is only up to 1.5% in Fig. 8. In addition,
DEFT reduces the maximum link utilization compared to
OSPF on all tests, and substantially on some tests. However,
maximum link utilization is not a metric as accurate as total
link cost. For example, in Fig. 4, when the traffic demands
uniformly increase by 1/3, the maximum link utilization under
optimal routing remains at 90%.

B. Convergence Behavior

Fig. 9 shows the optimality gap achieved by local search
OSPF and DEFT, as well as the value of the barrier param-
eter µ within the first 500 iterations for a typical scenario
(corresponding to the points in Fig. 4 with the largest traffic
demand). For OSPF local search, the optimality gap is still
386% after 500 iterations, and it takes another 4500 iterations
to reduce the optimality gap to 223% (as shown at Fig. 4).
In contrast, DEFT can reduce the gap to 13.1% at the end
of the APPROX procedure (after 359 iterations). Resuming
the searching with µ = 10−4, the REFINE procedure further
reduces the gap to 0.1% with only additional 108 iterations.

1500 2000 2500 3000 3500
0

50

100

150

200

250

Sum of Demands

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
DEFT

1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sum of Demands

Li
nk

 U
til

iz
at

io
n

OSPF_MAX
DEFT_MAX
OPT_MAX
OPT_AVE

Fig. 4. Comparison of DEFT and Local Search OSPF in terms of optimality
gap and maximum link utilization for a 2-level topology with 50 nodes and
212 links

2000 3000 4000 5000
0

5

10

15

20

25

30

35

Sum of Demands

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
DEFT

2000 3000 4000 5000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sum of Demands

Li
nk

 U
til

iz
at

io
n

OSPF_MAX
DEFT_MAX
OPT_MAX
OPT_AVE

Fig. 5. 2-level topology with 50 nodes and 148 links

2 2.5 3 3.5 4 4.5

x 10
4

0

5

10

15

20

25

30

35

40

45

Sum of Demands

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
DEFT

2 2.5 3 3.5 4 4.5

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sum of Demands

Li
nk

 U
til

iz
at

io
n

OSPF_MAX
DEFT_MAX
OPT_MAX
OPT_AVE

Fig. 6. Random topology with 50 nodes and 228 links

2 3 4 5 6

x 10
4

0

50

100

150

200

250

300

Sum of Demands

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
DEFT

2 3 4 5 6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sum of Demands

Li
nk

 U
til

iz
at

io
n

OSPF_MAX
DEFT_MAX
OPT_MAX
OPT_AVE

Fig. 7. Random topology with 50 nodes and 245 links

3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Sum of Demands

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
DEFT

3 4 5 6 7

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Sum of Demands
Li

nk
 U

til
iz

at
io

n

OSPF_MAX
DEFT_MAX
OPT_MAX
OPT_AVE

Fig. 8. Random topology with 100 nodes and 403 links

0 50 100 150 200 250 300 350 400 450 500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

GAP−OSPF

GAP−DEFT−APPROX

GAP−DEFT−REFINE

µ(DEFT)

Iteration

O
pt

im
al

ity
 G

ap
 /

B
ar

rie
r

P
ar

am
et

er
 (µ

)

Fig. 9. Evolution of barrier parameter µ in DEFT and comparison of the
drop in optimality gap between Local Search OSPF and Two-Stage DEFT in
a 2-level topology with 50 nodes and 212 links

Therefore, DEFT converges much faster than local-search
method and exhibits an important feature desirable in all
optimization algorithms: the ability to provide multiplicative
reduction in optimality gap while approaching toward the
optimum. This is in part because we incorporate the relation-
ship between link weighting and the flow of traffic into the
optimization formulation itself from the beginning.

C. Running Space and Time Requirement

The tests for DEFT and local search OSPF were performed
under the time-sharing servers of Redhat Enterprise Linux
4 with Intel Pentium IV processors at 2.8∼3.2 Ghz. The
local-search code for OSPF is integrated with TOTEM, which
consumes about 700MB memory for all the tested scenarios,
and the memory occupied by DEFT varies from 175MB to
2077MB depending on the network size. Note that both local-
search code [16] used in OSPF and IPOPT code used in DEFT
available to us can be further optimized for speed. Moreover,
the running time is also sensitive to traffic matrix since a
solution with acceptable optimality can be reached very fast
for light traffic matrices. Therefore, we just show their average
running time per iteration for qualitative reference.

Table III shows the running time for different networks.
We observe that the running time per iteration of DEFT is
comparable with local search OSPF but the iteration number

required for DEFT (at most 1400 iterations and as low as 271
iterations in our tests) is much less than that for local search
OSPF (5000 iterations). Therefore, DEFT is very promising
to achieve near optimal traffic engineering within a reasonable
time, even for large networks.

TABLE III

Average running time per iteration and number of iterations required by

DEFT and local search OSPF to attain the performance in Fig. 4-8

Time per Iteration (s) Iteration
Net. Type Node Link DEFT OSPF DEFT OSPF
2-level 50 148 0.7∼3.5 6.0∼13.9 271∼825 5000
2-level 50 212 1.0∼4.8 6.4∼17.4 308∼1020 5000
Random 50 228 3.3∼5.0 3.2∼9.0 400∼1400 5000
Random 50 245 6.0∼12.3 6.1∼14.1 620∼1400 5000
Random 100 403 59∼126 39.5∼105.1 479∼994 5000

V. CONCLUSION AND FUTURE WORK

Network operators today try to alleviate congestion in their
own network by tuning the intra-domain routing parameters.
Unfortunately, traffic engineering under OSPF or IS-IS to
avoid network-wide congestion is computationally intractable,
forcing the use of local-search techniques. We propose a
new routing scheme called DEFT: Distributed Exponentially-
weighted Flow SpliTting. The success of DEFT can be at-
tributed to two additional features. First, in terms of protocol
adjustment, DEFT can put traffic on non-shortest paths, with
an exponential penalty on longer paths. Second, in terms of
computational method, DEFT solves the resulting optimization
problem by integrating link weights and the corresponding
traffic distribution together in the formulation. This formula-
tion leads to a much more efficient way of tuning link weights
than the existing local-search heuristic for OSPF. Collectively,
these features enable DEFT to substantially reduce optimality
gap to near-zero with a running time similar to or faster than
OSPF local search.

DEFT is readily implementable as an extension to existing
IGPs. It is provably better than OSPF in minimizing the
sum of link cost. DEFT retains the simplicity of having
routers compute paths based on configurable link weights,
while approaching the performance of more complex routing
protocols that can split traffic arbitrarily over any paths.

In this paper, we only address the link weighting under
DEFT for a given traffic matrix. The next challenge would
be to explore robust optimization under DEFT, optimizing to
select a single weight setting that works for a range of traffic
matrices and/or a range of link/node failure scenarios.

In this case of “Design for Optimizability”, a simple change
to link-state-based routing protocol leads to a much more
solvable optimization problem, which, together with the com-
putational method of two-stage relaxation, leads to DEFT.

ACKNOWLEDGMENT

This research is in part supported by the National Science
Foundation (NSF) under the contracts CNS-0519880 and
CCF-0635034, and Cisco URP grant GH072605. We would
like to thank Bernard Fortz and Hakan Umit for providing

the code for local search OSPF and the network topology,
which are used in our simulation study for a fair comparison
between DEFT and OSPF. We also appreciate the helpful
discussions on large-scale non-linear optimization with Sven
Leyffer, Andreas Wäechter, Gabriel Lopez Calva, Richard
Waltz, and Robert J. Vanderbei. Finally, we acknowledge the
valuable comments from Jiayue He.

APPENDIX

A. Integer Linear Program for OSPF and Linear Program for
Optimal Routing

min
∑

(u,v)∈E

Φ(fu,v, cu,v) (10a)

s.t.
∑

z:(y,z)∈E

f t
y,z −

∑
x:(x,y)∈E

f t
x,y = D(y, t), ∀y �= t (10b)

fu,v =
∑
t∈V

f t
u,v, (10c)

ht
u,v = dt

v + wu,v − dt
u, (10d)

f t
u,v ≤ f t

u, (10e)

ht
u,v ≤ M(1 − δt

u,v), (10f)

f t
u − f t

u,v ≤ M(1 − δt
u,v), (10g)

1 − δt
u,v ≤ Mht

u,v, (10h)

f t
u,v ≤ Mδt

u,v, (10i)

vars. wu,v, f t
u, dt

u, ht
u,v, f t

u,v, fu,v ≥ 0, (10j)

δt
u,v ∈ {0, 1}. (10k)

The integer linear program formulation to search for the best
link weights under OSPF is shown at (10). Eqs. (10a)-(10d) are
copied from (7). M is a very large constant positive number
to deal with binary variables and δt

u,v is a binary variable to
represent if link (u, v) is on the shortest path from u to t.
Thus, if δt

u,v = 1, then ht
u,v = 0 due to (10f) and f t

u,v = f t
u

due to (10e) and (10g) while if ht
u,v = 0, then δt

u,v = 1 due
to (10h). On the contrary, if δt

u,v = 0 then f t
u,v = 0 due

to (10i). Therefore, formulation (10) realizes the equal flow
splitting across multiple shortest paths under OSPF. Note that,
we do not limit the link weights wu,v to integer values to
speed up the searching procedure. The resulting non-integer
path lengths could be treated as equal if they differ by less
than a specified tolerance as in [8].

In addition, the linear program for optimal routing consists
of (10a)-(10c).

B. IPOPT: Primal-dual Interior Point Filter Line Search

The two optimization problems, APPROX and REFINE,
discussed in Sec. III can be transformed into a general for-
mulation (11) below.

min f(x) (11a)

s.t. c(x) = 0 (11b)

vars. x
 0 (11c)

where both f(x) and c(x) should be twice continuously
differentiable. The method in [13] calculates solutions for a

set of barrier problems (12) for a decreasing sequence (with
a superlinear rate) of barrier parameters µ converging to 0.

min ϕµ(x) � f(x)− µ
∑

i
ln(xi) (12a)

s.t. c(x) = 0 (12b)

The primal-dual equations are shown at (13) below

∇f(x) +∇c(x)λ− z = 0 (13a)

c(x) = 0 (13b)

diag(x)diag(z)e− µe = 0 (13c)

where e is the vector of all ones, λ and z are the Lagrangian
multipliers for the equality constraints (11b) and the bound
constraints (11c). The method in [13] computes an approxima-
tion solution to the barrier problem (12) for a barrier parameter
µ using a damped Newton’s method, and uses the solution as
the initial point for the next barrier problem with a smaller µ
value. Further description can be found in [13].

REFERENCES

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview
and Principles of Internet Traffic Engineering,” IETF, RFC 3272, May
2002.

[2] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in INFOCOM’00, Tel Aviv, Israel, 2000, pp. 519–528.

[3] ——, “Increasing Internet capacity using local search,” Computational
Optimization and Applications, vol. 29, no. 1, pp. 13–48, 2004.

[4] A. Feldmann, A. G. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True, “Deriving traffic demands for operational IP networks:
methodology and experience.” IEEE/ACM Transactions on Networking,
vol. 9, no. 3, pp. 265–280, 2001.

[5] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Communication Magazine, vol. 40, no. 10,
pp. 118–124, Oct. 2002.

[6] M. Ericsson, M. Resende, and P. Pardalos, “A genetic algorithm for
the weight setting problem in OSPF routing,” J. of Combinatorial
Optimization, vol. 6, pp. 299–333, 2002.

[7] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup, “A memetic
algorithm for OSPF routing,” in Proceedings of the 6th INFORMS
Telecom, 2002, pp. 187–188.

[8] A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, 2005.

[9] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Communication Magazine, vol. 37, no. 12, pp. 42–47, Dec. 1999.

[10] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in INFOCOM’01, Anchorage, Alaska, Apr. 2001.

[11] J. H. Fong, A. C. Gilbert, S. Kannan, and M. J. Strauss, “Better
alternatives to OSPF routing,” Algorithmica, vol. 43, no. 1-2, pp. 113–
131, 2005.

[12] Z. Cao, Z. Wang, and E. W. Zegura, “Performance of hashing-based
schemes for Internet load balancing,” in INFOCOM’00, Tel Aviv, Israel,
2000, pp. 332–341.

[13] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, 106(1), pp. 25–57, 2006.

[14] ILOG CPLEX, http://www.ilog.com/products/cplex/.
[15] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling

Language for Mathematical Programming. Danvers, MA, USA: Boyd
& Fraser Publishing Co., 1993.

[16] TOTEM, http://totem.info.ucl.ac.be.
[17] IPOPT, http://projects.coin-or.org/Ipopt.

