
DaVinci: Dynamically Adaptive Virtual Networks
for a Customized Internet

Jiayue He, Rui Zhang-Shen, Ying Li, Cheng-Yen Lee, Jennifer Rexford, Mung Chiang
Princeton University

{jhe, rz, yingli, chenglee, jrex, chiangm}@princeton.edu

ABSTRACT
Running multiple virtual networks, customized for different
performance objectives, is a promising way to support di-
verse applications over a shared substrate. Despite being
simple, a static division of resources between virtual net-
works can be highly inefficient, while dynamic resource al-
location runs the risk of instability. This paper uses opti-
mization theory to show that adaptive resource allocation
can be stable and can maximize the aggregate performance
across the virtual networks. In the DaVinci architecture,
each substrate link periodically reassigns bandwidth shares
between its virtual links; while at a smaller timescale, each
virtual network runs a distributed protocol that maximizes
its own performance objective independently. Numerical
experiments with a mix of delay-sensitive and throughput-
sensitive traffic show that the bandwidth shares converge
quickly to the optimal values. We demonstrate that running
several custom protocols in parallel and allocating resource
adaptively can be more efficient, more flexible, and easier to
manage than a compromise “one-size-fits-all” design.

1. INTRODUCTION
The Internet was designed to provide the same simple

packet-delivery service for all applications. In practice,
different applications can have different performance
objectives; for example, voice-over-IP and gaming traf-
fic perform better over low-delay paths, whereas large
file transfers perform better over high-bandwidth paths.

1.1 Case for Adaptive Network Virtualization
Researchers have proposed that future networks can

run multiple virtual networks, each customized for a
particular traffic class, with the substrate providing sep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

arate resources for each virtual network [1, 2, 3]. To-
day, network virtualization is moving from fantasy to
reality, as major router vendors start to support both
router virtualization (to run multiple virtual routers in
parallel on a single router) [4, 5] and router programma-
bility (to run customized protocols) [6, 7]. These fea-
tures can start being deployed within a single institu-
tion, such as an enterprise network, a Virtual Private
Network (VPNs), or an Internet Service Provider (ISP),
and ultimately across multiple institutions [3].

Despite having great potential for supporting cus-
tomized protocols, network virtualization faces a fun-
damental challenge of efficiently sharing the underlying
network resources. At one extreme, each virtual net-
work can be assigned a static share of the resources,
and each substrate link can ensure isolation by rate
limiting the traffic belonging to each virtual link that
traverses it. Static resource allocation is simple, but
inefficient. For example, a congested virtual network
would have to drop packets, even if other virtual net-
works are idle. As another example, suppose a virtual
network optimized for small end-to-end delay became
congested; then, users might ironically experience lower
end-to-end delay by using another virtual network op-
timized for different performance goals.

Static allocation of resources across the virtual net-
works could easily cause network virtualization to per-
form worse than existing solutions, such as overlays.
At the other extreme, unconstrained sharing of the re-
sources can lead to instability. Aided by optimization
theory, we show that adaptive network virtualization,
with resource allocation responding to the demands faced
by the virtual networks, can lead to a stable solution
maximizing the aggregate utility of all the virtual net-
works. In our architecture, resource shares are periodi-
cally reassigned between virtual networks; between re-
assignments of the resource shares, each virtual network
makes efficient use of its allocated share of the resources
using a distributed protocol. The small-timescale iso-
lation between virtual networks ensures the stability of
the overall system, while the longer-timescale adapta-
tion of resource shares ensures efficiency.

1.2 Leveraging Technology Trends
Adaptive network virtualization leverages and extends

several trends in networking research, from the long his-
tory of research on Quality-of-Service (QoS) techniques,
to recent work on overlay networks and the emerging in-
terest in network virtualization.

While traditional QoS techniques aim to provide per-
formance guarantees, adaptive network virtualization
maximizes the aggregate performance objective across
all traffic classes. Our approach is very different from
the Intserv [8] architecture and QoS-routing protocols [9,
10], which offer per-flow performance guarantees. Adap-
tive network virtualization is more similar to DiffServ [11]
and Type-of-Service (ToS) routing [12], which manage
resources at the granularity of traffic classes. There
are also key differences between adaptive virtualization
and DiffServ. In DiffServ, routers schedule among the
queues based on static priority or fixed weights. In
contrast, adaptive network virtualization assigns the
scheduling weights dynamically. Extensions to Diffserv
provide separate forwarding tables for each traffic class,
in the form of “multi-topology routing” [13]. Recent re-
search has shown that running two instances of OSPF,
with link weights tuned to different application perfor-
mance objectives, offers significant performance bene-
fits over a single protocol instance [14]. This paper takes
these ideas one step further by allowing each virtual net-
work to run customized protocols.

Overlay networks commonly consist of end hosts or
middleboxes that communicate over tunnels that span
the underlying Internet. Similar to adaptive network
virtualization, overlay networks can run customized rout-
ing or congestion-control protocols [15, 16, 17, 18]. In
addition, an overlay can perform its own admission con-
trol and packet scheduling to manage its own traffic [19].
Overlays partially shift the responsibility to select routes
and forward packets to the end hosts. Without sup-
port from the underlying network, however, overlays
rely on frequent measurements that add significant sys-
tem overhead [15], and multiple overlay networks can
interact in harmful ways [20]. This begs the question
of whether the underlying network should support mul-
tiple packet-delivery services. This paper takes these
ideas to their logical conclusion by running the cus-
tomized protocols inside the network and providing them
separate shares of the underlying resources.

Adaptive network virtualization leverages a variety
of virtualization technologies [21, 4, 5, 6, 7] to build
customized virtual networks. There are two broad us-
ages of virtual networks: experimental research facil-
ities and platforms for commercial services. The re-
search community has proposed to build experimental
testbeds that run multiple virtual networks in paral-
lel [22, 23]. To ensure that experiments are repeatable,
static resource partitioning is the natural choice for ex-

perimental testbeds. Commercial institutions, on the
other hand, are interested in maximizing revenue. In
this scenario, efficient usage of the underlying resources
becomes more important, thus this paper proposes to
dynamically adapt the resources shares. A few position
papers have advocated that commercial institutions run
customized protocols [1, 2, 3], though presently no com-
mercial institution has deployed such a system. In ad-
dition, previous research focused on high-level issues
such as economic incentive, while this paper presents an
architecture for efficiently managing resources between
multiple virtual networks.

1.3 The DaVinci Architecture
Adaptive network virtualization is a rich and chal-

lenging research problem. As a first step, this paper
focuses on how a single substrate network can support
multiple traffic classes, each with a different perfor-
mance objective, using network virtualization. In addi-
tion, each virtual network is assumed to run customized
packet-delivery protocols that optimize a performance
objective, formulated as a convex function of network
parameters. We focus on how the virtual networks share
link bandwidth, as opposed to (say) CPU resources, be-
cause the sharing of link bandwidth has the most direct
impact on packet-delivery services. Since all virtual net-
works are run by the same institution, we assume that
each virtual network does not maliciously try to acquire
more resources (e.g., by injecting bogus traffic) to harm
the performance of the other virtual networks.

This paper shows a single institution can maximize
aggregate performance across multiple traffic classes if:

• Each virtual network runs customized protocols
that implicitly optimize a convex performance ob-
jective. Fortunately, these distributed protocols
can often be derived by leveraging optimization
theory [24]. Each protocol can be designed and
run independently of other virtual networks.

• At each link, the substrate periodically reassigns
bandwidth shares between virtual networks based
on local information, including current congestion
levels and the performance objectives of the virtual
networks. On a smaller timescale, a traffic shaper
enforces the bandwidth allocations for each virtual
link.

Under this combined system, optimization theory shows
that the bandwidth shares converge to optimal resource
allocation among the traffic classes. We refer to the
combined system as DaVinci—Dynamically Adaptive
Virtual Networks for a Customized Internet.

The design and evaluation of DaVinci leverages, and
extends, previous research on using optimization theory
to derive new network protocols (see survey paper [24]).

Previous work shows how to use optimization decom-
position to design protocols that implicitly maximize a
performance objective, such as maximizing throughput
[25] or minimizing delay [26]. In this paper, we show
that multiple such protocols can share an infrastructure
with limited resources and collectively maximize aggre-
gate performance. This result, itself derived using op-
timization decomposition, provides further motivation
for designing customized protocols based on optimiza-
tion theory.

The rest of the paper is organized as follows. Sec-
tion 2 discusses why multipath traffic management, cus-
tomized protocols, and separate resources are all impor-
tant to DaVinci. Section 3 describes how the DaVinci
architecture ties these features together. Section 4 mod-
els the DaVinci architecture, including the bandwidth-
allocation algorithm and the proof that the overall sys-
tem converges to maximize aggregate performance. Nu-
merical experiments on the adaptation of bandwidth
shares are presented in Section 5 for delay-sensitive and
throughput-sensitive traffic classes. Finally, Section 6
concludes and discusses future work.

2. DAVINCI DESIGN DECISIONS
Traffic management controls how much traffic tra-

verses each path in a network, and is achieved by con-
gestion control, routing protocols, and traffic engineer-
ing in today’s Internet. In DaVinci, each virtual net-
work runs its own traffic-management protocols. DaVinci
has support for flexible splitting of traffic over multiple
paths, custom traffic-management protocols in each vir-
tual network, and separate resources to provide isola-
tion between traffic classes. Multipath traffic manage-
ment and customized protocols allow each traffic class
to efficiently utilize its bandwidth, while separate re-
sources provide isolation between the traffic classes.

Each subsection motivates DaVinci’s design decisions
through simple examples using the two-link, two-node
topology in Figure 1. For our examples, we consider two
different traffic classes: inelastic delay-sensitive traffic
and elastic throughput-sensitive traffic. Elastic traffic
adapts sending rate based on the available bandwidth,
while inelastic traffic has a fixed amount of demand
independent of the available bandwidth. We assume
the delay-sensitive traffic is trying to minimize average
user delay, and it has a fixed amount of demand. The
links in Figure 1 have disparate delays and capacities,
so that the delay-sensitive traffic clearly prefers the low-
propagation-delay link, while the throughput-sensitive
traffic clearly prefers the high-bandwidth link.

2.1 Multiple Paths
In the Internet today, routing protocols select a sin-

gle path between two end hosts. In contrast, DaVinci

Figure 1: Topology with two paths between a

pair of nodes.

advocates traffic to be forwarded over multiple paths
between two end hosts.

To illustrate the importance of forwarding over mul-
tiple paths, we contrast multipath routing with single-
path routing on the topology in Figure 1. First, we con-
sider the case of a network carrying only throughput-
sensitive traffic. Since the throughput-sensitive traffic is
elastic, under single-path routing, the high-bandwidth
link will be selected and 1000Mbps of traffic will be
carried. When multipath routing is available, however,
both paths can be used simultaneously and 1100Mbps
of traffic can be carried.

Second, we consider the case of a network carrying
only delay-sensitive traffic. For this example, we assume
that the queuing delay is low relative to propagation
delay when the link load is below capacity. When the
delay-sensitive traffic has less than 100 Mbps of traffic,
all traffic is routed on the low-delay path for both single-
path and multipath routing. When the delay-sensitive
traffic has between 100 Mbps and 1000 Mbps of traffic,
all traffic is routed on the high-delay path for single-
path routing. If multipath routing is available, then
the delay-sensitive traffic would route 100 Mbps on the
low-delay path, and thus experience lower average delay.
When the delay-sensitive traffic has between 1000 Mbps
and 1100 Mbps of traffic, single-path routing can only
support a fraction of the traffic while multipath routing
can support all.

As shown with the simple example, multipath traffic
management leads to better performance for both traffic
classes than single-path traffic management. Moving to
multipath routing requires both control-plane and date-
plane support. Fortunately, the key ingredients such as
path diversity, computing splitting percentages, and di-
recting packets onto multiple paths in specified ratios
already exist [27]. However, there still remains the chal-
lenge of balancing the tradeoff between efficiency (i.e.,
using short paths) and avoiding shared bottlenecks (i.e.,
using disjoint paths). For efficiency, a network can se-
lect the shortest m paths between two nodes, but these
paths are likely to share many links. To avoid shared
bottlenecks, a network can choose disjoint paths, but

this can easily lead to long paths which consume extra
resources. See [28] for a discussion of the tradeoff.

2.2 Customized Protocols
Today’s Internet runs the same traffic-management

protocols for all traffic. In this paper, we advocate
running customized traffic-management protocols for
each traffic class. Each traffic class (possibly includ-
ing multiple applications) has its own performance ob-
jective. For example, the throughput-sensitive traffic’s
performance objective can be to maximize throughput.
On the other hand, the delay-sensitive traffic’s perfor-
mance objective can be to minimize the average delay.
Since end-to-end delay is the sum of propagation delay
and queueing delay over a path, delay-sensitive traffic
prefers low propagation-delay paths and small queues.
In contrast, throughput-sensitive traffic prefers high-
bandwidth paths and tends to drive to fuller queues.

To understand the importance of customized proto-
cols, we consider running protocols optimized for dif-
ferent performance objectives on the two-node topol-
ogy in Figure 1. For simplicity, we assume single-path
routing. First, we consider the case of a network carry-
ing only throughput-sensitive traffic. When the traffic-
management protocol is optimized to maximize through-
put, 1000 Mbps can be carried. In contrast, only 100
Mbps will be carried when the traffic-management pro-
tocol is optimized to minimize delay. Second, we con-
sider the case of a network carrying less than 100 Mbps
of delay-sensitive traffic. When the traffic-management
protocol is optimized to minimize delay, the low-delay
path is selected. In contrast, the high-delay path will
be selected when the traffic-management protocol is op-
timized to maximize throughput.

Our simple example demonstrates that each traffic
class benefits from having traffic-management protocols
customized to its own performance objective. Today,
routers already support “multi-topology routing” [13],
where routers can run multiple instances of the same
routing protocol with configurable parameters tuned to
each traffic class. Further protocol customization is pos-
sible with router programmability: a flexible and exten-
sible way to implement a variety of distributed traffic-
management protocols. Though not yet a commercial
reality, vendors have announced plans to support pro-
grammable routers [6, 7].

2.3 Separate Resources
When multiple traffic classes coexist over the same

network, each traffic class could control a subset of re-
sources at each node and link, as shown in Figure 2. At
each node, each traffic class has a portion of the under-
lying node resources (such as CPU and memory). At
each link, each traffic class can consume a portion of
the bandwidth of each link. Packets arriving at an edge

router are first classified to a particular traffic class,
then directed to the appropriate outgoing link and the
queue associated with that traffic class.

Figure 2: The shaded regions identify the por-

tion of node and link resources allocated to one

traffic class. The remaining resources are allo-

cated to the second traffic class.

To show customized protocols alone are insufficient,
we consider a system with a single queue, but support-
ing customized traffic-management protocols. Without
separate resources, the throughput-sensitive traffic can
consume all the bandwidth in the network, thus not
leaving enough room for the delay-sensitive traffic. In
the topology in Figure 1, even if there is sufficient space
for delay-sensitive traffic across the two links, the delay-
sensitive traffic might not get its preferred path. Sim-
ilarly, separate resources alone are insufficient, as the
previous subsection illustrated, a protocol optimized to
maximize throughput will not necessarily minimize de-
lay.

At each link, one possible choice is to use a work-
conserving scheduler, where it would transmit extra pack-
ets for one traffic class, if the other traffic class has an
empty queue. Consider the case where two flows (be-
longing to traffic class A and B respectively) share a
link in Figure 2. If link 1 is idle, then a work-conserving
scheduler would transmit additional packets for flow A.
This would cause additional congestion on link 2, and
incorrectly signal that the traffic class A needs more re-
sources on link 2, leading to resources taken away from
traffic class B. Consequently, the distribution of re-
sources between the two traffic classes may be ineffi-
cient. The same problem would not arise with a non-
work-conserving scheduler, which does not take advan-
tage of an empty queue.

As shown by the simple examples, the elastic throughput-
sensitive traffic can easily overwhelm the inelastic delay-
sensitive traffic without the separation of resources. With
the separation of resources, the delay-sensitive traffic is
more likely to be routed on its preferred path(s). Tech-
nologies for packet classification, separate queues, and
link scheduling have existed for more than ten years

[8, 11, 12]. More recently, separate link resources and
forwarding tables are used to establish Virtual Private
Networks (VPNs) [21]. In addition, router vendors have
started supporting virtualization to subdivide node re-
sources such as CPU and memory [4, 5].

3. DAVINCI ARCHITECTURE
In this section, we introduce the basic building blocks

of DaVinci and how they work together. In DaVinci,
each traffic class is carried on its own virtual network
with customized traffic-management protocols. Virtual
networks are constructed over the physical network (which
we refer to as the substrate network) by first subdi-
viding each physical node and each physical link into
multiple virtual nodes and virtual links. The substrate
runs schedulers that arbitrate access to the shared node
and link resources, to give each virtual network the illu-
sion that it runs on a dedicated physical infrastructure.
Table 1 summarizes the key notation.

Symbol Meaning

Cl Capacity of substrate link l.

y(k) Bandwidth assigned to VN k.
Computed by substrate network.

z(k) Path rates for VN k.

λ(k) Indication of VN k’s satisfaction.
Computed by substrate network.
Used by substrate to compute y(k)

Table 1: Summary of key notation. VN repre-

sents Virtual Network.

3.1 Packet Classification and Forwarding
All data packets are handled by the substrate at the

behest of the virtual networks. At an edge node of the
substrate, data packets are directed to the appropriate
virtual network using packet classification or some other
form of “user opt-in” technique. Users may connect to a
virtual network in a variety of ways, such as establishing
a tunnel to a virtual node, configuring a Web browser
to use a virtual node as a proxy, or DNS redirection [29,
30, 31].

Within the same virtual network, each edge virtual
node may have multiple (virtual) paths for reaching an-
other virtual node, as shown in Figure 3. To distin-
guish between multiple paths within the same virtual
network, edge virtual nodes encapsulate the packets
with labels. Virtual nodes can then populate label ta-
bles based on the paths they computed. A packet can
then be directed onto a specific path using the label ta-
bles [32]. If the traffic-management protocols are sen-
sitive to out-of-order packets (like TCP is today), then
packets belonging to the same flow can be directed onto

Figure 3: There are three paths between two

virtual nodes 9 and 6. The superscript denotes

the nodal pair number and the subscript enu-

merates the paths.

the same path based on packet header information using
hashing.1

3.2 Node and Link Computations
Consider an instance of DaVinci with N virtual net-

works, denoted by superscript (k), where k = 1, 2, ..., N .
Each virtual network consists of virtual nodes that each
have a share of the CPU and memory of the correspond-
ing substrate nodes for running customized distributed
traffic-management protocols. In particular, each vir-
tual node of virtual network (k) (residing at substrate

node i) computes a path rate z
(k)i
j that determines the

amount of traffic directed over path j, based on the

allocated bandwidth y
(k)
l .

Figure 4: Each substrate link computes band-

width shares for the virtual links that traverse

it.

Substrate link l monitors the load on each virtual link
that traverse it to compute λ

(k)
l : an indication of virtual

1When splitting ratios change with time, it is better to use
consistent hashing [33], where packets belonging to the same
flow are consistently mapped to the same path, while new
flows are placed on a path to best approximate the splitting
ratios [34].

network k’s satisfaction with its assigned bandwidth on

link l. As shown in Figure 4, the substrate feeds λ
(k)
l

to a link coordinator. The link coordinator periodically
computes the bandwidth shares yl, taking care to en-

sure that
∑

k y
(k)
l = Cl, where Cl is the capacity of the

substrate link. At a smaller timescale, the substrate
has a scheduler for each virtual link that serves incom-
ing data packets based on the bandwidth share y

(k)
l .

The main building blocks of DaVinci—router virtual-
ization, packet encapsulation, and non-work-conserving
scheduler—are readily available today. The main nov-
elty of DaVinci is (i) the way these components are
combined and (ii) how the link coordinator adapts the
bandwidth shares to ensure that the system maximizes
aggregate performance. These aspects of DaVinci de-
rive directly from using optimization theory to model
network virtualization, as illustrated in the next sec-
tion.

4. MODELING AND ANALYSIS OF DAVINCI
In this section, we first present an optimization prob-

lem that represents the performance objective and con-
straints of each virtual network, and then through the
technique of primal decomposition derive the bandwidth-
share adaptation performed by the substrate. Then we
prove stability and optimality of DaVinci under suffi-
cient conditions. We conclude the section with a dis-
cussion of DaVinci’s benefits and limitations.

4.1 Virtual Networks: Customized Protocols
Optimization theory has been applied to derive a

large variety of distributed network protocols as sur-
veyed in [24]. In particular, the many variants of TCP
congestion control (running distributedly on end hosts)
can be reverse-engineered as implicitly solving an op-
timization problem. Each optimization problem has a
performance objective, which we denote by U (k)(·) for
virtual network k. The shape of the performance objec-
tive function depends on the particular traffic class. As
one example, delay-sensitive traffic may wish to choose
paths with low propagation-delay and keep the queues
small to reduce queuing delay. As another example,
throughput-sensitive traffic may wish to maximize ag-
gregate user utility, as a function of rate. Different util-
ity functions correspond to different degrees of elastic-
ity, user satisfaction, or fairness [35].

The objective function U (k)(·) may depend on both
path rates z(k) and virtual link capacity y(k). The
traffic-management protocols running in each virtual
network can be viewed as solving the following opti-
mization problem:

maximize U (k)(z(k),y(k))

subject to H(k)z(k) � y(k),
g(k)(z(k)) � 0,
z(k) � 0,

variables z(k)

(1)

We let z
(k)i
j to take on any non-negative value, which

implicitly assumes there is flexible splitting between
the multiple paths. The objective is subject to a ca-
pacity constraint and possibly other convex constraints
g(k)(z(k)). The capacity constraint requires the link
load to be no more than the allocated bandwidth. To
compute the link load, we require a mapping between
links and paths:

H
(k)i
lj =

1, if path j of source-destination pair i
in virtual network k uses link l

0, otherwise.

Then H(k)z(k) are the virtual link loads, which we also
denote r(k).

Given its own bandwidth shares, each virtual network
can run distributed protocol(s) to maximize its own per-
formance objective. A distributed protocol that implic-
itly maximizes (1) can be derived through optimization
decomposition. Decomposition is the process of break-
ing a single optimization problem into smaller problems
that are solved at virtual nodes and virtual links respec-
tively, possibly with message passing between them.
While the details of the distributed traffic-management
protocol depends on the objective function of (1), the
protocols all have a similar overall structure. The dis-
tributed traffic-management protocols running in each
virtual network require only simple computations such
as additions and multiplications.

Each virtual edge node updates the path rates based
on the local performance objective, the congestion level
on its virtual paths, and possibly other constraints.
While performance objectives and other constraints can
differ, all virtual networks are subject to the bandwidth

constraint. Let s
(k)
l denote the congestion price for link

l of virtual network k.2 In TCP congestion control, the
link congestion prices are summed up over each path
and interpreted as end-to-end packet loss or delay [36].

The substrate network also uses s
(k)
l to determine band-

width shares, as shown in the following subsection.

In DaVinci, each substrate link updates s
(k)
l on behalf

of the virtual links as follows:

s
(k)
l (t + T) =

[

s
(k)
l (t) − β(k)

(

y
(k)
l (t) − r

(k)
l (t)

)]+

, (2)

where t is time and T is at the same timescale as the
longest Round Trip Time (RTT) of the network, e.g.,
2If we consider z

(k) to be the primal variable, then s
(k) is

the dual variable corresponding to the capacity constraint.

100ms. Let r(k) = H(k)z(k) be the link load of vir-
tual network k. As seen in (2), s

(k)
l is updated for

virtual network k based on the difference between the
virtual link load and virtual link capacity. The stepsize
β moderates the magnitude of the update, and reflects
the tradeoff between convergence speed (large stepsizes)
and stability (small stepsizes). The []+ implies that sl

must be nonnegative.
Using these link prices, each virtual network can run

its own distributed traffic-management protocols. In
particular, each virtual network differs in how it updates
the path rates at each virtual router. The path rate up-
date depends on the performance objective of a virtual
network. Examples of distributed traffic-management
protocol for delay-sensitive traffic with different prop-
erties can be found in [26, 37, 38]. For throughput-
sensitive traffic, examples of distributed protocols de-
rived from optimization can be found in [25, 39].

4.2 Substrate: Bandwidth Adaptation
The previous subsection demonstrates how each vir-

tual network can maximize its own performance objec-
tive by efficiently utilizing the resources assigned to it.
This subsection deals with how the substrate should pe-
riodically rebalance the allocations between the virtual
networks. The goal of the substrate network is to opti-
mize the aggregate utility of all the virtual networks.

maximize
∑

k

w(k)U (k)(z(k),y(k))

subject to H(k)z(k) � y(k), ∀k
∑

k

y(k) � C,

g(k)(z(k)) � 0, ∀k,
z(k) � 0, ∀k

variables z(k),y(k), ∀k

(3)

where w(k) is the weight the substrate assigns to repre-
sent virtual network k’s importance.3 The precise com-
putations are summarized in Figure 5.

First, the substrate determines how satisfied each vir-
tual network is with its allocated bandwidth. Conges-

tion price s
(k)
l is one indicator that a virtual network

may want more resources. Yet, congestion alone does
not capture the entire picture. For example, a delay-
sensitive network may have no congestion because it
wants to maintain small queues, but that does not nec-
essarily mean the resources should be taken away. Simi-
larly, a throughput-sensitive network may be congested
because it wants to keep queues relatively full in order
to maintain high bandwidth utilization, but that does
not necessarily mean it should be assigned further re-
sources. So the increase in virtual link bandwidth is

3If the substrate wants to give virtual network k strict pri-
ority, then w

(k) can be assigned a value several orders of
magnitudes larger than the other weights.

Let the converged value of s
(k)
l be denoted s

∗(k)
l . This

is the input for updating yl.

λ
∗(k)
l (t) = s

∗(k)
l (t) + ∂

∂y
(k)
l

U (k)(z∗(k),y∗(k))

v
(k)
l (t + Ts) = [y

(k)
l (t) + α(w(k))(λ

∗(k)
l (t))]+

y
(k)
l (t + Ts) = argmin

y
(k)
l

||y
(k)
l − v

(k)
l (t + Ts)||,

subject to
∑

k

y
(k)
l ≤ Cl, y

(k)
l ≥ 0, ∀k

(4)
where Ts is the time period between bandwidth assign-
ments, usually several orders of magnitude larger than
T , e.g., 10s.

Figure 5: The bandwidth share allocation algo-

rithm at link l.

also based on the differential increase in virtual net-
work k’s performance from acquiring more bandwidth.

Thus, the virtual network k’s satisfaction on link l (λ
(k)
l)

is the sum of the congestion price (s
(k)
l) and the partial

derivative of the performance objective relative to the

bandwidth allocation (∂U (k)(·)/∂y
(k)
l).

Next, the substrate determines how much bandwidth

virtual network k should have on link l, denoted by v
(k)
l .

The substrate increases v
(k)
l proportional to virtual net-

work k’s satisfaction on link l (λ
(k)
l) and the relative

importance w(k) of virtual network k. The stepsize α
moderates how much the new bandwidth allocation is
relative to the past value. Similar to β in (2), it reflects
the tradeoff between convergence speed and stability.
The []+ ensures that all traffic classes are allocated a
nonnegative amount of bandwidth.

Finally, since each v
(k)
l is adjusted independently, the

sum
∑

k v
(k)
l might exceed the substrate’s capacity Cl

on link l. Therefore it is necessary to renormalize the
vector vl, so that the final bandwidth shares yl satisfy
the capacity constraint. A common way to renormalize
is to minimize the Euclidean distance (denoted by || · ||)

between the feasible region
∑

k y
(k)
l ≤ Cl, y

(k)
l ≥ 0, ∀k,

and the original point vl.
Although the bandwidth share computations presented

in Figure 5 may look complex, they are simple to do in
practice. To perform the bandwidth allocation, each
substrate link also needs to know the performance ob-
jectives of all virtual networks, which is reasonable if
they belong to the same institution. It is important
to note the desirable fact that the bandwidth shares
at each link are computed with only local link loads,
thus requiring no message passing. If U(·) is differen-
tiable, ∂

∂y
(k)
l

U (k)(z(k),y(k)) has a closed form, and the

computations at each substrate node are simple. Conse-

quently, the processing overhead is modest. In addition,
since each substrate link only needs to store the previous
values of sl and vl, the additional memory consumption
is low.

4.3 Convergence and Optimality
Given that each virtual network is acting indepen-

dently, the key question is whether the virtual net-
works, together with the bandwidth share adaptation
performed by the substrate network, actually maximize
the overall performance objective of the substrate net-
work.

Theorem 1. The bandwidth allocation algorithm (4),
together with each traffic class solving (1), converges to
maximize (3) under the following conditions:

1. The problem (3) is a convex optimization.

2. The bandwidth allocation is updated after conver-
gence of the primal variables z and the dual vari-
ables s in each subproblem (1).

3. The parameter α in (4) is diminishing with time.

Proof: Applying standard primal decomposition
techniques [40, 41], (3) can be decomposed into N sub-

problems, each in the form of (1), keeping
∑

k

y(k) � C

as a constraint in the master problem. Each subprob-

lem can be solved for both its original variables z
(k)
l and

Lagrangian multipliers (technical term for congestion

prices) s
(k)
l introduced to relax the capacity constraint

per link for traffic class k. Then the master problem
solves for y(k) using a gradient update, which corre-
sponds to (4). The weighing factors w(k) do not affect
the optima of (1), but they do scale the Lagrangian mul-
tiplier as well as ∂

∂y
(k)
l

U∗(k)(z∗(k),y(k)) at the optima.

Consequently, the weights w(k) in (3) are reflected in
(4). From [40, 41], the bandwidth share allocation al-
gorithm (4) converges to the maximum of (3) if the
problem is convex and the parameters α(t) are dimin-
ishing with time.

Theorem 1 has two implications. First, (3) maximizes
the aggregate performance across all traffic classes at
equilibrium. Second, the adaptive bandwidth allocation
algorithm only relies on local information.

There are three major assumptions that lead to the
theorem: convexity of the optimization problem (max-
imizing concave function over convex constraint set),
timescale of adaptation, and proper selection of α. Con-
cave objective functions apply to most performance ob-
jectives [24], so the problem formulation is still broad.
Convexity of the capacity constraint is true if traffic
can be split flexibly among multiple paths (when they
exist). The choice of α will impact the speed of conver-
gence: a smaller α means convergence is slower, but a

larger α can cause divergence. We take a closer look at
how to select α in the next section.

Finally, the timescale of adapting the bandwidth shares
must be chosen judiciously. Theorem 1 assumes that
each virtual network converges before the next round
of bandwidth-share allocation. We observe in simula-
tion that each virtual network takes a few tens of iter-
ations to converge [25, 26], so a timescale separation of
a few tens (corresponding to bandwidth share adapted
about every ten seconds) should be sufficient. How-
ever, the convergence is usually asymptotic, and there-
fore reaches a value close to equilibrium in only a few
iterations, so a smaller timescale separation may be suf-
ficient in practice. In a real operating environment, the
traffic demand may change over time, and fast band-
width adaptation is important for efficient utilization
of the links.

5. NUMERICAL EXPERIMENTS
While useful for proving that DaVinci’s bandwidth

shares converge to optimal values, optimization theory
only offers loose bounds on the rate of convergence.
In addition, convergence is only guaranteed for dimin-
ishing stepsize, while traffic demand is assumed to be
constant after time zero. When the stepsize becomes
sufficiently small, the network loses its ability to react
to changes. In practice, traffic varies over time and
the network needs to adapt the bandwidth shares con-
stantly. Therefore, a constant stepsize is more practi-
cal. In this section, we use numerical experiments to ex-
tend the theoretical results of the previous section. Our
experiments consider an example instance of DaVinci
with two virtual networks running in parallel. One vir-
tual network carries inelastic delay-sensitive traffic, and
the other virtual network carries elastic throughput-
sensitive traffic. This section studies the convergence
rate of the bandwidth shares and associated sensitivity
to parameters. In addition, we examine the evolution
of the bandwidth shares when traffic patterns shift and
links fail.

5.1 Experimental Set-up
The convergence of DaVinci depends on the conver-

gence of the individual virtual networks (on a small
timescale) and the bandwidth shares (on a bigger time-
scale). Previous work has shown how to tune distributed
traffic-management protocols to converge within a few
tens of iterations [25]. Assuming the timescale separa-
tion between the convergence of congestion price s and
the adaptation of bandwidth shares y, we study the
stability of y using the converged values of s. Conse-
quently, we do not simulate the distributed protocols
running inside each virtual network, and instead use
the values of s computed by solving the optimization
problems directly. Since the computation of y does not

���
��� � �

��
	
 �� � ���

(a) Access-Core topology (b) Abilene topology

Figure 6: Two realistic topologies.

involve packet-level operations, we study the evolution
of y in the MATLAB environment.

For a quantitative understanding of the bandwidth
share adaptation, we consider a concrete example where
virtual network 1 is delay sensitive, and virtual network
2 is throughput sensitive. In our experiments, the per-
formance objectives of each traffic class take on specific
forms. Following [26], the delay-sensitive traffic’s objec-
tive is to minimize average end-to-end delay:

∑

i

∑

j

z
i(1)
j

∑

l

Hi
lj(pl + f(u

(1)
l))

where pl is the propagation delay on link l, and f(·) ap-
proximates the queueing delay, as a function of the link

utilization u
(1)
l = (H(1)z(1))l/y

(1)
l . In our simulations

we use f(u) = p0 exp(u), where p0 = 1ms. In [26], a
piece-wide linear approximation is used. Note that the
delay-sensitive traffic is inelastic, so it has a fixed de-
mand rate that needs to be met. Following [25], the
throughput-sensitive traffic’s objective is to minimize:

∑

i

log(
∑

j

z
i(2)
j) − q

∑

l

exp(u
(2)
l)

where each source i is maximizing its utility as a loga-
rithmic function of its sending rate. To avoid conges-
tion, each link penalizes high link utilization with an

exponential function, and u
(2)
l is defined similarly to

u
(1)
l . Following [25], we set q = 0.5, to strike a balance

between maximizing utility and minimizing congestion.
We experiment with the two networks in Figure 6 in

addition to the two-node topology in Figure 1, in order
to study realistic topologies with greater path diver-
sity. On the left is a tree-mesh topology, which is rep-
resentative of a common network structure: a full mesh
core with access networks on the edge. Of the twelve
possible source-destination pairs, 1–3, 1–5, 2–4, 2–6, 3–
5, and 4–6 are chosen, and for each source-destination
pair, the three paths with the smallest number of hops
are chosen as possible paths. All links have 100 Mbps of
bandwidth. The edge links have 5ms of propagation de-

lay while the core links have 10ms of propagation delay.
On the right is the Abilene backbone network [42]. Of
the many possible source-destination pairs, we choose
1–6, 3–9, 7–11, and 1–11. For each source-destination
pair, we choose the four minimum-hop paths as possi-
ble paths. All links have 1 Gbps of bandwidth, and we
estimate the propagation delays based on the physical
distance between nodes. In general, the same trend is
observed across all topologies, so we only show plots of
a single topology for each experiment.

5.2 Setting the Weightsw

10
2

10
4

10
6

10
8

10
3

10
5

10
7

0

0.2

0.4

0.6

0.8

1

w(2)

1
−

 x
(1

) /y
(1

)

110 Mbps
200Mbps

Figure 7: Effect of sweeping w(2) on two-node

topology for two delay-sensitive traffic demands.

Before we examine convergence of the bandwidth shares,
we discuss how to set the weight w(1), w(2) of the two
virtual networks, using the simple topology in Figure 1
as an example. We fix w(1) = 1 and sweep values of
w(2) for two different demand values x(1) of the delay-
sensitive traffic, 110 Mbps and 200 Mbps. Using an
optimization solver, we explicitly solve for the opti-
mal bandwidth share allocations at equilibrium. Since
the delay-sensitive traffic penalizes high link utilization,
we plot the percent excess bandwidth allocated to the

delay-sensitive network (Figure 7). We observe that
when more weight is given to the throughput-sensitive
traffic, the delay-sensitive traffic is only allocated the
bandwidth it needs to satisfy the demand, i.e., 1 −
x(1)/y(1) = 0. When less weight is given to the throughput-
sensitive traffic, however, the delay-sensitive traffic is
allocated more bandwidth than it needs on the long-
delay link. The excess bandwidth allows delay-sensitive
traffic to keep the queues small and thus the end-to-end
delay small. The same trend is observed across demand
values and topologies. For the remaining experiments,
we set w(1) = 1, w(2) = 105.

5.3 Convergence of Bandwidth Shares
In this experiment, we set the volume of the delay-

sensitive traffic to be 110 Mbps for the topology in Fig-
ure 1. The ideal bandwidth share assigned to the delay-
sensitive traffic is 100 Mbps on the low-delay link (link
1) plus 32 Mbps on the high-delay link (link 2).

0 10 20 30 40 50 60
0

200

400

600

iteration number

M
bp

s

0 2 4 6 8 10
0

50

100

iteration number

M
bp

s

y
1
(1)

z
1
(1)

optimal y
1
(1)

y
2
(1)

z
2
(1)

optimal y
2
(1)

Figure 8: Convergence of bandwidth shares on

the two-node topology.

As seen in Figure 8, the delay-sensitive traffic is ini-
tially assigned 50% of the bandwidth, thus the y-axis
intercepts are 500 Mbps and 50 Mbps respectively. The
initial link loads are set to zero, then the link loads jump
to 50 Mbps and 60 Mbps respectively after one itera-
tion to satisfy the demand of 110 Mbps. From the top
plot in Figure 8, we observe that after one iteration, the
delay-sensitive traffic is assigned all of the bandwidth on
the low-delay link. This is due to the large difference
between the delay properties of the two links. After
two iterations, the load is maintained at 100 Mbps on
this link. From the bottom plot in Figure 8, we observe
that the delay-sensitive traffic’s bandwidth share is con-
sistently reduced on the high-delay link until reaching
the ideal value.

Similarly, the throughput-sensitive traffic is also ini-
tially assigned 500 Mbps on the high-delay link and 50
Mbps on the low-delay link. On the low-delay link,
the bandwidth share for the throughput-sensitive traffic
drops to 0 Mbps. On the high-delay link, the bandwidth
share for the throughput-sensitive traffic is increased to
consume most of the idle bandwidth. Overall, the band-
width is efficiently utilized by the two traffic classes, in-
dependent of the initial conditions. Similar behavior is
observed across topologies, demand values, and initial
values.

5.4 Sensitivity of Stepsizeα
The tunable stepsize α controls how much y reacts

to changes in λ (Equation (4)). We study the conver-
gence rate of bandwidth shares for constant α, where
convergence is defined as being within 0.1% of the opti-
mal bandwidth shares. In particular, we are interested
in studying the sensitivity to α.

10
−1

10
0

0

20

40

60

80

100

α

of

 it
er

at
io

ns
 to

 c
on

ve
rg

en
ce

110Mbps
200Mbps

Figure 9: The rate of convergence versus α for

Abilene topology.

This experiment sweeps the values of α to record
the rate of convergence, for two delay-sensitive traffic
demand values (Figure 9). We observe the following:
First, the bandwidth shares do converge to their ideal
values for constant α. Second, for demand of 110 Mbps,
convergence in under 100 iterations occurs for α values
between 0.103 and 5. In particular, above an α value of
5, the bandwidth shares may not converge, the reason
being as α gets large, there is a tendency to overshoot
beyond the feasible region every single iteration. Be-
low an α value of 5, the rate of convergence decreases
as we move to smaller values of α. Similar behavior is
observed for a demand of 200 Mbps, with the “good”
α values being slightly smaller. In practice, simulations
should be run to tune α value for fast convergence. If
oscillatory behavior is observed, the α value can always
be decreased to ensure convergence. For our remaining
experiments, we set α = 0.2.

5.5 Traffic and Topology Dynamics
Another caveat of Theorem 1 is that the traffic de-

mand and substrate topology are fixed. In this subsec-
tion, we examine how the bandwidth shares shift when
traffic demand changes and links fail.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

iteration number

M
bp

s

y
9
(1)

z
9
(1)

y
9
(2)

Figure 10: Effect of changing traffic demand on

Abilene topology.

First we consider the impact of the delay-sensitive
traffic increasing from 100 Mbps to 200 Mpbs at iter-
ation 100, and then dropping to 50 Mbps at iteration
200. In Figure 10, we select to plot bandwidth shares
for link 9 of the Abilene topology which carries a single
flow of delay-sensitive traffic. When the delay-sensitive
traffic volume increases, bandwidth is taken from the
throughput-sensitive traffic in order to satisfy the de-
mand of the delay-sensitive traffic. When the delay-
sensitive traffic volume decreases, idle bandwidth from
the delay-sensitive traffic is assigned to the throughput-
sensitive traffic.

0 50 100 150 200 250 300
0

100

200

300

400

500

iteration number

M
bp

s

y

2
(1)

z
2
(1)

y
1
(1)

Figure 11: Effect of low-delay link failing in the

2-node topology.

Second, we consider the impact of the low-delay link
failing at iteration 100 in the 2-node topology. The
delay-sensitive traffic demand is set at 150 Mbps. In
Figure 11, we plot the path rates of the delay-sensitive
traffic. Initially, the path rates are split between the
low-delay link and the high-delay link. We observe that
immediately after the failure, the high-delay link is car-
rying 150 Mbps. In addition, the delay-sensitive traffic
gains about 250 Mbps extra bandwidth share on the
high-delay link when it loses the low-delay link. Af-
ter the failed link recovers at iteration 200, the traffic
patterns and bandwidth shares return quickly to their
original values.

6. CONCLUSIONS AND FUTURE WORK
We present DaVinci: a simple, flexible, and efficient

architecture for supporting multiple traffic classes. In
DaVinci, each virtual network runs customized traffic-
management protocols, and a per-link bandwidth co-
ordinator adjusts bandwidth shares across virtual net-
works. The substrate computes bandwidth shares en-
tirely based on local link loads, imposing no message-
passing overhead. A non-work-conserving shaper at
each link ensures that the virtual networks are isolated
between bandwidth share computations.

It is interesting to note that primal decomposition is
used to derive an adaptive virtualization architecture.
This is in contrast to the standard usage of dual decom-
position for congestion control protocols [24]. Aided by
optimization theoretic tools, we prove that the band-
width shares converge for diminishing stepsize, while
our numerical experiments demonstrate that the band-
width shares converges quickly for a range of constant
stepsizes. In addition, our experiments show that the
bandwidth shares adapt quickly to traffic shifts and link
failures.

We believe that making network virtualization adap-
tive is promising as a future architecture, though many
open challenges remain. For example, DaVinci assumes
each virtual network runs optimal protocols, but sim-
pler protocols that compromise on optimality may be
preferable in practice. One interesting direction is to
quantify the tradeoff between stability, optimality, and
overhead. As another example, DaVinci assumes each
virtual network makes efficient usage of its assigned
bandwidth, but virtual networks may exhibit greedy
and malicious behaviors, especially if they are controlled
by multiple parties. One possibility is to introduce eco-
nomic incentives that will encourage efficient behavior,
such as associating the link congestion price with pay-
ments.

Acknowledgments
We would like thank Dave Andersen, Umar Javed, Mar-
tin Suchara, Vytautas Valancius, Dan Wendlandt, and

Yaping Zhu for their feedback on earlier drafts of this
paper. This work has been supported in part by NSF
grants CNS-0519880 and CCF-0448012, and Cisco grant
GH072605.

7. REFERENCES
[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner,

“Overcoming the Internet impasse through virtualization,”
Computer, vol. 38, pp. 34–41, April 2005.

[2] J. S. Turner and D. E. Taylor, “Diversifying the Internet,”
in Proc. IEEE GLOBECOM, November 2005.

[3] N. Feamster, L. Gao, and J. Rexford, “How to lease the
Internet in your spare time,” ACM SIGCOMM Computer
Communication Review, pp. 61–64, January 2007.

[4] D. McPherson, D. O’Leary, D. Ward, E. Brendel, O. Aruj,
P. Agarwal, R. Hartani, and S. Poretsky, “Core Network
Design and Vendor Prophecies,” in Proc. NANOG, June
2003.

[5] “Juniper Networks: Intelligent Logical Router Service.”
http://www.juniper.net/solutions/literature/
white papers/200097.pdf.

[6] “Cisco opening up IOS,” December 2007. http://www.
networkworld.com/news/2007/121207-cisco-ios.html.

[7] “Partner Solution Development Platform Opens
Opportunity to Accelerate the Pace of Network Innovation
with JUNOS Software,” December 2007.
http://www.juniper.net/company/presscenter/pr/2007/

pr-071210.html.
[8] R. Braden, D. Clark, and S. Shenker, “Integrated Services

in the Internet Architecture: An Overview.” RFC 1633,
June 1994.

[9] S. Chen and K. Nahrstedt, “An overview of
quality-of-service routing for the next generation
high-speed networks: Problems and solutions,” IEEE
Network Magazine, November/December 1998.

[10] F. Kuipers, T. Korkmaz, M. Krunz, and P. V. Mieghem,
“Overview of constraint-based path selection algorithms for
QoS routing,” IEEE Communication Magazine, pp. 50–55,
December 2002.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An Architecture for Differentiated Services.”
RFC 2475, October 1998.

[12] I. Matta and A. U. Shankar, “Type-of-service routing in
datagram delivery systems,” IEEE J. on Selected Areas in
Communications, vol. 13, pp. 1411–1425, October 1995.

[13] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and
P. Pillay-Esnault, “Multi-Topology (MT) Routing in
OSPF.” RFC 4915, June 2007.

[14] K.-W. Kwong, R. Guerin, A. Shaikh, and S. Tao,
“Improving service differentiation in IP networks through
dual topology routing,” in Proc. CoNEXT, December 2007.

[15] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris, “Resilient Overlay Networks,” in Proc.
Symposium on Operating Systems Principles, October
2001.

[16] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP:
Motivation, architecture, algorithms, performance,”
IEEE/ACM Trans. Networking, December 2006.

[17] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashock,
and J. O’Toole, “Overcast: Reliable multicasting with an
overlay network,” in Proc. Operating Systems Design and
Implementation, October 2000.

[18] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling
conferencing applications on the Internet using an overlay
multicast architecture,” in Proc. ACM SIGCOMM, August
2001.

[19] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz,
“OverQoS: An overlay based architecture for enhancing
Internet QoS,” in Proc. Networked Systems Design and
Implementation, September 2004.

[20] R. Keralapura, C.-N. Chuah, N. Taft, and G. Iannaccone,
“Race conditions in coexisting overlay networks,”
IEEE/ACM Trans. Networking, vol. 16, no. 1, pp. 1–14,
2008.

[21] E. Rosen and Y. Rekher, “BGP/MPLS VPNs.” RFC 2547,
March 1999.

[22] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford, “In VINI Veritas: Realistic and controlled
network experimentation,” in Proc. ACM SIGCOMM,
August 2006.

[23] J. S. Turner, “A proposed architecture for the GENI
backbone platform,” in Proc. Architecture for Networking
and Communications Systems, 2006.

[24] M. Chiang, S. H. Low, R. A. Calderbank, and J. C. Doyle,
“Layering as optimization decomposition,” Proceedings of
the IEEE, January 2007.

[25] J. He, M. Suchara, M. Bresler, M. Chiang, and J. Rexford,
“Rethinking Internet Traffic Management: From Multiple
Decompositions to A Practical Protocol,” in Proc.
CoNEXT, December 2007.

[26] U. Javed, M. Suchara, J. He, and J. Rexford, “Multipath
protocol for delay-sensitive traffic,” in Proc. the First
International Conference on COMmunication Systems and
NETworkS (COMSNETS), January 2009.

[27] J. He and J. Rexford, “Towards Internet-wide Multipath
Routing,” IEEE Network Magazine, March 2008.

[28] J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang,
“From Multiple Decompositions to TRUMP: Traffic
Management Using Multipath Protocol,” March 2008. in
submission to IEEE/ACM Transactions on Networking,
www.cs.princeton.edu/∼jrex/papers/conext07-long.pdf.

[29] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan,
I. Stoica, and K. Wehrle, “OCALA: An architecture for
supporting legacy applications over overlays,” in Proc.
Networked Systems Design and Implementation, May 2006.

[30] H. V. Madhyatha, A. Venkataramani, A. Krishnamurthy,
and T. Anderson, “Oasis: An overlay-aware network
stack,” in Proc. ACM SIGOPS, January 2006.

[31] “GENI opt-in working group.”
http://geni.net/wg/opt-in-wg.html.

[32] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol
Label Switching Architecture.” RFC 3031, January 2001.

[33] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin, “Consistent hashing and random
trees: distributed caching protocols for relieving hot spots
on the world wide web,” in Proc. ACM STOC, June 1997.

[34] I. Avramopoulos, J. Rexford, D. Syrivelis, and S. Lalis,
“Counteracting discrimination against network traffic.”
Princeton University Computer Science Technical Report
TR-794-07, August 2007.

[35] J. Mo and J. C. Walrand, “Fair End-to-end Window-based
Congestion Control,” IEEE/ACM Trans. Networking,
vol. 8, pp. 556–567, October 2000.

[36] S. H. Low, “A duality model of TCP and queue
management algorithms,” IEEE/ACM Trans. Networking,
vol. 11, pp. 525–536, August 2003.

[37] J. Pongsajapan and S. Low, “Reverse engineering
TCP/IP-like networks using delay-sensitive utility
functions,” in Proc. IEEE INFOCOM, May 2007.

[38] Y. Li, M. Chiang, A. R. Calderbank, and S. Diggavi,
“Optimal delay-rate-reliability tradeoff in networks with
composite links,” in Proc. IEEE INFOCOM, May 2007.

[39] X. Lin and N. B. Shroff, “Utility Maximization for
Communication Networks with Multi-path Routing,” IEEE
Trans. Automatic Control, vol. 51, May 2006.

[40] L. S. Lasdon, Optimization Theory for Large Systems.
Macmillian, 1970.

[41] D. P. Bersekas, Nonlinear Programming. Athena Scientific,
second ed., 1999.

[42] Abilene Backbone. http://abilene.internet2.edu/.

