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ABSTRACT
Recent work introduced load-balancing algorithms that dynamically
pick the best path entirely in the data plane, to react to traffic dynam-
ics on a small timescale. This paper takes the next step to balance
load dynamically across multiple paths in the data plane. The design
of such a load-balancing primitive raises interesting challenges due
to the hardware constraints of the data plane. We show that these
constraints create practical problems for Weighted-Cost MultiPath
(WCMP), which replicates hash-table entries in proportion to the
weight of each path. Under these hardware constraints, naïve imple-
mentations of WCMP take a long time to converge to new weights.
We then present a hash-based data structure that achieves adaptive
traffic splitting in programmable data planes. Our data structure care-
fully partitions the arithmetic operations required to a) split traffic
in proportion to the path weights and b) update the path weights,
by leveraging a multi-stage pipeline and stateful ALUs. By doing
so, accurate splitting and efficient updates are done at line rate. We
implement our data structure in P4 and our preliminary evaluation
shows significant reduction in flow completion time compared to
other data-plane load-balancing schemes such as HULA.

CCS CONCEPTS
• Networks → Programmable networks; Network management;
Traffic engineering algorithms.

1 INTRODUCTION
Network operators typically provision multiple paths to meet traffic
demands of their applications, whether in datacenters or wide-area
networks. However, utilizing available bandwidth requires an ef-
fective way to balance the traffic load, especially when the load on
these paths can change quickly due to traffic fluctuations. Therefore,
load balancing on a small timescale based on traffic conditions of
the paths becomes crucial for achieving good performance.

Traditional switches have limited support for load-aware traf-
fic splitting. Mechanisms like Equal-Cost MultiPath (ECMP) and
Weighted-Cost MultiPath (WCMP) with static path weights cannot
adapt their splitting strategies to the traffic conditions. The recent
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Figure 1: DASH aims to performs adaptive weighted traffic
splitting in programmable data planes.
emergence of programmable switches [1, 8] has opened up a new
range of possible solutions in the data plane while maintaining high
packet-processing throughput. The switches have multiple hardware
stages for parallel processing, which can achieve Tbps throughputs.
In addition, each stage can maintain state across packets in persistent
memory, and the state can be accessed or updated based on results
carried by a packet from previous stages.

Recent work [5, 15, 20] has seized the opportunity to develop load-
balancing solutions that can adapt to traffic conditions entirely in the
data plane. For instance, CONGA [5] leverages customized switch
hardware to achieve this; HULA [20] and Contra [15] are designed
for P4-based programmable switches. These solutions update the
data plane state and direct traffic in fine timescales based on traffic
conditions. However, one common limitation of these solutions is
that they only consider use a single “best” path at any given time.
The benefits of using multiple paths have been demonstrated by many
projects (e.g., TRUMP [12], HALO [22], TeXCP [17], MATE [10]),
most of which process probes that carry path status information in
the control plane and generate the updates of the data plane state. It
remains unclear how (or whether) equivalents of these control plane
solutions can be realized in practice using commodity data planes.

In this paper, we set out to bridge the gap between these two
classes of solutions by proposing new data structures for load-aware
traffic splitting in the data plane. As illustrated in Figure 1, these
new data structures simultaneously (i) spread new flows across mul-
tiple paths in proportion to the current load on those paths, and (ii)
dynamically adjust to load changes at data-plane speeds. Doing so
requires the design of new data structures that can (i) assign a new
flow to a path according to the current distribution D, where D is a
set of path weights, and (ii) update the distribution D after processing
path status information carried in data-plane probes (more details in
section §2).

The goal of supporting load-aware traffic splitting gives rise to a
set of interesting design techniques, which are needed to address the
hardware constraints of today’s programmable data planes. At a high
level, programmable data planes have the following constraints:

• Limited number of per-packet accesses to register memory
within a single stage.
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• Register memory in one stage cannot be accessed by a packet
at other stages, to avoid hazards caused by concurrent ac-
cesses by packets at different stages.

• There are a fixed number of stages to guarantee low per-
packet latency. The total number of per-packet operations is
constrained by what can be performed in these stages.

Contributions. In this work, we (1) characterize the tradeoffs for
implementing data structures under the constraints, (2) study the
tradeoffs of different novel data structures we have created, and (3)
then focus on one data structure that works well in a wide range of
practical scenarios.

One popular splitting data structure is WCMP that replicates
hash-table entries with path IDs in proportion to the weight of each
path in a distribution D. A key advantage of WCMP is there is no
limit on the number of paths supported, as long as the table size
is big enough to keep the error between actual entries and desired
entries reasonably low. But this advantage comes at the cost of either
slow update or extra overhead. However, updating the distribution
D using WCMP requires modifying the path IDs for many table
entries, which is infeasible due to the limited number of per-packet
memory accesses in each stage. Thus, the update process takes a long
time, which in turn causes deviation from the desired traffic splitting
(more details in section §3.2). As an alternative, we could divide the
required modifications to the table across packets. But keeping track
of the modifications requires sequentially reading multiple registers
across multiple stages, and then writing to the registers. Since the
read-write to a register from different stages cannot be supported,
it would require packet recirculation, leading to inefficiency (more
details in section §3.3).

Our proposal works very differently from WCMP-based algo-
rithms. By assigning a unique region in the hash function output
space to each path, where the region size is in proportion to the
weight of each path in a distribution D, we can do fast and efficient
update to D. In contrast to modifying many table entries, now the
update requires modification to a small number of region boundaries.
By carefully assigning the boundaries to switch pipeline stages, we
can significantly reduce the number of memory accesses required.
Also, this would avoid the need for accessing the registers of a stage
from different stages. As a tradeoff, this comes at the cost of the
number of paths supported, as the number of stages and number
of per-packet operations in each stage are limited (more details in
section §4).

The basic idea of partitioning the hash space into unique regions
is not new itself—and indeed may appear quite natural—but the
realization that we can tilt the data structure sideways in the data
plane (and handle a small set of regions per pipeline stage) is new.
Based on this idea, we present Data-plane Adaptive Splitting with
Hash threshold (DASH) that leverages a multi-stage pipeline and
per-stage stateful ALUs and update the distribution D at line rate,
thus enabling quick adaptation to traffic conditions and efficient
utilization of network capacity. We evaluate the performance of
DASH in terms of flow completion time and compare with other
data-plane load-balancing schemes such as HULA and ECMP, and
found that DASH can improve the flow completion time significantly.

1. On each probe arrival 
update path status

2. Compute path weight 
distribution (D)

3. Update the
data structure with D

4. Split traffic 
using the data structure

Traffic Probe

After receiving the last 
probe in a probe period

Our contribution

Figure 2: Adaptive traffic splitting

Algorithm Efficiency Accuracy Cardinality
Iterative (§3.1) ✗ ✓ ✓

Probabilistic (§3.2) ✓ ✗ ✓

Deterministic (§3.3) ✗ ✓ ✓

DASH (§4) ✓ ✓ ✓−

Table 1: Design goals met by weight update algorithms
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2 ADAPTIVE TRAFFIC SPLITTING
Computing weight distribution (D). We assume that probes are
generated by destinations (e.g., hosts, switches) periodically on the
order of RTTs using out-of-band mechanisms (e.g., HULA [20],
Contra [15]). These probes carry path performance metrics (e.g., uti-
lization, delay) derived from high-level policy goals (e.g., minimize
latency, maximize throughput). As shown in Figure 2, after receiving
the last probe in a probe period, one could compute the distribution
D for each destination using a simple heuristic that sets the weight to
be inversely proportional to the path utilization—i.e., the utilization
of the bottleneck link on the path that a probe traverse. Similar to
HULA [20], the switches update the utilization stored in the probe at
every hop with the maximum of a) utilization of the original probe,
and b) utilization of the inbound link on which the probe has arrived.
We could also use other weight computation schemes designed to
run at every hop [11, 22, 23] or at the edges [10, 17] which aim
to reduce traffic sent on expensive paths and increase the fraction
on the best path. In addition, they keep the network stable by not
overreacting to the load changes.
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Data structure input. In this paper, we assume that the path weight
distribution D for each destination is provided by one of the above
schemes, leaving the question of their implementation as future work.
For instance, consider the scenario in Figure 1, where there are three
links, each belonging to a different path towards a destination. At
time t1, D is 1:2:3 (current). At time t2 probes on all three paths
arrive and the distribution is updated to 3:2:1 (desired). Now, the
main challenge is updating the underlying data structure at line
rate under the hardware constraints such that the distribution of
traffic most closely approximates the desired distribution. More
specifically, consider a case where the time taken to update the data
structure after processing probes is in the order of milliseconds
(msec). On a switch processing traffic at 1 Tbps, every 10 msec delay
would cause approximately up to 1 GB of traffic to not follow the
desired distribution D. Therefore, for load-aware traffic splitting, fast
response to new path weights is critical.
Design goals. Given the desired D, we focus on designing a traffic
splitting data structure that can do (i) accurate splitting (accuracy),
(ii) efficient update (efficiency), and (iii) support many paths (cardi-
nality); having data structures that do one or two but not the others
is not hard, but achieving all three simultaneously is hard. In the
following sections, we present different data structures and their
tradeoffs for implementing the weight update algorithms; Table 1
summarizes the design goals met by each algorithm.

3 WCMP-BASED ALGORITHMS
In the section, we discuss tradeoffs of three weight update algo-
rithms based on WCMP. To represent the path weight distribution
D, WCMP replicates hash-table entries with the same path ID in
proportion to the weight of each path. When a packet arrives, the
switch computes a hash value from the packet header fields and
sends the packet along the path ID at the table entry indexed by the
hash value. For example, consider the scenario in Figure 3, where
there are three paths (A, B, and C) with weight distribution 1:2:3,
and the distribution is represented in the table with 1, 2, and 3 entries
respectively. The probability that a packet is sent along path B is 1/3.
Problem statement. Assuming that:

• There are K paths, i=0, 1,..K-1;
• A WCMP table of size N;
• Current number of entries assigned to the i-th path is {Ci};

and
• Desired number of entries for the i-th path is {Ti};

where
∑K
i=0Ci =

∑K
i=0Ti = N

The goal of an algorithm is to update the WCMP table such that
the error (e) between the desired entries and the current entries is
minimum. Error (e) is defined as 1

2N
∑K
i=0 |Ti −Ci |.

3.1 Iterating over the WCMP table
One strawman algorithm for updating the table would be to iterate
over K paths upon a packet’s arrival, and for every path i allocate
entries in the WCMP table until the number of entries of i is equal
to Ti . Figure 4(a) illustrates this solution. However, this algorithm
requires loop constructs and access to many memory locations to
update the table entries, which make the algorithm challenging to
perform line-rate packet processing without recirculation. Therefore,
this strawman solution is inefficient (see §2).

3.2 Probabilistic WCMP table updates
To overcome the limitations of the iterative approach, an alternative
is to divide required modifications across packets, such that each
packet would do a small number of updates to the WCMP table. One
possible way to realize the idea is to have every packet (i) pick a path
i in round-robin fashion, (ii) pick a table entry j randomly, and (iii)
assign the entry j to path i with probability proportional to the path’s
desired weight (see Figure 4(b)). Specifically, if a random value r
ranging from 0 to N − 1 is less than desired number of entries Ti ,
then the entry j is assigned to the path i.

Though the algorithm is simple and implementable, there are two
problems that increase the time for it to converge to the desired
number of entries (Ti ). First, if path i needs a small fraction of the
entries, then the packet is most likely not used to update the WCMP
table. For example, consider that path i needs 1 out of 10 entries,
then a packet misses an opportunity to update the table for 90% of
the time. Second, the random selection of the WCMP entry j may
steal an entry from a path that is already in deficit (i.e., Cj < Tj ),
causing further deviation from the desired distribution.

The expectation of the current entriesCi is Exponentially Weighted
Moving Average (EWMA) over the desired entries Ti with a coef-
ficient α = 1

N ; when N is large, α is small, thus convergence is
slow. We omitted the proof due to space limitations. Suppose K=32,
N=3200, and error=5%, we need up to 250K packets to converge.
For a switch processing 1 KB packets at 1 Tbps rate, this means up
to 250 MB of traffic does not follow the desired distribution, and this
grows as K and N increase.

In summary, the non-deterministic amount of time to reach the
desired distribution makes the probabilistic approach inaccurate
(goals in §2).
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3.3 Deterministic WCMP table updates
As an alternative, a deterministic approach would assign entries for
a path that has more entries (i.e., non-deficit path) to another path
that does not have enough (i.e., deficit path). This can be done by
maintaining a per-path counter that keeps track of the cumulative
effect of past assignments of entries to paths (see Figure 4(c)). This
approach first identifies deficit and non-deficit paths based on their
counter values and then move entries from non-deficit paths to deficit
paths.

For re-allocating entries of a non-deficit path to a deficit path,
we need to maintain three variables in registers: the current path i,
WCMP entry j, and the current number of entries Ci . Updates to i, j,
and Ci are done as follows. (1) If the path i is non-deficit (Ci ≮ Ti ),
move current i immediately to another path. This will significantly
reduce the number of packets not used to update the table (see §3.2),
therefore reducing convergence time. (2) If the path at entry j is in
deficit (Cj ≤ Tj ), then move j to the next entry to avoid reducing the
number of entries from the path that is already in deficit. (3) Finally,
if none of the above holds, then we reallocate the entry j to the path
i—i.e., incrementing Ci and decrementing Cj both by 1.

Though fast, this algorithm is complex as it needs to perform
read-write on multiple registers that spread across multiple stages,
thus it cannot be implemented efficiently without packet recircula-
tion [1]. For instance, consider the code that updates i in the step 1:
(a) read i; (b) read Ci , Ti ; and (c) If Ci ≮ Ti then i = i+1. Since
the reads are dependent, they cannot be executed in the same stage.
But, if the condition Ci ≮ Ti which is executed in the later stage
becomes true, the packet cannot write to i’s memory, because the
memory is bound to the previous stage. However, we could finish
the read-write by recirculating the packet with the updated i value.
Nevertheless, recirculation is expensive because a switch can handle
a fixed number of packets per second and recirculating a packet
multiple times reduces packet-processing throughput. To understand
the recirculation overhead, the upper bound on the required num-
ber of packets for the algorithm is N + K . So, for K=32, N=3200,
error=0%, it is about 3000; significantly reduced compared to the
probabilistic algorithm. But, suppose the probe period is 60 msec,
then the recirculation overhead in each probe period is roughly 50K
packets per second (PPS), and this increases as the probe period
decreases, especially in low-latency networks with RTTs in the order
of microseconds.

Therefore, the large amount of traffic recirculation makes this
deterministic approach very inefficient (goals in §2).

4 THE DASH DATA STRUCTURE
To overcome the efficiency and accuracy limitations of the previous
two approaches, we present DASH. Its key idea is that, instead of
replicating entries in the WCMP table for each path, a unique region
is assigned in the hash function output key space in proportion to
the weight of each path (see Figure 5(a)). When a packet arrives,
the hash value generated from the packet header fields is compared
against the region boundaries and determine the region it matches
and the associated path. Now, updating weights become simple, as
we now need to update a small number of region boundaries instead
of many table entries in the WCMP-based algorithms.

4.1 Assigning region boundaries
Packet-to-Path. Consider a scenario where there are three paths
towards a destination. We assign one path and the correspond-
ing boundary to one stage in a multi-stage pipeline. As shown
in Figure 5(a), a path’s boundary is stored in the register memory
mappped to a stage, and the boundary is compared against a packet’s
hash value using a stateful ALU (SALU). For instance, if the packet’s
hash value is less than the path boundary, then the packet is sent
along that path.
Updating boundaries. It becomes easy to update the path bound-
aries with just a single packet; we could use the last probe in a given
probe period. The core idea is a path’s new boundary is obtained
by adding the path’s region size to the previous path’s boundary
(see Figure 5(b)). For this, as the packet goes through the pipeline it
carries the boundary of the last updated path in its metadata. Using
a SALU we then add the path’s region size to the metadata and the
result of the addition operation (i.e., the cumulative sum of region
sizes) is updated at two locations: 1) in the stage register where
path’s boundary is maintained; and 2) in the packet’s metadata carry
forwarded to the next stage.

However, in this simple one-to-one assignment, the number of
paths supported cannot go beyond the number of stages actually
present or allowed to use for traffic splitting. For instance, in a
pipeline with 12 stages, a maximum of 10 paths per destination is
supported. The other two stages are used to compute the hash value
and to retrieve the associated path1. Note that only one register per
destination is used to maintain the boundary mapped to a stage. To
support more destinations, we could simultaneously use the other
stage registers.

1The packet metadata also has a bit for each region boundary that stores the comparison
result (either 0 or 1). All bits in the result is used as a key to retrieve the associated path
from a match-action table.



Adaptive Weighted Traffic Splitting
in Programmable Data Planes SOSR ’20, March 3, 2020, San Jose, CA, USA

10

102

103

104

105

106

(4,200) (4,400) (16,800) (16,1600) (32,1600) (32,3200)

#
p

a
c
k
e

ts

Probabilistic (e=5%)
Probabilistic (e=10%)

Deterministic (e=0)

(a) Gaussian distribution. (K,N) : (#paths, table size)

10

102

103

104

105

106

(4,200) (4,400) (16,800) (16,1600) (32,1600) (32,3200)

#
p

a
c
k
e

ts

Probabilistic (e=5%)
Probabilistic (e=10%)

Deterministic (e=0)

(b) Bimodal gaussian distribution. e: error.

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 8 16 32

#
p

a
c
k
e

ts
 /

 #
s
A

L
U

s

#paths

#stages=4
#stages=8

#stages=12

(c) DASH resource usage
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Figure 7: DASH achieves a significantly shorter FCT than HULA, outperforming ECMP considerably.

4.2 Leveraging concurrency within a stage
High cardinality. To support a greater number of paths per destina-
tion (i.e., high cardinality), we can leverage the multiple SALUs in
each stage to execute multiple parallel arithmetic operations (e.g.,
comparisons, additions). By doing so, the cardinality is determined
by the product of the number of per-stage SALUs and the number of
stages in the pipeline. For example, with 10 stages2 and 8 per-stage
SALUs, the cardinality is 80 paths per destination. For 80 paths,
DASH needs 8 per-stage SALUs and 8 32-bit per-stage registers to
store the per-destination boundaries; the memory overhead is small
compared to the today’s ASICs, which have 11.5 Mb of SRAM [9]
in each stage. This leaves plenty of memory resources for other
functions (e.g., access control, routing). The main bottleneck comes
from the number of available SALUs, and should be resolved by
better resource allocation techniques.
Updating boundaries. Updating all path boundaries (stored in per-
stage registers) requires a long sequence of dependent operations.
This is illustrated using Figure 5(b), where a path’s boundary as
mapped to a stage is obtained only after adding the path’s region
size to the boundary of the path mapped to the previous stage. To
implement this, we can recirculate the probe packet with the last
updated boundary in a given pass. For example, suppose stage 1 has
8 boundaries (B0,B10, ..,B70), stage 2 has B1,B11, ..,B71, and so on.
With 10 stages in the pipeline, in each recirculation we can update
only 10 boundaries: B0,B1, ..,B9 in the first pass, B10,B11, ..,B19 in
the second pass, and so on. Therefore, the number of recirculations
is equal to the number of SALUs in each stage minus one (i.e., 7);
this is significantly fewer than the WCMP-based algorithms.

2RMT [9] contains 32 stages.

5 EVALUATION
Our main goal for evaluation is to understand how fast the DASH
data structure can update its hash boundaries to realize new path
weight distribution (D), and how this adaptive traffic splitting trans-
lates to performance improvements. We have built a prototype of
DASH based on a customized version of ns3 [3] with P4 bmv2
model support. As baseline, we have implemented the HULA [20]
load-aware scheme that always picks a single best path for forward-
ing in the data plane. To evaluate the convergence time, we have
implemented simulated versions of WCMP-based algorithms in
Python. All experiments have been conducted on a Dell server with
six Intel i7-8700 CPU cores, 16 GB RAM, running Ubuntu 16.04.

5.1 Convergence time
First, we measure the convergence time in terms of the number of
packets it takes for the WCMP-based algorithms and for DASH
to adjust to new path weights (i.e., D). For the WCMP-based algo-
rithms, we generate synthetic path weights following (1) Gaussian
distribution with small variances (N (4, 1)) to represent uniform split-
ting over paths, and (2) Bimodal Gaussian distribution that picks the
weights with equal probability between N (4, 1) and N (16, 1) to rep-
resent non-uniform splitting over paths. Figure 6(a) and Figure 6(b)
show the convergence time for the different systems for different
numbers of paths (K) and different WCMP table sizes (N ); at a high
level, as N and K become large, the required number of packets
increases significantly. For small K and N (e.g., K=4 and N=200),
the deterministic algorithm requires up to 100 packets to keep e = 0,
whereas DASH needs just 1 packet with 8 stages using at most 1
SALU in each stage (see Figure 6(c)); for K=32 and N=3200 it is
3000 packets and 8 packets, respectively. Therefore, DASH can adapt
to new weights much faster than the WCMP-based algorithms.



SOSR ’20, March 3, 2020, San Jose, CA, USA Kuo-Feng Hsu, Praveen Tammana, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker

S1 S2 S3 S4

L1 L2

(a) Symmetric topology

S1 S2 S3 S4

L1 L2L3

(b) Asymmetric topology

Figure 8: Topologies
5.2 Performance improvements
Next, we evaluate how this faster adaptation leads to performance im-
provements. We set up two topologies: symmetric (see Figure 8(a))
and asymmetric (see Figure 8(b)). In both topologies, we have 32
hosts with 500 Mbps links. Half of these are connected to switch L1
as senders and the other half to switch L2 as receivers. L1 and L2 are
connected with four 1 Gbps links to four other switches (S1 − S4).
Hence it is a 2:1 oversubscription. To make it asymmetric, an extra
switch L3 with 4 hosts below is connected to S1. Hosts generate traf-
fic based on the web search workload in DCTCP [6], and the time
gap between flow arrival follows a Poisson distribution (the mean
is determined from the network load). We have tested several load-
balancing mechanisms: 1) ECMP balances traffic randomly without
considering network load; 2) HULA is load-aware and always sends
traffic along the least-utilized path (the current best path); 3) the con-
trol plane solution (CP) adjusts path weights derived from the path
utilization information in probes on large time scales (1 sec); and 4)
DASH updates path weights with the inverse of path utilizations at
the end of every probe period and splits new flowlets based on the
new weights.
Flow completion time. Figure 7(a) shows that DASH is 12-25%
better than ECMP in the symmetric topology because ECMP is
not load-aware and continues sending traffic on congested paths. In
comparison, DASH splits traffic in proportion to the load on each
path, thus it shifts traffic from congested paths to other paths and
achieves better performance. HULA does not perform well because
it overloads the current best path while keeping the other paths under-
utilized. In the asymmetric topology, ECMP performance degrades
and comes close to HULA, because ECMP continues sending traffic
on the congested path (L1-S1-L2), whereas HULA can adjust to the
path performance. At 80% workload, DASH outperforms Hula by
22.1% and ECMP by 16.0%.
Load imbalance. Next, we measured the load imbalance of each
system by computing the throughput differences between the most
and least loaded switch-to-switch links of L1 and normalizing them
by the average throughput across the links. As shown in Figure 7(c),
DASH balances traffic much better than the other schemes; ECMP
load imbalance is greater than 80% for 35% of the time whereas for
DASH it is only 20%.

6 RELATED WORK
Static traffic-splitting schemes, such as WCMP [24] MPLS-TE [2],
Niagara [19], use table entries, thus updating the table in the data
plane is inefficient. The idea of hash boundaries was initially pro-
posed in [14], but hash boundaries are not used in practice as
it requires hardware modifications. DASH showed how the pro-
grammable data planes make it possible to implement hash bound-
aries. DASH data-plane primitive complements P4-based traffic-
splitting schemes like MP-HULA [7] which splits MPTCP subflows

over K-best paths. On the other hand, centralized traffic engineering
solutions (e.g., B4 [16], SWAN [13], Hedera [4], SMORE [21]) are
too slow to react to dynamic traffic conditions. In contrast, DASH
complements distributed solutions (e.g., CONGA [5], HULA [20],
Contra [15], TeXCP [17], HALO [22], Gallagher [11]) by enabling
quick adaptation to traffic conditions.

7 DISCUSSION
Online distributed traffic engineering. We envision a programmable
system where operators specify high-level network-wide policies
(e.g., traffic engineering, routing), and the system at runtime gen-
erates corresponding measurement and control operations to run in
a fully distributed manner for load-aware traffic splitting. Such dy-
namic adjustment to load changes at data plane speeds raises many
interesting challenges, such as computing path weight distribution in
a resource-constrained environments like programmable data planes.
Traffic classification. For some workloads, operators may prefer to
split traffic over multiple paths, whereas for other workloads split-
ting may not preferred. Such flexibility could be enabled by having a
policy language (e.g., Contra [15]) with appropriate programming ab-
stractions. The underlying system would generate policy-compliant
probes over paths based on the desired policy. Also, the system
would generate switch-level code that classifies workloads and en-
forces the policy—e.g., whether or not to split a certain kind of
workloads.
Handling out-of-order packet delivery. DASH may split pack-
ets of a flow over multiple paths, especially when an update is in
progress. This can lead to out-of-order packet delivery. To miti-
gate out-of-order delivery, DASH can be integrated with flowlet
switching [5, 18], where packets are grouped into flowlets, and the
forwarding decision is updated at the granularity of flowlets. To be
specific, the switch remembers the path on which the first packet of
a flowlet is sent, and all subsequent packets in the flowlet are sent
along this path.

8 CONCLUSION
We have studied the tradeoffs of different novel data structures for
load-aware traffic splitting in the data plane. We presented DASH,
a data structure where the core idea is to assign a small number of
hash boundaries to each stage and maintain the hash boundaries by
leveraging multiple pipeline stages and per-stage SALUs. By doing
so, DASH enables accurate traffic splitting and efficient updates to
the path weights. Compared to the WCMP-based algorithms which
take thousands of packets, DASH takes significantly fewer—tens
of packets—to update path weights. DASH complements existing
solutions that operate entirely in the data plane to balance load dy-
namically across multiple paths.
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