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Abstract—The delivery of IP traffic through the Internet  rest of the Internet. The Internet topology alone does not
depends on the complex interactions between thousands ofprovide enough information to answer these questions. For
Autonomous Systems (ASes) that exchange routing informa- example, suppose that AS B connects to two providers, AS
tion using the Border Gateway Protocol (BGP). This paper A 5nq AS C. An AS graph would show connectivity from

investigates the tqpologlcal structure of thg Interpet interms A to B and from B to C; however, AS B's routing policies
of customer-provider and peer-peer relationships between

ASes, as manifested in BGP routing policies. We describe Would not permit transit traffic between A and C.
a technique for inferring AS relationships by exploiting par-  In the absence of a global registry, the AS-level struc-
tial views of the AS graph available from different vantage ture of the Internet is typically inferred from analysis of
points. Next we apply the technique to a collection of ten routing data. Previous work has focused on constructing a
BG_P routing tables to infer the relationships between neigh- view of the AS graph from traceroute experiments or in-
boring ASes. Based on these results, we analyze the hiery; iq 5| BGP table dumps. Traceroute provides a view of
archu_:gl structure of the Internet ar.]d bropose a ﬂve-k_avel the path from a source to a destination host at the IP-level
classification of ASes. Our analysis differs from previous ) . :
characterization studies by focusing on the commercial rela- 1 € fraceroute data must be analyzed to infer which inter-
tionships between ASes rather than simply the connectivity faces belong to the same router and which routers belong
between the nodes. to the same AS [6]. Running experiments between multi-
ple source-destination pairs provides a larger collection of
paths over time [6], [7], [8]. Other studies have extracted
AS paths directly from BGP routing tables or BGP update
Today'’s Internet is divided into more than 10,000 Aumessages [9], [10]. The routing table dump from the Uni-
tonomous Systems (ASes) that interact to coordinate tregsity of Oregon RouteViews server [11], [12] has been
delivery of IP traffic. An AS typically falls under the ad-the basis of several studies of basic topological properties,
ministrative control of a single institution, such as a univesuch as the distribution of node degrees [13], [14]. With
sity, company, or Internet Service Provider (ISP). Neigithe exception of the work in [10], these studies have fo-
boring ASes use the Border Gateway Protocol (BGP) [Hysed on the topological structure without considering the
[2] to exchange information about how to reach individuglationship between neighboring ASes. [10] presents a
blocks of destination IP addresses (or, prefixes). An A®uristic for inferring the relationships from a collection of
applies local policies to select the best route for each prefis paths and evaluates the technique on the RouteViews
and to decide whether to propagate this route to neighbdata.
ing ASes, without divulging these policies or the AS’s in- In this paper, we propose a technique for combining data
ternal topology to others. In practice, BGP policies reflefrom multiple vantage points in the Internet to construct a
the commercial relationships between neighboring ASesore complete view of the topology and the AS relation-
AS pairs typically have a customer-provider or peer-peships. Each vantage point offers a partial view of the Inter-
relationship [3], [4]. A provider provides connectivity tonet topology as viewed from the source node. Due to the
the Internet as a service to its customers, whereas pgmesence of complex routing policies, these partial views
provide connectivity between their respective customersare not necessarily shortest-path trees and may, in fact, in-
AS relationships, and the associated routing policieglude cycles. We generate a directed AS-level graph from
have a significant impact on how traffic flows through theach vantage point and assigmamk to each AS based
Internet. An understanding of the structure of the Internen its position. Then, each AS is represented by the vector
in terms of these relationships facilitates a wide range ifat contains its rank from each of the routing table dumps.
important applications. For example, consider a contdrinally, we infer the relationship between two ASes by
distribution company that has a choice of placing replicasmparing their vectors. The work we describe in this pa-
of a Web site in data centers hosted by different ASes. Tper is novel in two ways. First, we analyze AS paths seen
company can identify the IP prefixes and ASes responsiffilem multiple locations to form a more complete view of
for a large portion of the traffic from the site [5]. With arthe graph. Second, rather than simply combining the data
accurate view of the connectivity and relationship betwe&iom the various vantage points, we propose a methodol-
ASes, the company can identify the best locations for igly for exploiting the uniqueness of each view to infer the
replicas. As another example, consider a new regiorealationships between AS pairs.
ISP that wants to connect to a small number of upstream\We evaluate our technique on a collection of ten BGP
providers. An accurate view of the AS topology and relaeuting tables and summarize the characteristics of the AS
tionships between ASes can help the ISP determine whiefationships. To validate the inferences, we check for
ASes would provide the best connectivity to and from thgaths that are not consistent with the routing policy as-
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sumptions underlying customer-provider and peer-peer reAlthough ASes typically follow these guidelines, some
lationships. We show that these cases account for a seles have more complicated relationships in practice. For
proportion of the paths and that the most common incoexample, two ASes operated by the same institution may
sistencies may stem from misconfiguration or more corhave a sibling relationship where each AS provides tran-
plex AS relationships. Then, we analyze the resulting A& service for the other [10]. Other AS pairs may have
graph to characterize the hierarchical structure of the Intéackup relationships to provide connectivity in the event
net. We present a five-level classification of ASes withat a failure [15]. Alternatively, two ASes may peer indi-
top-most layer that consists of a rich set of peer-peer refactly through a transit AS [16]. Also, an AS pair may
tionships betweef0 so-calledtier-1 providers. This clas- have different relationships for certain blocks of IP ad-
sification can aid an institution in selecting or reevaluatindresses; for example, an AS in Europe may be a customer

its connections to other ASes in the Internet. of an AS in the United States for some destinations and a
peer for others. Router misconfiguration may also cause
[l. PROBLEM FORMULATION violations in the export rules. For example, a customer

. . may mistakenly export advertisements learned from one
In this section, we formulate the problem we are try- . -

: , ) : rovider to another. We initially assume that only a small
ing to solve. We first present a brief overview of AS re:

lationships and their implications on BGP export policie%rflCtlon of the AS pairs represent exceptions to the tradi-
|

Then we formally define the Type of Relationship (ToR onal provider-customer and peer-peer relationships. Our

problem for finding an assignment of AS relationships thaference technique is designed to tolerate occasional ex-

maximizes the number of paths that adhere to the exp%@pnons and, in fact, our algorlthm cap be used to identify
restrictions pairs that have unusual relationships.

, _ o B. Type-of-Relationship (ToR) Problem
A. AS Relationships and BGP Export Policies o ] )
BGP export policies have a direct influence on the AS

The relationships between ASes arise from contragigths seen from a particular vantage point in the Inter-
that define the pricing model and the exchange of trafet. If every AS adheres to the customer and provider
fic between domains. ASes typically havepeovider- export rules, then no path would ever traverse a customer-
customeror peer-peerrelationship [3], [4]. In a provider- provider edge after traversing a provider-customer or peer-
customer relationship, the customer is typically a smallgeer edge, and no path would ever traverse more than one
AS that pays a larger AS for access to the rest of the Intgeer-peer edge [10], [15]. To formulate these properties in
net. The provider may, in turn, be a customer of an ev@fgthematical terms, we denote an edge from a customer
larger AS. In a peer-to-peer relationship, the two peers a¢ea provider with a1, an edge from one peer to another
typically of comparable size and find it mutually advanyith a 0, and edge from a provider to a customer with a

tageous to exchange traffic between their respective cys- Restating a result from [10] in these terms, we have:
tomers. These relationships translate directly into policies

for exporting route advertisements via BGP sessions withT1€orem L:If every AS obeys the customer, peer, and
neighboring ASes: provider export policies, then every advertised path be-
« Exporting to a provider: In exchanging routing infor- longs to one of these two types for sodk N > 0:

mation with a provider, an AS can export its routes and Iype ; _i -+ N t!mesarl v Mtimes
routes of its customers, but cannot export routes Iearn?e'd ype 2 —1... Ntimes( +1... Mtimes

from other providers or peers. The first stage of a Typé path contains only customer-

« Exporting to a peerin exchanging routing information provider links (iphill portion) and the second stage con-
with a peer, an AS can export its routes and the routestgins only provider-customer linksi¢wnhill portion). The

its customers, but cannot export routes learned from otkeicond type captures all paths which traverse exactly one
providers or peers. peering link. The single peering link must appear in be-
« Exporting to a customerAn AS can export its routes, tween the uphill and the downhill portions of any path.
routes of its customers, and routes learned from otherThe type-of-relationship (ToR) problem can be formu-
providers and peers to its customer. lated as a graph theory optimization problem for labeling
Each BGP session defines a relationship between the tve edges of the graph with -al, 0, or 1 such that the
ASes it connects. Although two ASes may have multébserved paths obey the export policies implied by the re-
ple BGP sessions, the relationship between the two ASasonships. Given a grapty with each edge labeled as
should be uniquely defined. —1, 0 or +1, a pathp is said to bevalid if it is either of



Typel or Type2: this property by successively pruning the leaf nodes and
ToR ProblemGiven an undirected graphi with vertex assigning ranks to ASes as we prune.
setV and edge sekb and a set of path®, label the edges  Still, identifying the boundary point between the uphill
in E as either—1, 0 or +1 to maximize the number ofalid and downhill portions of a path is tricky. The structure of
paths inP. the partial view of the AS graph depends on the position
The graphG represents the entire Internet topology whef¥ the AS in the Internet hierarchy. When viewed from a
each node is an AS and each undirected edge represéfitsl AS that does not have any upstream providers, every
a relationship between the incident pair of ASes. The g#th consists of zero or one peer-peer edges followed by
of pathsP consists of all paths seen from the various vag-downhill portion. In practice, we expect the provider-
tage points. We believe that this problem is NP-compleistomer relationship to be acyclic [16]. That isuifs a
However, we have not been able to prove that this probldistomer ofv andv is a customer ofv, thenw is not a
is NP-complete nor are we aware of any theoretical woekistomer ofu. Hence, the partial view from a tier-1 AS
that provides a polynomial-time solution. would tend to be acyclic. In this case, successive pruning
In previous work, Lixin Gao [10] proposes and evaluwould identify provider-customer relationships. However,
ates a heuristic for inferring AS relationships from a coll other scenarios, the graph may have cycles. For exam-
lection of AS paths. For each AS path, the heuristic usBl, suppose sourck has two pathg, = (X, 4, B,C)
the degree of the nodes to identify the point that marks tABdp2 = (X, B, A, D). The resulting graph has a cycle
boundary between the uphill and downhill portions of theetween noded andB. As such, itis difficult to infer the
path. The inferences from multiple paths are later corfglationships betweel, A, andB. We exploit this obser-
bined to infer the relationship between the ASes. In tty@tion in our algorithm by assigning the same rank to all of
next section, we propose a heuristic for solving the TdRe ASes in the connected component of the graph. Infor-

an inference for these ASes.

I1l. | NFERRINGAS RELATIONSHIPS In practice, the Internet consists of a relatively small
) ) ) ) ) number of large Internet Service Providers (ISPs) and a
This section presents our algorithm for inferring AS r5r5e number of smaller ASes. A small AS must traverse
lationships. We describe_the properties of_ the pa_rtial At_§1e or more upstream providers to reach most of the many
graph observed from a single vantage point. This MOfjgher small ASes. As such, a large portion of the paths
vates our algorithm for assigning a rank to each AS fQf 5 granh should consist mostly of roughly equal down-
each of the partial views. Finally, we describe how to infefi| 5nd uphill portions of non-zero lengths. Thus, we ex-

the relationships between ASes based on their ranks in H&t a large portion of the edges in the graph to fall in

different views. a large, acyclic portion consisting of provider-customer
_ edges. The remaining edges should fall into a connected
A. Partial View of the AS Graph component near the source node. Our heuristic exploits

Routing data from a single vantage point provides a dbts property by making a loose association of AS rank
of paths from a particular source node. These paths can/ih the provider-customer relationship and using proba-
used to construct a directed graph that includes the edijéstic comparisons to resolve incorrect inferences.

(u,v) if one or more paths travel directly from A& to _

AS v. If every AS employed a simple shortest-path rouE' AS Ranking

ing policy, then this graph would be a shortest-path treeOur algorithm assigns a rank to each AS for each van-
rooted at the source. However, complex routing policiégage point. LetX denote the source AS of a particular
result in more complicated graphs that may include nowmew of the AS graph and leP(X) denote the set of AS
minimal paths and even cycles. The graph from a singdaths seen fronX'. Each patlp € P(X) consists of a se-
vantage point reveals a great deal of information about theence of nodes, starting witki. We construct a directed
relationship between ASes. Identifying the boundary poigtaphG x that consists of each edge that appears in one or
between the uphill and downhill portions of the paths imore of the paths i (X). We letv(Gx ) denote the set
the key to inferring the AS relationships. The uphill poref all vertices inG x and letleaves(Gx) € v(Gx) denote
tion of a route appears at the beginning of a path, near the leaves of the graph. For a givenC v(G), G is the
source node, whereas the downhill portion appears in thebgraph of7 induced by the vertices i'. Drawing on
later portion of the path. As such, a leaf node in the grapiis notation, we assign a rankimgnk(u) to each vertex

is likely to be a customer of its parent node(s). We explait € v(Gx) by applying the reverse pruning algorithm in



G =Gy C.1 Complete Dominance

r=1; In a view from sourceX, if AS ¢ has a higher rank than

while (leaves(G) # ¢) { AS j, theni appears to be a provider gf In complete
for all u € leaves(G) dominance, we assert that if the rank & more than that

rank(u) =r; of j irrespective of the vantage point, théis definitely

v' =v(G) — leaves(G); a provider ofj. A vectorc(i) is said to dominate(;), if
r=r+1 l(¢,5) > 0 andi(j,7) = 0. So, in vector terminology, if
G =Gy, c(i) dominates:(j), then we can infer thatis the provider

} of 7, assuming that the two ASes share an edge.

forall u € v(QG)

setrank(u) =, C.2 Equivalence

Two ASes are said to be equivalenteifz,y) >N/2.
This rule states that from more than% of the vantage
points, two ASes: andy appear in the same level of the

Figure 1. At each stage, the algorithm identifies the leBferarchy. Two ASes that appear ?n the same level in the hi-
nodes, assigns them a rank, and removes these nodes g&Rt¢hy from different vantage points are likely to be peers.
their incident edges) from the graph. In the end, the réhis rule is useful in finding peers among tier-1 and tier-2
maining nodes (if any) form the connected component Bfoviders.

the original graphGx; these nodes are all assigned the ]
same (highest) rank. C.3 Clustering

The algorithm assigns a rank to each AS. ComparisondVost of the partial views generated from our routing
between AS rankings play a major role in our inference dRble dumps are directed acyclic graphs. As a result, all
gorithm in the next subsection. However, many AS paifsSes in these graphs are removed at some stage of the
do not share an edge in the partial view. In many casé@verse pruning process. Hence(if;) is an edge in
the two ASes may not have an edgeity of partial views the partial view from a source, thenis removed before
because they are not connected to each other in the feal his implies that therank(i) > rank(j). Therefore
graph. In this scenario, the rank does not have any p@e can infer that ifi is a provider ofj, then with high
ticular meaning. In other cases, the two ASes may sh&@@bability [rank(i) — rank(j)| > 1 for every AS. Note
a link in one of the other partial views. In this scenaridhat if the edge is viewed fromi or its customers, then
our algorithm imposes a relative rank for these two AS&gnk(j) > rank(i). Given this constraint, the Euclidean
even though they may not share an edge from soiirse distance between(i) andc(j) is at leastsqrt(V). How-
perspective. For example, consider a souxcwith paths ever, it is hard to infer from this that if the distance be-
(X,A,C,D) and (X, B, E, F) that do not use the edgetweenc(i) andc(j) is more thansgrt(N) then they have
(C, E). Our algorithm assigns a rank bfto nodesD and @ provider-customer relationship. This is becaus®dj
F, arank of2 to nodesC' and E, and a rank o to nodes can be peers and still have a few coordinates where their
A and B. Despite the fact that the edg€, E) does not ranks have a large difference. We observe this for some
appear inG x, we may be able to exp|0it the presence dfuropean ISPs that peer with American ISPs. However,
both nodes in(G'x ) in conjunction with the ranking from one can infer the opposite of this rule. If the distance
other vantage points that do include the edge to draw Retween: andj is strictly less tharsqrt(N), then they

ferences about the relationship betw&eand E. are more IIkely to be peers. This rule clusters thése
dimension vectors into spheres of radigst(V) to iden-

tify possible peers.

Fig. 1. Reverse pruning algorithm on gra@h

C. Inference Rules for the ToR problem

The routing data from each vantage point providesca4 Probabilistic Rules

partial view of the Internet. Given data frol vantage = We introduce two probabilistic rules to tolerate uncer-
points, we map each AS into aN-dimensional vector tainty in in export policies and our ranking mechanism.
c(i) = (ri1,...,rin), Wherer;; is the rank of AS; from  Probabilistic Dominancestates that if (¢, j)/1(j,4) > do
vantage poiny. Leti(i,j) refer to the number of coordi- for a high value o, theni is a provider ofj. Typically,
nates where;;, > r;; ande(i, j) be the number of coor- in graphs from the vantage point pbr its customers, it is
dinates where;;, = rj, forallk = 1,2,..., N. probable thatank(j) > rank(i) even ifi is a provider of



4. To avoid an incorrect inference, we introduce the rule of TABLE |
probabilistic dominanceProbabilistic Equivalenceccurs TELNET LOOKING GLASS SERVERS
whenl (i, 5)/1(j,1) < d; for §; close to 1. We use this rule

to infer peering relationships between ASes which are not ASif 5 _tName #f;fle; CJrhlagog/e
in th(_e same level in the hierarchy gnd tho_se_ cases where the 1740 ngﬁget 14287 'n/;
relationship between two ASes is not visible from many  ~3529T Giobalcrossing 13542 +1.0%
partial views. An AS relationship may not be visible from 3582 | University of Oregon| 23136| -0.4%
a partial view because ASes may assign a low preference [ 3967 | Exodus Comm. 19005| +0.4%
to paths that traverse this edge. Using probabilistic equiv- | 4197 | Global Online Japan| 13474| +1.0%
alence, we test whether two ASes are peers. We use values| 5388 | Energis Squared 13534| +2.1%
of 3 and 2 ford, andd; respectively. 7018 | AT&T 14160| +3.0%

8220 | COLT Internet 11282 n/a
C.5 Order of Application 8709 | Exodus, Europe 15519 +0.7%

The relationship inferences depend on the order in
which we apply these rules. We treat equivalence and
dominance as the basic rules for inferring peer-peer aif best and alternate paths for each prefix and construct
provider-customer relationships. We apply equivalenéelist of all AS paths that appear in the table. For each
before checking for dominance. Since we apply donfath, we add the AS number of the router to the beginning
nance after the equivalence rule,(if ;) is inferred as a of each path and remove duplicate AS numbers that arise
provider-customer relationship using the dominance ruféom AS prepending. Then we process the paths to con-
then the rank of should be more than the rank pin at struct a partial view of the AS graph. After constructing
least N/2 of the dumps. If this is not the case, the ranthe partial views, we apply the ranking algorithm and in-
of 4 should be equal to that of in at leastN/2 dumps ference rules from Section IIl to assign a relationship to
thereby classifying the link as a peer-peer using the equ&ch AS pair that shares an edge in one or more of the
alence rule. Therefore those provider-customer relatioiguting tables.
ships inferred using the dominance and equivalence ruleslable | provides a summary of the ten tables we down-
can be treated with a high level of confidence. We applgaded on April 18, 2001. The “# Edges” column shows
the clustering condition before applying the probabilistithe number of unidirectional edges in the AS paths. The
rules. The dominance, equivalence, and clustering contithange” column indicates the change in the number of
tions are powerful constraints for determining the type @fdges from April 18 to May 1, when we downloaded a new
a relationship. The probabilistic rules are applied to elincopy of the tables. The entry for AS 3582 corresponds to
inate the AS relationships that cannot be inferred from tliee University of Oregon RouteViews server, which h2s

more basic conditions. peering sessions witsy different ASes [11]. The Route-
Views server has an especially rich view of the AS graph,
IV. EXPERIMENTAL RESULTS with over 23,000 edges compared to 11,000-15,000 edges

This section evaluates our inference techniques orfos most of the other routing tables. In total, the AS paths
collection of ten publicly-available BGP routing tablesin the ten routing tables have 24,752 unidirectional edges
We classify the relationships between ASes and identifyogtween 24,059 pairs of ASes. More th25f, of the
small number of AS paths that are inconsistent with the redges appear in all ten routing tables, as shown in Fig-
lationship assignment. The most common anomalies seef@ 2, which plots a histogram of the percent of edges that
to stem from recent acquisitions and mergers, suggestagpear inz of the 10 routing tables. More thad0% of the
that some AS pairs may have a sibling relationship. edges appear in at least two dumps.

i We use the partial views from these ten routing tables
A. BGP Routing Table Data to generate our inferences of the AS relationships. In Sec-

Our inference techniques have been applied to a coll¢gion IV-C, we validate our inferences using the AS paths
tion of ten BGP routing tables available from Telnet Lookirom another collection of routing tables. We manually
ing Glass servers. We automated the process of contactilogvnloaded routing data from Ebone (AS #1755), MAE-
each server, sendingtiow ip bgp ”to the command- West (AS #2548), KDDI Japan (AS #2516), and Cable
line interface, and storing the resulting table. For each desd Wireless (AS #6893) on April 9, 2001. These four
tination prefix the table has one or more routes with a veables are available from Web Looking Glass servers that
riety of BGP attributes, including the AS path. We extradtave a slightly different interface than the Telnet servers.



TABLE IlI

30

25 L E DISTRIBUTION OF THE23,953INFERENCES
¢ 20 B
gl | Rule Number | Percentage
5 Complete dominance 22,241 97.93%
sr i Probabilistic dominance 471 2.07%
>r i Equivalence 836 67.37%
T s 4 s 6 v 8 5 10 Probabilistic equivalence 278 22.40%
# of Dumps Clustering 127 10.23%
Fig. 2. Percentage of edges that appear @i the ten tables
TABLE Il of Lixin Gao in [10]. Our inference tha5.2% of the
INFERRED RELATIONSHIPS FOR24,059 ASPAIRS AS pairs (1,241 pairs) are peers is close to Gao’s values
between5.3% and 7.8%. The percentage of provider-
Relationship | # AS pairs| Percentagd customer relationships we infer is withir-1.5% of the
Provider-customef 22,712 94.40% figure reported in [10]. Her study drew on RouteViews
Peer-peer 1,241 5.16% data from September 1999, January 2000, and March
Unknown 106 0.44% 2000. The number of edges in the RouteViews dump

has grown by oveff0% over the lastl3 months. With

the larger RouteViews table and the nine other tables, our
The Web interface typically does not permit users to igpllection of edges is twice as large as the graph used in
voke the Show ip bgp " command. Instead, we relyher earlier study. Using traceroutes from 16 sources to
onthe ‘bgp paths ”command that produces a list of AS400,000 destinations [8] in October 2000, CAIDA con-
paths, without the destination prefiX or an indication of ﬂ'ﬁructed an AS graph thatis s||ght|y |arger than ours. Their
best path. As with theshow ip bgp " data, we extract final graph consists of 7,563 ASes and 25,005 edges. Ours
the AS paths, add the AS number of the source AS, agghtains 10,698 ASes and 24,752 edges. However, they do

remove duplicate ASes. Then, we use the results of Gyt explore this graph in terms of AS relationships.
inference algorithm to assign a relationship to each unidi-

rectional edge in each path and look for paths that violdte Validation of Inferences

the two patterns identified in Section II. Since the peering and customer information of an ISP
are proprietary information, we cannot validate our infer-
ences against an official list of AS relationships. Instead,
Table Il summarizes the results from applying our infewe determine what percentage of the AS paths actually ad-
ence algorithm to the ten BGP tables from Table I. Our dtere to the export rules suggested by our inferences. There
gorithm produces an inference for o¥x5% of the edges are two scenarios where we may label an AS path as an
in our AS graph (23,953 of the 24,059 AS pairs). The vaghomaly: one in which some AS in the path actually vio-
majority of AS pairs appear to have a provider-customéates the export rules or the other in which our relationship
relationship. Approximatelyp% of the AS pairs have a inference of one of the edges in the path is wrong. The per-
peer-peer relationships. Table IlI highlights the role of th@entage error that is reported in this section is the sum total
various inference rules in drawing conclusions about AS these two scenarios. For our validation, we draw on the
relationships. A large percentage of the provider-customiest of AS paths from two of the ten of the Telnet Looking
relationships are inferred from the complete dominan@ass Servers (AS numbers 1 and 7018) used to construct
rule. Complete dominance iN dimensions is a good in- our original inferences, as well as the four Web Looking
dication of a provider-customer relationship and we cablass Servers (AS numbers 1755, 2516, 2548, and 6893).
be reasonably certain 87.93% of our provider-customer If every AS pair has a customer-provider or peer-peer
inferences. Similarly, close t80% of the peering links relationships, then every AS path should have have one
are inferred from the equivalence and clustering condif the two patterns identified in Theorem 1. A path is an
tions. The probabilistic rules account farl% of the anomaly if it has any two adjacent edges having one of the
provider-customer inferences afél.4% of the peer-peer following patterns:
inferences. 1. (+1 —1): An AS permits transit traffic between two of
The percentages of provider-customer and peer-peeriteproviders.
lationships in Table Il are consistent with the conclusiors (41 0): An AS permits transit traffic from one of its

B. Relationship Inferences



peers to one of its providers. terns (1239 1740 7018) and (3561 5400 5727) seem to
3. (0 —1): An AS permits transit traffic from one of its have similar explanations; Cerfndtr{l0) was acquired by

providers to one of its peers. AT&T (7018), and AS5400 and AS5727 are both part of
4. (0 0): An AS permits transit traffic between two of itsthe Concert IP backbone. For the anomaly pattern (1239
peers. 8043 6395), further investigation showed that IXC Com-

Case 1 represents a serious violation of the export rulesunications has acquired SmartNAP (8043) and IXC was
This anomaly may arise from a misconfigured customer later renamed as Broadwing (6395) [20]. Similar anec-
or due to a misclassified relationship where the custonttes apply to many of the other popular anomaly patterns.
AS is actually a sibling of one or both of the providers. ldentifying anomaly patterns may be a useful way to de-
Backup and sibling relationships relationships can causet sibling relationships. In the absence of misconfigura-
case2 and cas& anomalies. Case 4 suggests that the patbns, we can label all caseanomalies as caused by sib-
traverses two consecutive peering links, which may be péng relationships. That is, if the AS paii, B,C) is a
missible if two the peers have a sibling relationship farasel anomaly, eitherd and B or C' and B are siblings.
some destination prefixes. Detecting these anomaly patkis do not extend this to cageor case3 anomaly pat-
provides a way to identify AS pairs that may have moterns since these anomaly patterns may represent backup
complicated relationships. relationships or other complex transit agreements. Ignor-
As shown in Table IV, the vast majority of paths aréng the KDDNet dump, we observe)9 unique casd
consistent with the relationship assignments and the asgoemaly patterns. In thes#9 patterns, we found 90
ciated export policies. The percentage of anomalies varigsque AS pairs with possible sibling relationshigg; of
between2-3.4% for five of the six routing tables. Thesethese possible sibling relationships appeared in multiple
results validate our base assumption that the export rupgghs. As an example, AB85 (AT&T Global Network
are observed by a large percentage of the ASes. Hddervices) appears in the middle as a customer in many
ever, KDDI (AS #2516) has a relatively high percentageasel anomalies. This AS may have a sibling relationship
of anomalous paths$(:%). For every anomalous path, wewith AS 7018 (AT&T). Our sibling inferences account for
can identify an anomaly pattern consisting of three adjesughly 0.8% of the edges in the AS graph. The work by
cent ASes(4, B, C) where the pair of edge4, B) and Gao [10] identifiesl.5% of the edges to be siblings; her
(B, C) falls into one of four cases. The results in Table IValidation of a subset of these inferences on a private data
show that case 3 anomalies are very uncommon and cegefound tha20% of these inferences were valid. We plan
1 arises less frequently than case 2 and case 4. KDDtweexplore our approach for detecting sibling relationships
exhibits an unusually high number of all four cases (espa-more detail as part of future work.
cially case 4); further investigation is necessary to explain
this fact. A small number of AS tripleg4, B, C) are re- V. INTERNET HIERARCHY
sponsible for the vast majority of the anomalies. For mostThe termtiers has been used informally in discussions
of the routing tables, ten different AS triples were respo@bout the hierarchy of ASes in the Internet topology. How-
sible for more tha90% of the anomalous paths. ever, precise rules for classifying ASes into tiers have not
been resolved. The work in [9] uses node degree to group
ASes into different classes. ASes with a large humber of
The last column in Table IV lists one popular triple foneighbors are placed above ASes with a small node de-
each routing table dump. For example, the anomaly gitee. However, a simple degree-based classification may
65112 6461) includes a private AS number (65112) [17pt capture the essence térs in the hierarchy. In this
that should not appear in an AS path between two pubgiection, we infer a hierarchy that symbolizes the business
ASes (| and6461). This anomaly pattern alone accountetklationships between ASes. Typically, a customer should
for more than half of the anomalous paths in this dumpe at a lower level in the hierarchy than its providers. An
We analyzed the other anomaly patterns using the RARBsential component to such a characterization is a knowl-
whoisdata [18] which identifies ASes by name and somedge of the relationships between ASes. We now briefly
times includes a list of import and export policies. Cordescribe the rationale behind our approach for inferring the
sider the anomaly pattern (7018 6841 3300) with AT&ifferent levels in the AS hierarchy.
(7018), Infonet Europe (6841), and AUCS (3300). The In order to capture these hierarchical properties, we rep-
RADB data states that AS 6841 exports and import all atesent the AS topology as a directed graph where the di-
vertisements from AS 3300. We confirmed that Infoneéction of an edge indicates the type of relationship be-
and AUCS have recently merged [19]. The anomaly pdtveen the two ASes. To the best of our knowledge, previ-

D. Common Anomaly Patterns



TABLE IV
QUANTIFICATION & DISTRIBUTION OF PATH ANOMALIES

AS # | AS Name| #of Anomaly | Anomaly | Unique | Case 1| Case 2| Case 3| Case 4 Popular

Paths Paths % Anomalies Anomaly
1 | Genuity 65,383 1,679 2.57% 115 23 89 3 159 | (1651126461)
7018 | AT&T 141,283 3,357 2.37% 101 16 85 0 181 | (7018 6841 3300
6893 | CW 70,253 2,384 3.39% 148 24 115 9 210 | (356154005727
2548 | MaeWest | 115,199 2,298 2.00% 233 57 171 5 256 | (12398043 6395
1755 | Ebone 23,469 703 3.00% 131 21 103 7 212 | (33008933 2200
2516 | KDDI 126,414 10,709 8.47% 594 248 306 40| 1101| (209 1800 1239)

ous works have considered the topology as an undirectgmtithm to our graph reveals0 small regional ISPs. We
graph that simply captures the connectivity between thefine the remainder of the graph as twee, consisting
ASes. In our graph, a provider-customer relationship bef a connected component with jusi7 ASes and, 578
tweenA and B is represented by a directed edge freim unidirectional edges. This represents more tBa% of

to B and a peering relationship betwednand B is rep- the total number of edges in the graph. The nodes in the
resented by two directed edges, one frdnto B and the core have an average degree of 6.

other fromB to A. We analyze the graph constructed by

applying our inference techniques to the ten Telnet LooR- Dense Core

ing Glass servers discussed in Section IV. The set of ASes that remain after the pruning process

represent theore of the Internet. Given the nature of the
reverse pruning process, we can infer that for every AS

Customers are the easiest class of ASes that can be ghessent in the core, all of its peers and its provider should
sified from this directed graph structure of the AS top@iso be present in the core. The core of the graph should
logy. Customers are those stub networks which are originglude the small number of so-call¢iér-1 providers. In
and sinks of traffic and which do not carry any transit trapractice, the term “tier-1 provider” is loosely defined as a
fic. From the very definition of the direction of edges ifilarge” AS or as an AS that does not have any upstream
our graph, we can infer the customer ASes to be the leayesvider. We could identify these ASes by looking for
of this directed graph. In a directed graph, a leaf is a nod# provider-free nodes. However, this approach would be
with out-degreed. Since an undirected graph makes nsensitive to a small number of missing edges or misclas-
distinction between out-degree and in-degree, customsifeed relationships in our AS graph. Instead, we could
with multiple providers would have a degree more thanexploit the observation that every provider-free AS would
and hence would not appear as leaves of the graph. Mogeder with every other provider-free AS to ensure reacha-
ing the topology as a directed graph provides a more piality to all destinations. That is, the set of tier-1 ASes
cise characterization of the bottom-most layer in the Ashould form a cligue where every AS has an edge to and
hierarchy. In the directed graph constructed from the ténom each of the other ASes. Other provider-free ASes, if
BGP dumps,38,852 of the 10,698 ASes are leaf nodes.they exist in our graph, would be excluded from the set of
The rest of the graph contains just5% of the ASes. tier-1 providers.

Once we identify the customers and remove these nodedn practice, some ASes may have complex transit or
the resulting graph has a new set of leaves. These leavaskup relationships to provide connectivity. We define
represent small regional ISPs that have one or more caswveaker notion of theense coreas the largest subset of
tomers. We can continue the process of pruning the leav&Ses whose induced subgraph is “almost a clique.” We de-
of the graph until we reach a point where the graph hfise a directed graph a¥ nodes to belensef every node
no leaves. This involves applying a reverse pruning algio+ the graph has an in-degree and out-degree of at least
rithm similar to Figure 1 in Section IlI-B. We define the sefiv/2. We have setV/2 as an artificial cut-off for deter-
of nodes removed by this processsasall regional ISPs mining the dense core in the AS topology. The problem of
Since every peering relationship is represented as a loolefermining the largest clique in a graph is NP-hard. Given
two edges in the graph, no ASes with peering relationshifigat a clique is just one example of a dense graph, the
are included in this layer. Applying the reverse pruning gbroblem of finding the largest dense subgraph of a graph

A. Customers and Small Regional ISPs



X = {z}; output by the algorithm was indeed a good ordering for
pos(z) = 1;7 = 1; choosing the vertices of the dense core. In other words,
while (X # v(@)) { it validates the rationale behind our greedy approach that
computey € v(G) — X with maxd(y, X) if y appeared before in the ordering thery had a better
(selecting they with the max out-degree)| ~ chance of being present in the dense core than
ia;;f d:g%i’(r) — d(y, X): B.2 Properties of the Dense Core
r=r+1; Applying this algorithm to the core of our graph, we
pos(y) =r; identify a dense core consisting 20 ASes. These ASes
} include the large ISPs such as Genuity, Sprint, AT&T, Ex-
odus.net, and Alternet. The t@p ASes have a very dense
Fig. 3. Greedy algorithm to order the nodes connectivity of329 peering links. The tod5 of the 20

ASes almost form a clique with only three edges missing
from the clique. The largest clique we observed in this
b_ecomes_ mugh harder. We hgve developed a greedy amﬂ'ermost core consisted 8 ASes. The20 ASes have
rithm for identifying the ASes in the dense core. 6,852 provider-customer edges to customer ASes and 964
provider-customer edges to the small regional providers.
After removing the dense core, the remainder of the core
First, we order the vertices based on a “greedy” noti@ensists of 837 ASes.
of connectivity, following the algorithm in Figure 3. Let
G represent the directed graph representation of the coq;e.
Letv(G) andE(G) represent the vertices and edges of the After removing the dense core, we noticed the presence
graphG. Letd(z,Y) for x € v(G) andY C v(G) de- of other large national providers and hosting companies
note the number of edges of the fofm, z) wherez € Y. that have peering relationships with many of the ASes in
Connectivity from a node to a given set of nodes refer the dense core. To identify these ASes, we define the no-
the number of directed edges from that node to any of thien of atransit core Nodes in the transit core peer with
nodes in the set. Assume thiabf the N nodes are already each other and with ASes in the dense core, but they do
ordered. For each of the remainidg — k& nodes, we de- not tend to peer with many other ASes. In our directed
termine the connectivity to the nodes and pick the nodegraph representation, these peering links are essentially the
with the maximum connectivity as thg + 1)%*. When incoming directed edges from vertices outside this set to
multiple nodes have the same connectivity, we choose thetices within the set. We define such a set of edges to
node with a higher out-degree. In Figureds(z) denotes be thein-way cutof the graph induced by the given set.
the position of a node in the final ordering. Using this property, we define the transit core as the small-
Let z; denote the®™ AS in the ordering and(; be the est set of ASes containing the dense core which induces a
set of the topi ASes. Letconn(i) represent the connec-weak in-way cut. We can presently visualize a weak in-
tivity of ; which is equal tad(z;, X;_1). We define the way cut to have a small number of edges compared to the
dense core as the s&. for the smallest value of such total number of ASes in the transit core.
that conn(k + 1) < (k + 1)/2 and X}, is dense. Once . _
the value ofonn(k + 1) falls below the valugk + 1)/2, C-1 ldentifying the Transit Core
the (k + 1) node will violate thedenseproperty. There-  Given X C v(G), let cut;,(X) denote the set of all
fore if conn(k 4+ 1) < (k + 1)/2, the induced subgraph ofedges of the fornfy, z) wherey € v(G) — X andz € X.
X1 will not be dense since the out-degreezpf ; will We define a cutX of the vertex set(G) to be a weak
be less tharik + 1)/2. However this does not mean that itut if |cut;, (X)| < |X|/2. The problem of finding weak
conn(k +1) > (k+1)/2, thenX;, is dense. Consider cuts in a graph is NP-complete and there are no good ap-
the scenario where a nodg for somej < k is linked to proximation algorithms for that problem. Given that the
more tharj /2 elements inX; and not linked to any nodetransit core is a super-set of the dense core and that the
in X; — X;. This is an example wherenn (k) > k/2 but dense core is derived by the greedy ordering, we apply the
X}, is not dense. In this regard, our algorithm is greedyame ordering to find the transit core as was used to find
For the AS topology that we obtained, the point whetbe dense core. A natural way of using this ordering to find
conn(k) dropped belowk/2 was the first value of for the transit core is to find the smallest valuekto$uch that

B.1 Identifying the Dense Core

Transit Core
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TABLE V TABLE VI

DISTRIBUTION OF ASES IN THE HIERARCHY INTER-CONNECTIVITY ACROSSLAYERS
Level # of ASes Layer| O 1 2 3 4
Dense core (0) 20 0 329 | 776 | 931 | 964 | 6852
Transit core (1) 162 1 213 | 1052 | 1344 | 728 | 3660
Outer core (2) 675 2 8 74 1070 | 390 | 3196
Small regional ISPs (3 950 3 0 0 0 202 | 2376
Customers (4) 8852

between various layers in the AS hierarchy. Each number

lcutin(Xk)| < k/2. Surprisingly we found that the valuerefers in the table refers to the total number of edges from
of k at which|cut;, (X})| < k/2 also satisfied the prop-the layer represented in the same row to the layer repre-
erty thatconn (k+1) = 1. This means that no two edges isented in the same column. For examfilg; is the total
cutin(Xy) have the same source. A weak cut also meafggmber of edges from layer 0 to layer 1. The tables shows
that more tharb0% of the ASes inX; do not have any several key properties of the Internet topology:
peering relationship with any of the ASes#iG) — X;. . The ASes in dense core are very well connected.
Hence by this definitionX;; should indeed contain all the. As we move from the dense core toward customers, the
transit providers. inter-layer and intra-layer connectivity drops significantly.
« The large number of customer ASes have their providers
distributed across all the layers. The ASes in laysup-

Applying the in-way cut algorithm to our graph, weport a large number of customer ASes. This indicates that
discover a transit core consisting of the 162 ASes, nle connectivity across layers is not strictly hierarchical, as
including the 20 ASes in the dense core of the graphiso observed in [9].
These 162 ASes have 213 peering links with ASes inThe number of edges within the outer core is less than
the dense core. Concert, Singapore Telecommunicatioihg total number of vertices in the outer core. This in-
UUNet European division, Teleglobe European divisiodicates the presence of multiple disconnected groups of
and KDDi Corporation, Japan are some example ISPsASes in the outer core; ASes in different groups commu-
our transit core. We found many of the top providers inicate via ASes in the dense core and the transit core.
Europe and Asia to be present in our transit core. The graphs in Figure 4 explores the relationship be-

tween node degree and the layers in the hierarchy. We

D. Outer Core define node degree as the number of neighboring ASes

We classify all of the remaining ASes in the core asithout regard to the relationship. The top graph plots the
the outer core The members of the outer core typicalllcumulative distribution of node degree on a logarithmic
represent regional ISPs which have a few customer ASEsle and the bottom graph focuses on the large number of
and a few peering relationships with other such region&Ses with no more than 15 neighbors. In general, layer
ISPs. The outer core consists of 675 ASes that have 8 péeand 1 ASes have high degree, and layer 3 and 4 ASes
ing sessions with ASes in the dense core and 74 peeriagd to have low degree. However, this is not universally
sessions with ASes in the transit core. We observed thiate. Some customers at layer 4 have a large number of
many members of our outer core are regional ISPs. Soopstream providers, and some ASes in the dense core at
examples include Turkish Telecomm, Williams Commuayer O have a relatively small number of neighbors. For
nications Group, CAIS Internet, Southwestern Bell Inteexample, our results suggest that AS 1833 (TeliaNet USA)
net Services and Minnesota Regional Network. It is iftas a degree of only 40. Yet, we classify TeliaNet as part
teresting to note that while Exodus Communications (A the dense core due to its rich collection of peering rela-
4197) is present in our outer core, Exodus.net (AS 396i)nships. A hierarchy based solely on degree distribution
is present in the dense core. would not be able to make this distinction.

C.2 Properties of the Transit Core

E. Summary VI. CONCLUSIONS

Table V summarizes the number of ASes at each levelThe relationships between ASes has a significant im-
in the hierarchy—dense core (layer 0), transit core (laypact on the flow of traffic through the Internet. Our work
1), outer core (layer 2), small regional ISPs (layer 3), amdakes two important contributions toward understanding
customers (layer 4). Table VI summarizes the connectivitiye structure of the Internet in terms of these relationships:
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« An algorithm for inferring AS relationships from partial 17]
views of the AS graph from different vantage points

« A mechanism for dividing the Internet hierarchy intg1g]
layers based on AS relationships and node connectivity([19]
The complete structure of the Internet is unknown and d'E—O]
ficult, if not impossible, to obtain. Our approach is com-
prised of many heuristics, with certain limitations:

« We draw our inferences based on only ten vantage points
available from Telnet Looking Glass servers. Ideally, we
would have a larger collection of routing tables from more
diverse vantage points, including smaller customer ASes.
« We treat the RouteViews routing table as a view from
a single AS. In future work, we plan to extract a separate
view for each AS patrticipating in the RouteViews project.

« Multiple ASes may fall under the administrative control
of a single institution, due to historical artifacts and market
forces. We plan to extend our methodology to incorporate
more complex routing policies that are not captured by the
traditional customer-provider and peer-peer relationship.
Despite these limitations, we have shown that our ap-
proach provides a detailed view of the Internet topology
in terms of the relationships between ASes.
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