
Characterizing the Internet Hierarchy from Multiple Vantage
Points

Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, Randy H. Katz

Report No. UCB/CSD-1-1151

August 2001

Computer Science Division (EECS)
University of California
Berkeley, California 94720

This work was supported by DARPA Contract No. N00014-99-

C-0322.



1

Abstract—The delivery of IP traffic through the Internet
depends on the complex interactions between thousands of
Autonomous Systems (ASes) that exchange routing informa-
tion using the Border Gateway Protocol (BGP). This paper
investigates the topological structure of the Internet in terms
of customer-provider and peer-peer relationships between
ASes, as manifested in BGP routing policies. We describe
a technique for inferring AS relationships by exploiting par-
tial views of the AS graph available from different vantage
points. Next we apply the technique to a collection of ten
BGP routing tables to infer the relationships between neigh-
boring ASes. Based on these results, we analyze the hier-
archical structure of the Internet and propose a five-level
classification of ASes. Our analysis differs from previous
characterization studies by focusing on the commercial rela-
tionships between ASes rather than simply the connectivity
between the nodes.

I. INTRODUCTION

Today’s Internet is divided into more than 10,000 Au-
tonomous Systems (ASes) that interact to coordinate the
delivery of IP traffic. An AS typically falls under the ad-
ministrative control of a single institution, such as a univer-
sity, company, or Internet Service Provider (ISP). Neigh-
boring ASes use the Border Gateway Protocol (BGP) [1],
[2] to exchange information about how to reach individual
blocks of destination IP addresses (or, prefixes). An AS
applies local policies to select the best route for each prefix
and to decide whether to propagate this route to neighbor-
ing ASes, without divulging these policies or the AS’s in-
ternal topology to others. In practice, BGP policies reflect
the commercial relationships between neighboring ASes.
AS pairs typically have a customer-provider or peer-peer
relationship [3], [4]. A provider provides connectivity to
the Internet as a service to its customers, whereas peers
provide connectivity between their respective customers.

AS relationships, and the associated routing policies,
have a significant impact on how traffic flows through the
Internet. An understanding of the structure of the Internet
in terms of these relationships facilitates a wide range of
important applications. For example, consider a content
distribution company that has a choice of placing replicas
of a Web site in data centers hosted by different ASes. The
company can identify the IP prefixes and ASes responsible
for a large portion of the traffic from the site [5]. With an
accurate view of the connectivity and relationship between
ASes, the company can identify the best locations for its
replicas. As another example, consider a new regional
ISP that wants to connect to a small number of upstream
providers. An accurate view of the AS topology and rela-
tionships between ASes can help the ISP determine which
ASes would provide the best connectivity to and from the

rest of the Internet. The Internet topology alone does not
provide enough information to answer these questions. For
example, suppose that AS B connects to two providers, AS
A and AS C. An AS graph would show connectivity from
A to B and from B to C; however, AS B’s routing policies
would not permit transit traffic between A and C.

In the absence of a global registry, the AS-level struc-
ture of the Internet is typically inferred from analysis of
routing data. Previous work has focused on constructing a
view of the AS graph from traceroute experiments or in-
dividual BGP table dumps. Traceroute provides a view of
the path from a source to a destination host at the IP-level.
The traceroute data must be analyzed to infer which inter-
faces belong to the same router and which routers belong
to the same AS [6]. Running experiments between multi-
ple source-destination pairs provides a larger collection of
paths over time [6], [7], [8]. Other studies have extracted
AS paths directly from BGP routing tables or BGP update
messages [9], [10]. The routing table dump from the Uni-
versity of Oregon RouteViews server [11], [12] has been
the basis of several studies of basic topological properties,
such as the distribution of node degrees [13], [14]. With
the exception of the work in [10], these studies have fo-
cused on the topological structure without considering the
relationship between neighboring ASes. [10] presents a
heuristic for inferring the relationships from a collection of
AS paths and evaluates the technique on the RouteViews
data.

In this paper, we propose a technique for combining data
from multiple vantage points in the Internet to construct a
more complete view of the topology and the AS relation-
ships. Each vantage point offers a partial view of the Inter-
net topology as viewed from the source node. Due to the
presence of complex routing policies, these partial views
are not necessarily shortest-path trees and may, in fact, in-
clude cycles. We generate a directed AS-level graph from
each vantage point and assign arank to each AS based
on its position. Then, each AS is represented by the vector
that contains its rank from each of the routing table dumps.
Finally, we infer the relationship between two ASes by
comparing their vectors. The work we describe in this pa-
per is novel in two ways. First, we analyze AS paths seen
from multiple locations to form a more complete view of
the graph. Second, rather than simply combining the data
from the various vantage points, we propose a methodol-
ogy for exploiting the uniqueness of each view to infer the
relationships between AS pairs.

We evaluate our technique on a collection of ten BGP
routing tables and summarize the characteristics of the AS
relationships. To validate the inferences, we check for
paths that are not consistent with the routing policy as-
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sumptions underlying customer-provider and peer-peer re-
lationships. We show that these cases account for a small
proportion of the paths and that the most common incon-
sistencies may stem from misconfiguration or more com-
plex AS relationships. Then, we analyze the resulting AS
graph to characterize the hierarchical structure of the Inter-
net. We present a five-level classification of ASes with a
top-most layer that consists of a rich set of peer-peer rela-
tionships between20 so-calledtier-1 providers. This clas-
sification can aid an institution in selecting or reevaluating
its connections to other ASes in the Internet.

II. PROBLEM FORMULATION

In this section, we formulate the problem we are try-
ing to solve. We first present a brief overview of AS re-
lationships and their implications on BGP export policies.
Then we formally define the Type of Relationship (ToR)
problem for finding an assignment of AS relationships that
maximizes the number of paths that adhere to the export
restrictions.

A. AS Relationships and BGP Export Policies

The relationships between ASes arise from contracts
that define the pricing model and the exchange of traf-
fic between domains. ASes typically have aprovider-
customeror peer-peerrelationship [3], [4]. In a provider-
customer relationship, the customer is typically a smaller
AS that pays a larger AS for access to the rest of the Inter-
net. The provider may, in turn, be a customer of an even
larger AS. In a peer-to-peer relationship, the two peers are
typically of comparable size and find it mutually advan-
tageous to exchange traffic between their respective cus-
tomers. These relationships translate directly into policies
for exporting route advertisements via BGP sessions with
neighboring ASes:

� Exporting to a provider: In exchanging routing infor-
mation with a provider, an AS can export its routes and
routes of its customers, but cannot export routes learned
from other providers or peers.
� Exporting to a peer:In exchanging routing information
with a peer, an AS can export its routes and the routes of
its customers, but cannot export routes learned from other
providers or peers.
� Exporting to a customer:An AS can export its routes,
routes of its customers, and routes learned from other
providers and peers to its customer.

Each BGP session defines a relationship between the two
ASes it connects. Although two ASes may have multi-
ple BGP sessions, the relationship between the two ASes
should be uniquely defined.

Although ASes typically follow these guidelines, some
ASes have more complicated relationships in practice. For
example, two ASes operated by the same institution may
have a sibling relationship where each AS provides tran-
sit service for the other [10]. Other AS pairs may have
backup relationships to provide connectivity in the event
of a failure [15]. Alternatively, two ASes may peer indi-
rectly through a transit AS [16]. Also, an AS pair may
have different relationships for certain blocks of IP ad-
dresses; for example, an AS in Europe may be a customer
of an AS in the United States for some destinations and a
peer for others. Router misconfiguration may also cause
violations in the export rules. For example, a customer
may mistakenly export advertisements learned from one
provider to another. We initially assume that only a small
fraction of the AS pairs represent exceptions to the tradi-
tional provider-customer and peer-peer relationships. Our
inference technique is designed to tolerate occasional ex-
ceptions and, in fact, our algorithm can be used to identify
AS pairs that have unusual relationships.

B. Type-of-Relationship (ToR) Problem

BGP export policies have a direct influence on the AS
paths seen from a particular vantage point in the Inter-
net. If every AS adheres to the customer and provider
export rules, then no path would ever traverse a customer-
provider edge after traversing a provider-customer or peer-
peer edge, and no path would ever traverse more than one
peer-peer edge [10], [15]. To formulate these properties in
mathematical terms, we denote an edge from a customer
to a provider with a�1, an edge from one peer to another
with a 0, and edge from a provider to a customer with a
+1. Restating a result from [10] in these terms, we have:

Theorem 1:If every AS obeys the customer, peer, and
provider export policies, then every advertised path be-
longs to one of these two types for someM;N � 0:
1. Type 1: �1 : : : N times+1 : : : M times.
2. Type 2: �1 : : : N times0 +1 : : : M times.

The first stage of a Type1 path contains only customer-
provider links (uphill portion) and the second stage con-
tains only provider-customer links (downhillportion). The
second type captures all paths which traverse exactly one
peering link. The single peering link must appear in be-
tween the uphill and the downhill portions of any path.

The type-of-relationship (ToR) problem can be formu-
lated as a graph theory optimization problem for labeling
the edges of the graph with a�1, 0, or 1 such that the
observed paths obey the export policies implied by the re-
lationships. Given a graphG with each edge labeled as
�1, 0 or +1, a pathp is said to bevalid if it is either of
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Type1 or Type2 :
ToR Problem:Given an undirected graphG with vertex

setV and edge setE and a set of pathsP , label the edges
inE as either�1, 0 or+1 to maximize the number ofvalid
paths inP .
The graphG represents the entire Internet topology where
each node is an AS and each undirected edge represents
a relationship between the incident pair of ASes. The set
of pathsP consists of all paths seen from the various van-
tage points. We believe that this problem is NP-complete.
However, we have not been able to prove that this problem
is NP-complete nor are we aware of any theoretical work
that provides a polynomial-time solution.

In previous work, Lixin Gao [10] proposes and evalu-
ates a heuristic for inferring AS relationships from a col-
lection of AS paths. For each AS path, the heuristic uses
the degree of the nodes to identify the point that marks the
boundary between the uphill and downhill portions of the
path. The inferences from multiple paths are later com-
bined to infer the relationship between the ASes. In the
next section, we propose a heuristic for solving the ToR
problem based on the paths seen from each vantage point.

III. I NFERRING AS RELATIONSHIPS

This section presents our algorithm for inferring AS re-
lationships. We describe the properties of the partial AS
graph observed from a single vantage point. This moti-
vates our algorithm for assigning a rank to each AS for
each of the partial views. Finally, we describe how to infer
the relationships between ASes based on their ranks in the
different views.

A. Partial View of the AS Graph

Routing data from a single vantage point provides a set
of paths from a particular source node. These paths can be
used to construct a directed graph that includes the edge
(u; v) if one or more paths travel directly from ASu to
AS v. If every AS employed a simple shortest-path rout-
ing policy, then this graph would be a shortest-path tree
rooted at the source. However, complex routing policies
result in more complicated graphs that may include non-
minimal paths and even cycles. The graph from a single
vantage point reveals a great deal of information about the
relationship between ASes. Identifying the boundary point
between the uphill and downhill portions of the paths is
the key to inferring the AS relationships. The uphill por-
tion of a route appears at the beginning of a path, near the
source node, whereas the downhill portion appears in the
later portion of the path. As such, a leaf node in the graph
is likely to be a customer of its parent node(s). We exploit

this property by successively pruning the leaf nodes and
assigning ranks to ASes as we prune.

Still, identifying the boundary point between the uphill
and downhill portions of a path is tricky. The structure of
the partial view of the AS graph depends on the position
of the AS in the Internet hierarchy. When viewed from a
tier-1 AS that does not have any upstream providers, every
path consists of zero or one peer-peer edges followed by
a downhill portion. In practice, we expect the provider-
customer relationship to be acyclic [16]. That is, ifu is a
customer ofv andv is a customer ofw, thenw is not a
customer ofu. Hence, the partial view from a tier-1 AS
would tend to be acyclic. In this case, successive pruning
would identify provider-customer relationships. However,
in other scenarios, the graph may have cycles. For exam-
ple, suppose sourceX has two pathsp1 = (X;A;B;C)
andp2 = (X;B;A;D). The resulting graph has a cycle
between nodesA andB. As such, it is difficult to infer the
relationships betweenX, A, andB. We exploit this obser-
vation in our algorithm by assigning the same rank to all of
the ASes in the connected component of the graph. Infor-
mation from other vantage points is necessary to construct
an inference for these ASes.

In practice, the Internet consists of a relatively small
number of large Internet Service Providers (ISPs) and a
large number of smaller ASes. A small AS must traverse
one or more upstream providers to reach most of the many
other small ASes. As such, a large portion of the paths
in a graph should consist mostly of roughly equal down-
hill and uphill portions of non-zero lengths. Thus, we ex-
pect a large portion of the edges in the graph to fall in
a large, acyclic portion consisting of provider-customer
edges. The remaining edges should fall into a connected
component near the source node. Our heuristic exploits
this property by making a loose association of AS rank
with the provider-customer relationship and using proba-
bilistic comparisons to resolve incorrect inferences.

B. AS Ranking

Our algorithm assigns a rank to each AS for each van-
tage point. LetX denote the source AS of a particular
view of the AS graph and letP (X) denote the set of AS
paths seen fromX. Each pathp 2 P (X) consists of a se-
quence of nodes, starting withX. We construct a directed
graphGX that consists of each edge that appears in one or
more of the paths inP (X). We letv(GX ) denote the set
of all vertices inGX and letleaves(GX ) 2 v(GX) denote
the leaves of the graph. For a givenv0 � v(G), Gv0 is the
subgraph ofG induced by the vertices inv0. Drawing on
this notation, we assign a rankingrank(u) to each vertex
u 2 v(GX) by applying the reverse pruning algorithm in
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G = GX ;
r = 1;
while (leaves(G) 6= �) f

for all u 2 leaves(G)
rank(u) = r;

v0 = v(G) � leaves(G);
r = r + 1;
G = Gv0 ;

g
for all u 2 v(G)

setrank(u) = r;

Fig. 1. Reverse pruning algorithm on graphGX

Figure 1. At each stage, the algorithm identifies the leaf
nodes, assigns them a rank, and removes these nodes (and
their incident edges) from the graph. In the end, the re-
maining nodes (if any) form the connected component of
the original graphGX ; these nodes are all assigned the
same (highest) rank.

The algorithm assigns a rank to each AS. Comparisons
between AS rankings play a major role in our inference al-
gorithm in the next subsection. However, many AS pairs
do not share an edge in the partial view. In many cases,
the two ASes may not have an edge inanyof partial views
because they are not connected to each other in the real
graph. In this scenario, the rank does not have any par-
ticular meaning. In other cases, the two ASes may share
a link in one of the other partial views. In this scenario,
our algorithm imposes a relative rank for these two ASes
even though they may not share an edge from sourceX ’s
perspective. For example, consider a sourceX with paths
(X;A;C;D) and (X;B;E; F ) that do not use the edge
(C;E). Our algorithm assigns a rank of1 to nodesD and
F , a rank of2 to nodesC andE, and a rank of3 to nodes
A andB. Despite the fact that the edge(C;E) does not
appear inGX , we may be able to exploit the presence of
both nodes inv(GX ) in conjunction with the ranking from
other vantage points that do include the edge to draw in-
ferences about the relationship betweenC andE.

C. Inference Rules for the ToR problem

The routing data from each vantage point provides a
partial view of the Internet. Given data fromN vantage
points, we map each AS into anN -dimensional vector
c(i) = (ri1; : : : ; riN ), whererij is the rank of ASi from
vantage pointj. Let l(i; j) refer to the number of coordi-
nates whererik > rjk ande(i; j) be the number of coor-
dinates whererik = rjk, for all k = 1; 2; : : : ; N .

C.1 Complete Dominance

In a view from sourceX, if AS i has a higher rank than
AS j, then i appears to be a provider ofj. In complete
dominance, we assert that if the rank ofi is more than that
of j irrespective of the vantage point, theni is definitely
a provider ofj. A vectorc(i) is said to dominatec(j), if
l(i; j) > 0 and l(j; i) = 0. So, in vector terminology, if
c(i) dominatesc(j), then we can infer thati is the provider
of j, assuming that the two ASes share an edge.

C.2 Equivalence

Two ASes are said to be equivalent ife(x; y) >N=2.
This rule states that from more than50% of the vantage
points, two ASesx andy appear in the same level of the
hierarchy. Two ASes that appear in the same level in the hi-
erarchy from different vantage points are likely to be peers.
This rule is useful in finding peers among tier-1 and tier-2
providers.

C.3 Clustering

Most of the partial views generated from our routing
table dumps are directed acyclic graphs. As a result, all
ASes in these graphs are removed at some stage of the
reverse pruning process. Hence if(i; j) is an edge in
the partial view from a source, thenj is removed before
i. This implies that therank(i) > rank(j). Therefore
we can infer that ifi is a provider ofj, then with high
probability jrank(i) � rank(j)j � 1 for every AS. Note
that if the edge is viewed fromj or its customers, then
rank(j) > rank(i). Given this constraint, the Euclidean
distance betweenc(i) andc(j) is at leastsqrt(N). How-
ever, it is hard to infer from this that if the distance be-
tweenc(i) andc(j) is more thansqrt(N) then they have
a provider-customer relationship. This is because,i andj
can be peers and still have a few coordinates where their
ranks have a large difference. We observe this for some
European ISPs that peer with American ISPs. However,
one can infer the opposite of this rule. If the distance
betweeni and j is strictly less thansqrt(N), then they
are more likely to be peers. This rule clusters theseN -
dimension vectors into spheres of radiussqrt(N) to iden-
tify possible peers.

C.4 Probabilistic Rules

We introduce two probabilistic rules to tolerate uncer-
tainty in in export policies and our ranking mechanism.
Probabilistic Dominancestates that ifl(i; j)=l(j; i) > Æ0
for a high value ofÆ0 theni is a provider ofj. Typically,
in graphs from the vantage point ofj or its customers, it is
probable thatrank(j) > rank(i) even ifi is a provider of
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j. To avoid an incorrect inference, we introduce the rule of
probabilistic dominance.Probabilistic Equivalenceoccurs
whenl(i; j)=l(j; i) � Æ1 for Æ1 close to 1. We use this rule
to infer peering relationships between ASes which are not
in the same level in the hierarchy and those cases where the
relationship between two ASes is not visible from many
partial views. An AS relationship may not be visible from
a partial view because ASes may assign a low preference
to paths that traverse this edge. Using probabilistic equiv-
alence, we test whether two ASes are peers. We use values
of 3 and 2 forÆ0 andÆ1 respectively.

C.5 Order of Application

The relationship inferences depend on the order in
which we apply these rules. We treat equivalence and
dominance as the basic rules for inferring peer-peer and
provider-customer relationships. We apply equivalence
before checking for dominance. Since we apply domi-
nance after the equivalence rule, if(i; j) is inferred as a
provider-customer relationship using the dominance rule,
then the rank ofi should be more than the rank ofj in at
leastN=2 of the dumps. If this is not the case, the rank
of i should be equal to that ofj in at leastN=2 dumps
thereby classifying the link as a peer-peer using the equiv-
alence rule. Therefore those provider-customer relation-
ships inferred using the dominance and equivalence rules
can be treated with a high level of confidence. We apply
the clustering condition before applying the probabilistic
rules. The dominance, equivalence, and clustering condi-
tions are powerful constraints for determining the type of
a relationship. The probabilistic rules are applied to elim-
inate the AS relationships that cannot be inferred from the
more basic conditions.

IV. EXPERIMENTAL RESULTS

This section evaluates our inference techniques on a
collection of ten publicly-available BGP routing tables.
We classify the relationships between ASes and identify a
small number of AS paths that are inconsistent with the re-
lationship assignment. The most common anomalies seem
to stem from recent acquisitions and mergers, suggesting
that some AS pairs may have a sibling relationship.

A. BGP Routing Table Data

Our inference techniques have been applied to a collec-
tion of ten BGP routing tables available from Telnet Look-
ing Glass servers. We automated the process of contacting
each server, sending “show ip bgp ” to the command-
line interface, and storing the resulting table. For each des-
tination prefix the table has one or more routes with a va-
riety of BGP attributes, including the AS path. We extract

TABLE I
TELNET LOOKING GLASS SERVERS

AS # Name # Edges Change
1 Genuity 13419 +1.8%

1740 CERFnet 14287 n/a
3549 Globalcrossing 13542 +1.0%
3582 University of Oregon 23136 -0.4%
3967 Exodus Comm. 19005 +0.4%
4197 Global Online Japan 13474 +1.0%
5388 Energis Squared 13534 +2.1%
7018 AT&T 14160 +3.0%
8220 COLT Internet 11282 n/a
8709 Exodus, Europe 15519 +0.7%

the best and alternate paths for each prefix and construct
a list of all AS paths that appear in the table. For each
path, we add the AS number of the router to the beginning
of each path and remove duplicate AS numbers that arise
from AS prepending. Then we process the paths to con-
struct a partial view of the AS graph. After constructing
the partial views, we apply the ranking algorithm and in-
ference rules from Section III to assign a relationship to
each AS pair that shares an edge in one or more of the
routing tables.

Table I provides a summary of the ten tables we down-
loaded on April 18, 2001. The “# Edges” column shows
the number of unidirectional edges in the AS paths. The
“Change” column indicates the change in the number of
edges from April 18 to May 1, when we downloaded a new
copy of the tables. The entry for AS 3582 corresponds to
the University of Oregon RouteViews server, which has52

peering sessions with39 different ASes [11]. The Route-
Views server has an especially rich view of the AS graph,
with over 23,000 edges compared to 11,000–15,000 edges
for most of the other routing tables. In total, the AS paths
in the ten routing tables have 24,752 unidirectional edges
between 24,059 pairs of ASes. More than25% of the
edges appear in all ten routing tables, as shown in Fig-
ure 2, which plots a histogram of the percent of edges that
appear inx of the10 routing tables. More than80% of the
edges appear in at least two dumps.

We use the partial views from these ten routing tables
to generate our inferences of the AS relationships. In Sec-
tion IV-C, we validate our inferences using the AS paths
from another collection of routing tables. We manually
downloaded routing data from Ebone (AS #1755), MAE-
West (AS #2548), KDDI Japan (AS #2516), and Cable
and Wireless (AS #6893) on April 9, 2001. These four
tables are available from Web Looking Glass servers that
have a slightly different interface than the Telnet servers.



6

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

%
 o

f E
dg

es

# of Dumps

Fig. 2. Percentage of edges that appear inx of the ten tables

TABLE II
INFERRED RELATIONSHIPS FOR24,059 ASPAIRS

Relationship # AS pairs Percentage
Provider-customer 22,712 94.40%
Peer-peer 1,241 5.16%
Unknown 106 0.44%

The Web interface typically does not permit users to in-
voke the “show ip bgp ” command. Instead, we rely
on the “bgp paths ” command that produces a list of AS
paths, without the destination prefix or an indication of the
best path. As with the “show ip bgp ” data, we extract
the AS paths, add the AS number of the source AS, and
remove duplicate ASes. Then, we use the results of our
inference algorithm to assign a relationship to each unidi-
rectional edge in each path and look for paths that violate
the two patterns identified in Section II.

B. Relationship Inferences

Table II summarizes the results from applying our infer-
ence algorithm to the ten BGP tables from Table I. Our al-
gorithm produces an inference for over99:5% of the edges
in our AS graph (23,953 of the 24,059 AS pairs). The vast
majority of AS pairs appear to have a provider-customer
relationship. Approximately5% of the AS pairs have a
peer-peer relationships. Table III highlights the role of the
various inference rules in drawing conclusions about AS
relationships. A large percentage of the provider-customer
relationships are inferred from the complete dominance
rule. Complete dominance inN dimensions is a good in-
dication of a provider-customer relationship and we can
be reasonably certain of97:93% of our provider-customer
inferences. Similarly, close to80% of the peering links
are inferred from the equivalence and clustering condi-
tions. The probabilistic rules account for2:1% of the
provider-customer inferences and22:4% of the peer-peer
inferences.

The percentages of provider-customer and peer-peer re-
lationships in Table II are consistent with the conclusions

TABLE III
DISTRIBUTION OF THE23,953INFERENCES

Rule Number Percentage
Complete dominance 22,241 97.93%
Probabilistic dominance 471 2.07%
Equivalence 836 67.37%
Probabilistic equivalence 278 22.40%
Clustering 127 10.23%

of Lixin Gao in [10]. Our inference that5:2% of the
AS pairs (1,241 pairs) are peers is close to Gao’s values
between5:3% and 7:8%. The percentage of provider-
customer relationships we infer is within1–1:5% of the
figure reported in [10]. Her study drew on RouteViews
data from September 1999, January 2000, and March
2000. The number of edges in the RouteViews dump
has grown by over70% over the last13 months. With
the larger RouteViews table and the nine other tables, our
collection of edges is twice as large as the graph used in
her earlier study. Using traceroutes from 16 sources to
400,000 destinations [8] in October 2000, CAIDA con-
structed an AS graph that is slightly larger than ours. Their
final graph consists of 7,563 ASes and 25,005 edges. Ours
contains 10,698 ASes and 24,752 edges. However, they do
not explore this graph in terms of AS relationships.

C. Validation of Inferences

Since the peering and customer information of an ISP
are proprietary information, we cannot validate our infer-
ences against an official list of AS relationships. Instead,
we determine what percentage of the AS paths actually ad-
here to the export rules suggested by our inferences. There
are two scenarios where we may label an AS path as an
anomaly: one in which some AS in the path actually vio-
lates the export rules or the other in which our relationship
inference of one of the edges in the path is wrong. The per-
centage error that is reported in this section is the sum total
of these two scenarios. For our validation, we draw on the
list of AS paths from two of the ten of the Telnet Looking
Glass Servers (AS numbers 1 and 7018) used to construct
our original inferences, as well as the four Web Looking
Glass Servers (AS numbers 1755, 2516, 2548, and 6893).

If every AS pair has a customer-provider or peer-peer
relationships, then every AS path should have have one
of the two patterns identified in Theorem 1. A path is an
anomaly if it has any two adjacent edges having one of the
following patterns:
1. (+1 �1): An AS permits transit traffic between two of
its providers.
2. (+1 0): An AS permits transit traffic from one of its
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peers to one of its providers.
3. (0 �1): An AS permits transit traffic from one of its
providers to one of its peers.
4. (0 0): An AS permits transit traffic between two of its
peers.
Case 1 represents a serious violation of the export rules.
This anomaly may arise from a misconfigured customer or
or due to a misclassified relationship where the customer
AS is actually a sibling of one or both of the providers.
Backup and sibling relationships relationships can cause
case2 and case3 anomalies. Case 4 suggests that the path
traverses two consecutive peering links, which may be per-
missible if two the peers have a sibling relationship for
some destination prefixes. Detecting these anomaly paths
provides a way to identify AS pairs that may have more
complicated relationships.

As shown in Table IV, the vast majority of paths are
consistent with the relationship assignments and the asso-
ciated export policies. The percentage of anomalies varies
between2–3:4% for five of the six routing tables. These
results validate our base assumption that the export rules
are observed by a large percentage of the ASes. How-
ever, KDDI (AS #2516) has a relatively high percentage
of anomalous paths (8:5%). For every anomalous path, we
can identify an anomaly pattern consisting of three adja-
cent ASes(A;B;C) where the pair of edges(A;B) and
(B;C) falls into one of four cases. The results in Table IV
show that case 3 anomalies are very uncommon and case
1 arises less frequently than case 2 and case 4. KDDnet
exhibits an unusually high number of all four cases (espe-
cially case 4); further investigation is necessary to explain
this fact. A small number of AS triples(A;B;C) are re-
sponsible for the vast majority of the anomalies. For most
of the routing tables, ten different AS triples were respon-
sible for more than90% of the anomalous paths.

D. Common Anomaly Patterns

The last column in Table IV lists one popular triple for
each routing table dump. For example, the anomaly (1
65112 6461) includes a private AS number (65112) [17]
that should not appear in an AS path between two public
ASes (1 and6461). This anomaly pattern alone accounted
for more than half of the anomalous paths in this dump.
We analyzed the other anomaly patterns using the RADB
whoisdata [18] which identifies ASes by name and some-
times includes a list of import and export policies. Con-
sider the anomaly pattern (7018 6841 3300) with AT&T
(7018), Infonet Europe (6841), and AUCS (3300). The
RADB data states that AS 6841 exports and import all ad-
vertisements from AS 3300. We confirmed that Infonet
and AUCS have recently merged [19]. The anomaly pat-

terns (1239 1740 7018) and (3561 5400 5727) seem to
have similar explanations; Cerfnet (1740) was acquired by
AT&T ( 7018), and AS5400 and AS5727 are both part of
the Concert IP backbone. For the anomaly pattern (1239
8043 6395), further investigation showed that IXC Com-
munications has acquired SmartNAP (8043) and IXC was
later renamed as Broadwing (6395) [20]. Similar anec-
dotes apply to many of the other popular anomaly patterns.

Identifying anomaly patterns may be a useful way to de-
tect sibling relationships. In the absence of misconfigura-
tions, we can label all case1 anomalies as caused by sib-
ling relationships. That is, if the AS path(A;B;C) is a
case1 anomaly, eitherA andB or C andB are siblings.
We do not extend this to case2 or case3 anomaly pat-
terns since these anomaly patterns may represent backup
relationships or other complex transit agreements. Ignor-
ing the KDDNet dump, we observed109 unique case1
anomaly patterns. In these109 patterns, we found190
unique AS pairs with possible sibling relationships;22 of
these possible sibling relationships appeared in multiple
paths. As an example, AS2685 (AT&T Global Network
Services) appears in the middle as a customer in many
case1 anomalies. This AS may have a sibling relationship
with AS 7018 (AT&T). Our sibling inferences account for
roughly0:8% of the edges in the AS graph. The work by
Gao [10] identifies1:5% of the edges to be siblings; her
validation of a subset of these inferences on a private data
set found that20% of these inferences were valid. We plan
to explore our approach for detecting sibling relationships
in more detail as part of future work.

V. INTERNET HIERARCHY

The termtiers has been used informally in discussions
about the hierarchy of ASes in the Internet topology. How-
ever, precise rules for classifying ASes into tiers have not
been resolved. The work in [9] uses node degree to group
ASes into different classes. ASes with a large number of
neighbors are placed above ASes with a small node de-
gree. However, a simple degree-based classification may
not capture the essence oftiers in the hierarchy. In this
section, we infer a hierarchy that symbolizes the business
relationships between ASes. Typically, a customer should
be at a lower level in the hierarchy than its providers. An
essential component to such a characterization is a knowl-
edge of the relationships between ASes. We now briefly
describe the rationale behind our approach for inferring the
different levels in the AS hierarchy.

In order to capture these hierarchical properties, we rep-
resent the AS topology as a directed graph where the di-
rection of an edge indicates the type of relationship be-
tween the two ASes. To the best of our knowledge, previ-
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TABLE IV
QUANTIFICATION & D ISTRIBUTION OF PATH ANOMALIES

AS # AS Name # of Anomaly Anomaly Unique Case 1 Case 2 Case 3 Case 4 Popular
Paths Paths % Anomalies Anomaly

1 Genuity 65,383 1,679 2.57% 115 23 89 3 159 (1 65112 6461)
7018 AT&T 141,283 3,357 2.37% 101 16 85 0 181 (7018 6841 3300)
6893 CW 70,253 2,384 3.39% 148 24 115 9 210 (3561 5400 5727)
2548 MaeWest 115,199 2,298 2.00% 233 57 171 5 256 (1239 8043 6395)
1755 Ebone 23,469 703 3.00% 131 21 103 7 212 (3300 8933 2200)
2516 KDDI 126,414 10,709 8.47% 594 248 306 40 1101 (209 1800 1239)

ous works have considered the topology as an undirected
graph that simply captures the connectivity between the
ASes. In our graph, a provider-customer relationship be-
tweenA andB is represented by a directed edge fromA
to B and a peering relationship betweenA andB is rep-
resented by two directed edges, one fromA to B and the
other fromB to A. We analyze the graph constructed by
applying our inference techniques to the ten Telnet Look-
ing Glass servers discussed in Section IV.

A. Customers and Small Regional ISPs

Customers are the easiest class of ASes that can be clas-
sified from this directed graph structure of the AS topo-
logy. Customers are those stub networks which are origins
and sinks of traffic and which do not carry any transit traf-
fic. From the very definition of the direction of edges in
our graph, we can infer the customer ASes to be the leaves
of this directed graph. In a directed graph, a leaf is a node
with out-degree0. Since an undirected graph makes no
distinction between out-degree and in-degree, customers
with multiple providers would have a degree more than1

and hence would not appear as leaves of the graph. Model-
ing the topology as a directed graph provides a more pre-
cise characterization of the bottom-most layer in the AS
hierarchy. In the directed graph constructed from the ten
BGP dumps,8; 852 of the 10; 698 ASes are leaf nodes.
The rest of the graph contains just17:5% of the ASes.

Once we identify the customers and remove these nodes,
the resulting graph has a new set of leaves. These leaves
represent small regional ISPs that have one or more cus-
tomers. We can continue the process of pruning the leaves
of the graph until we reach a point where the graph has
no leaves. This involves applying a reverse pruning algo-
rithm similar to Figure 1 in Section III-B. We define the set
of nodes removed by this process assmall regional ISPs.
Since every peering relationship is represented as a loop of
two edges in the graph, no ASes with peering relationships
are included in this layer. Applying the reverse pruning al-

gorithm to our graph reveals950 small regional ISPs. We
define the remainder of the graph as thecore, consisting
of a connected component with just857 ASes and6; 578
unidirectional edges. This represents more than25% of
the total number of edges in the graph. The nodes in the
core have an average degree of 6.

B. Dense Core

The set of ASes that remain after the pruning process
represent thecoreof the Internet. Given the nature of the
reverse pruning process, we can infer that for every AS
present in the core, all of its peers and its provider should
also be present in the core. The core of the graph should
include the small number of so-calledtier-1 providers. In
practice, the term “tier-1 provider” is loosely defined as a
“large” AS or as an AS that does not have any upstream
provider. We could identify these ASes by looking for
all provider-free nodes. However, this approach would be
sensitive to a small number of missing edges or misclas-
sified relationships in our AS graph. Instead, we could
exploit the observation that every provider-free AS would
peer with every other provider-free AS to ensure reacha-
bility to all destinations. That is, the set of tier-1 ASes
should form a clique where every AS has an edge to and
from each of the other ASes. Other provider-free ASes, if
they exist in our graph, would be excluded from the set of
tier-1 providers.

In practice, some ASes may have complex transit or
backup relationships to provide connectivity. We define
a weaker notion of thedense coreas the largest subset of
ASes whose induced subgraph is “almost a clique.” We de-
fine a directed graph ofN nodes to bedenseif every node
in the graph has an in-degree and out-degree of at least
N=2. We have setN=2 as an artificial cut-off for deter-
mining the dense core in the AS topology. The problem of
determining the largest clique in a graph is NP-hard. Given
that a clique is just one example of a dense graph, the
problem of finding the largest dense subgraph of a graph
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computez 2 v(G) with maximum out-degree;
X = fzg;
pos(z) = 1; r = 1;
while (X 6= v(G)) f

computey 2 v(G) �X with maxd(y;X)

(selecting they with the max out-degree)
X = X [ fyg;
maxindegree(r) = d(y;X);
r = r + 1;
pos(y) = r;

g

Fig. 3. Greedy algorithm to order the nodes

becomes much harder. We have developed a greedy algo-
rithm for identifying the ASes in the dense core.

B.1 Identifying the Dense Core

First, we order the vertices based on a “greedy” notion
of connectivity, following the algorithm in Figure 3. Let
G represent the directed graph representation of the core.
Let v(G) andE(G) represent the vertices and edges of the
graphG. Let d(x; Y ) for x 2 v(G) andY � v(G) de-
note the number of edges of the form(x; z) wherez 2 Y .
Connectivity from a node to a given set of nodes refer to
the number of directed edges from that node to any of the
nodes in the set. Assume thatk of theN nodes are already
ordered. For each of the remainingN � k nodes, we de-
termine the connectivity to thek nodes and pick the node
with the maximum connectivity as the(k + 1)th. When
multiple nodes have the same connectivity, we choose the
node with a higher out-degree. In Figure 3,pos(x) denotes
the position of a nodex in the final ordering.

Let xi denote theith AS in the ordering andXi be the
set of the topi ASes. Letconn(i) represent the connec-
tivity of xi which is equal tod(xi;Xi�1). We define the
dense core as the setXk for the smallest value ofk such
that conn(k + 1) < (k + 1)=2 andXk is dense. Once
the value ofconn(k + 1) falls below the value(k + 1)=2,
the(k + 1)th node will violate thedenseproperty. There-
fore if conn(k+1) < (k+1)=2, the induced subgraph of
Xk+1 will not be dense since the out-degree ofxk+1 will
be less than(k+1)=2. However this does not mean that if
conn(k + 1) > (k + 1)=2, thenXk+1 is dense. Consider
the scenario where a nodexj for somej < k is linked to
more thanj=2 elements inXj and not linked to any node
in Xk�Xj . This is an example whereconn(k) > k=2 but
Xk is not dense. In this regard, our algorithm is greedy.
For the AS topology that we obtained, the point where
conn(k) dropped belowk=2 was the first value ofk for

whichXk was not dense. This indicates that the ordering
output by the algorithm was indeed a good ordering for
choosing the vertices of the dense core. In other words,
it validates the rationale behind our greedy approach that
if y appeared beforez in the ordering theny had a better
chance of being present in the dense core thanz.

B.2 Properties of the Dense Core

Applying this algorithm to the core of our graph, we
identify a dense core consisting of20 ASes. These ASes
include the large ISPs such as Genuity, Sprint, AT&T, Ex-
odus.net, and Alternet. The top20 ASes have a very dense
connectivity of329 peering links. The top15 of the 20

ASes almost form a clique with only three edges missing
from the clique. The largest clique we observed in this
innermost core consisted of13 ASes. The20 ASes have
6; 852 provider-customer edges to customer ASes and 964
provider-customer edges to the small regional providers.
After removing the dense core, the remainder of the core
consists of 837 ASes.

C. Transit Core

After removing the dense core, we noticed the presence
of other large national providers and hosting companies
that have peering relationships with many of the ASes in
the dense core. To identify these ASes, we define the no-
tion of a transit core. Nodes in the transit core peer with
each other and with ASes in the dense core, but they do
not tend to peer with many other ASes. In our directed
graph representation, these peering links are essentially the
incoming directed edges from vertices outside this set to
vertices within the set. We define such a set of edges to
be thein-way cutof the graph induced by the given set.
Using this property, we define the transit core as the small-
est set of ASes containing the dense core which induces a
weak in-way cut. We can presently visualize a weak in-
way cut to have a small number of edges compared to the
total number of ASes in the transit core.

C.1 Identifying the Transit Core

GivenX � v(G), let cutin(X) denote the set of all
edges of the form(y; z) wherey 2 v(G)�X andz 2 X.
We define a cutX of the vertex setv(G) to be a weak
cut if jcutin(X)j < jXj=2. The problem of finding weak
cuts in a graph is NP-complete and there are no good ap-
proximation algorithms for that problem. Given that the
transit core is a super-set of the dense core and that the
dense core is derived by the greedy ordering, we apply the
same ordering to find the transit core as was used to find
the dense core. A natural way of using this ordering to find
the transit core is to find the smallest value ofk such that
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TABLE V
DISTRIBUTION OF ASES IN THE HIERARCHY

Level # of ASes
Dense core (0) 20
Transit core (1) 162
Outer core (2) 675
Small regional ISPs (3) 950
Customers (4) 8852

jcutin(Xk)j < k=2. Surprisingly we found that the value
of k at which jcutin(Xk)j < k=2 also satisfied the prop-
erty thatconn(k+1) = 1. This means that no two edges in
cutin(Xk) have the same source. A weak cut also means
that more than50% of the ASes inXk do not have any
peering relationship with any of the ASes inv(G) � Xk.
Hence by this definition,Xk should indeed contain all the
transit providers.

C.2 Properties of the Transit Core

Applying the in-way cut algorithm to our graph, we
discover a transit core consisting of the 162 ASes, not
including the 20 ASes in the dense core of the graph.
These 162 ASes have 213 peering links with ASes in
the dense core. Concert, Singapore Telecommunications,
UUNet European division, Teleglobe European division
and KDDi Corporation, Japan are some example ISPs in
our transit core. We found many of the top providers in
Europe and Asia to be present in our transit core.

D. Outer Core

We classify all of the remaining ASes in the core as
the outer core. The members of the outer core typically
represent regional ISPs which have a few customer ASes
and a few peering relationships with other such regional
ISPs. The outer core consists of 675 ASes that have 8 peer-
ing sessions with ASes in the dense core and 74 peering
sessions with ASes in the transit core. We observed that
many members of our outer core are regional ISPs. Some
examples include Turkish Telecomm, Williams Commu-
nications Group, CAIS Internet, Southwestern Bell Inter-
net Services and Minnesota Regional Network. It is in-
teresting to note that while Exodus Communications (AS
4197) is present in our outer core, Exodus.net (AS 3967)
is present in the dense core.

E. Summary

Table V summarizes the number of ASes at each level
in the hierarchy—dense core (layer 0), transit core (layer
1), outer core (layer 2), small regional ISPs (layer 3), and
customers (layer 4). Table VI summarizes the connectivity

TABLE VI
INTER-CONNECTIVITY ACROSSLAYERS

Layer 0 1 2 3 4
0 329 776 931 964 6852
1 213 1052 1344 728 3660
2 8 74 1070 390 3196
3 0 0 0 202 2376

between various layers in the AS hierarchy. Each number
refers in the table refers to the total number of edges from
the layer represented in the same row to the layer repre-
sented in the same column. For example,776 is the total
number of edges from layer 0 to layer 1. The tables shows
several key properties of the Internet topology:
� The ASes in dense core are very well connected.
� As we move from the dense core toward customers, the
inter-layer and intra-layer connectivity drops significantly.
� The large number of customer ASes have their providers
distributed across all the layers. The ASes in layer0 sup-
port a large number of customer ASes. This indicates that
the connectivity across layers is not strictly hierarchical, as
also observed in [9].
� The number of edges within the outer core is less than
the total number of vertices in the outer core. This in-
dicates the presence of multiple disconnected groups of
ASes in the outer core; ASes in different groups commu-
nicate via ASes in the dense core and the transit core.

The graphs in Figure 4 explores the relationship be-
tween node degree and the layers in the hierarchy. We
define node degree as the number of neighboring ASes
without regard to the relationship. The top graph plots the
cumulative distribution of node degree on a logarithmic
scale and the bottom graph focuses on the large number of
ASes with no more than 15 neighbors. In general, layer
0 and 1 ASes have high degree, and layer 3 and 4 ASes
tend to have low degree. However, this is not universally
true. Some customers at layer 4 have a large number of
upstream providers, and some ASes in the dense core at
layer 0 have a relatively small number of neighbors. For
example, our results suggest that AS 1833 (TeliaNet USA)
has a degree of only 40. Yet, we classify TeliaNet as part
of the dense core due to its rich collection of peering rela-
tionships. A hierarchy based solely on degree distribution
would not be able to make this distinction.

VI. CONCLUSIONS

The relationships between ASes has a significant im-
pact on the flow of traffic through the Internet. Our work
makes two important contributions toward understanding
the structure of the Internet in terms of these relationships:
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Fig. 4. Cumulative distribution of AS degree by layer

� An algorithm for inferring AS relationships from partial
views of the AS graph from different vantage points
� A mechanism for dividing the Internet hierarchy into
layers based on AS relationships and node connectivity
The complete structure of the Internet is unknown and dif-
ficult, if not impossible, to obtain. Our approach is com-
prised of many heuristics, with certain limitations:
� We draw our inferences based on only ten vantage points
available from Telnet Looking Glass servers. Ideally, we
would have a larger collection of routing tables from more
diverse vantage points, including smaller customer ASes.
� We treat the RouteViews routing table as a view from
a single AS. In future work, we plan to extract a separate
view for each AS participating in the RouteViews project.
� Multiple ASes may fall under the administrative control
of a single institution, due to historical artifacts and market
forces. We plan to extend our methodology to incorporate
more complex routing policies that are not captured by the
traditional customer-provider and peer-peer relationship.
Despite these limitations, we have shown that our ap-
proach provides a detailed view of the Internet topology
in terms of the relationships between ASes.
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