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Abstract

We present CoVisor, a new kind of network hypervisor
that enables, in a single network, the deployment of mul-
tiple control applications written in different program-
ming languages and operating on different controller
platforms. Unlike past hypervisors, which focused on
slicing the network into disjoint parts for separate control
by separate entities, CoVisor allows multiple controllers
to cooperate on managing the same shared traffic. Con-
sequently, network administrators can use CoVisor to as-
semble a collection of independently-developed “best of
breed” applications—a firewall, a load balancer, a gate-
way, a router, a traffic monitor—and can apply those ap-
plications in combination, or separately, to the desired
traffic. CoVisor also abstracts concrete topologies, pro-
viding custom virtual topologies in their place, and al-
lows administrators to specify access controls that regu-
late the packets a given controller may see, modify, mon-
itor, or reroute. The central technical contribution of the
work is a new set of efficient algorithms for composing
controller policies, for compiling virtual networks into
concrete OpenFlow rules, and for efficiently processing
controller rule updates. We have built a CoVisor pro-
totype, and shown that it is several orders of magnitude
faster than a naive implementation.

1 Introduction

A foundational principle of Software-Defined Network-
ing (SDN) is to decouple control logic from vendor-
specific hardware. Such a separation allows network ad-
ministrators to deploy both the software and the hard-
ware most suited to their needs, rather than being forced
to compromise on one or both fronts because of the lack
of availability of the perfect box. To fully realize this
vision of freely assembling “best of breed” solutions, ad-
ministrators should be able to run any combination of
controller applications on their networks. If the optimal
monitoring application is written in Python on Ryu [1]
and the best routing application is written in Java on
Floodlight [2], the administrator should be able to deploy
both of them in the network.

A network hypervisor is a natural solution to this prob-
lem of bringing together disparate controllers. However,
existing hypervisors [3, 4] restrict each controller to a
distinct slice of network traffic. While useful in scenar-

ios like multi-tenancy in which each tenant controls its
own traffic, they do not enable multiple applications to
collaboratively process the same traffic. Thus, an SDN
hypervisor must be capable of more than just slicing.
More specifically, in this paper, we show how to bring
together the following key hypervisor features and im-
plement them efficiently in a single, coherent system.

(1) Assembly of multiple controllers. A network ad-
ministrator should be able to assemble multiple con-
trollers in a flexible and configurable manner. Inspired
by network programming languages like Frenetic [5],
we compose data plane policies in three ways: in par-
allel (allow multiple controllers to act independently on
the same packets at the same time), sequentially (allow
one controller to process certain traffic before another),
and by overriding (allow one controller to choose to act
or to defer control to another controller). However, un-
like Frenetic and related systems, our hypervisor is in-
dependent of the specific languages, libraries, or con-
troller platforms used to construct client applications. In-
stead, the hypervisor intercepts and processes industry-
standard OpenFlow messages, assembling and trans-
forming them to match administrator-specified compo-
sition policies. Doing so efficiently requires new incre-
mental algorithms for processing rule updates.

(2) Definition of abstract topologies. To protect the
physical infrastructure, an administrator should be able
to limit what each controller can see of the physical
topology. Our hypervisor supports this by allowing the
administrator to provide a custom virtual topology to
each controller, thereby facilitating reuse of (physical)
topology-independent code. For example, to a firewall
controller the administrator may abstract the network as
a “big virtual switch”; the firewall does not need to know
the underlying topology to determine if a packet should
be forwarded or dropped. In contrast, a routing controller
needs the exact topology to perform its task effectively.
In addition, topology abstraction helps the administrator
implement complex functionality in a modular manner.
Some switches, such as a gateway between an Ethernet
island and the IP core, may play multiple roles in the
network. The hypervisor can create one virtual switch
for each role, assign each to a controller application pre-
cisely tailored to its single task, and compile policies
written for the virtual network into the physical network.

(3) Protection against misbehaving controllers. In ad-



dition to restricting what a controller can see of the phys-
ical topology, an administrator may also want to im-
pose fine-grained control on how a controller can pro-
cess packets. This access control is important to protect
against buggy or maliciously misbehaving third-party
controllers. For example, a firewall controller should not
be allowed to modify packets, and a MAC learner should
not be able to inspect IP or TCP headers. The hypervisor
enforces these restrictions by limiting the functionality
of the virtual switches exposed to each controller.

The primary technical challenge surrounding the cre-
ation of such a fully featured hypervisor is efficiency.
The hypervisor must host tens of controllers, each of
which installs tens of thousands of rules. Complicat-
ing matters further, these controllers are updating rules
constantly, as dictated by their application logic (e.g.,
traffic engineering, failure recovery, and attack detec-
tion [6,7, 8,9, 10, 11, 12, 13, 14]). The naive hypervisor
design is to recompile the composed policy from scratch
for every rule update, and then install in each switch’s
flow table the difference between the existing and up-
dated policies. This strawman solution is prohibitively
expensive in terms of both the time to compile the new
policy and the time to install new rules on switches.

In this paper we present CoVisor, a hypervisor that
exploits efficient new algorithms to compile and update
policies from upstream controllers, each of which has its
own view of the network topology. Figure 1 illustrates
the CoVisor architecture. CoVisor serves as a transpar-
ent layer between controllers and the physical network.
Each of the five applications shown at the top of Figure 1
is an unmodified SDN program running on its own con-
troller; each controller outputs OpenFlow rules for the
virtual topology shown below it, without any knowledge
that this virtual topology does not physically exist. Co-
Visor intercepts the OpenFlow rules output by all five
controllers and compiles them into a single policy for the
physical network via a two-phase process.

First, CoVisor uses a novel algorithm to incrementally
compose applications in the manner specified by the ad-
ministrator. The key insight is that rule priorities form a
convenient algebra to calculate priorities for new rules,
obviating the need to recompile from scratch for every
rule update. Note that the problem of incremental up-
date also exists in Frenetic and is not solved efficiently
today [5]. Second, CoVisor translates the composed pol-
icy into rules for the physical topology. Specifically,
we develop a new compilation algorithm for the case of
one physical switch mapped to multiple virtual switches.
Existing solutions handle this reactively by sending the
first packet of every flow to the controller [15]. At both
stages, CoVisor employs efficient data structures to fur-
ther reduce compilation overhead by exploiting knowl-
edge of the structure of policies provided by the access-
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Figure 1: CoVisor overview.

control restrictions. After compiling the policy, CoVisor
sends the necessary rule updates to switches.

At the far left of Figure 1, CoVisor takes configura-
tion input from the administrator. These configuration re-
sponsibilities are threefold: (1) define how the policies of
the controllers should be assembled; (2) create each con-
troller’s virtual network by specifying the components
to be included and the physical-virtual mapping; and (3)
state access control limitations for each controller.

In summary, we make the following contributions.

e We define the architecture of a new kind of compo-
sitional hypervisor, which allows applications writ-
ten in different languages and on different con-
trollers to process packets collaboratively.

e We develop a new algorithm to compile the paral-
lel, sequential, and override operators introduced in
earlier work [5, 16, 17] incrementally (§3).

e We develop a new, incremental algorithm to com-
pile policies written for virtual topologies into rules
for physical switches (§4).

e We employ customized data structures that leverage
access-control restrictions, often a source of over-
head, to further reduce compilation time (§5).

We describe our prototype in §6 and evaluation in §7. We
review related work in §8 and conclude in §9.

2 CoVisor Overview

This section provides an overview of CoVisor. CoVisor’s
features fall into two categories: (i) those that combine
applications running on multiple controllers to produce
a single flow table for each physical switch (§2.1); and
(ii) those that limit an individual controller’s view of the
topology and packet-processing capabilities (§2.2).

To implement these features, CoVisor relies on a two-
phase compilation process. The first phase assembles
the policies of individual controllers, written for a virtual
network, into a composed policy for the virtual network.
The second phase compiles this virtual policy into a pol-



icy for the physical network that realizes the intent ex-
pressed by the virtual policy. Algorithms for these phases
are covered in §3 and §4, respectively.

2.1 Composition of Multiple Controllers

CoVisor allows network administrators to combine the
packet-processing specifications of multiple controllers
into a single specification for the physical network. We
call these “packet-processing specifications” output by
each controller member policies and the single specifica-
tion a composed policy. In practice, the member policies
are defined by OpenFlow commands issued from a con-
troller to CoVisor. We use the terms policy implementa-
tion or just implementation to refer specifically to the list
of OpenFlow rules used to express a policy.

The network administrator configures CoVisor to
compose controllers with a simple language of com-
mands. Let T range over policies defined in the com-
mand language. This language allows administrators to
specify that some default action (a) should be applied to a
set of packets, that a particular member policy (x) should
be applied, that two separate policies should be applied
in parallel (77 4 T»), that two separate policies should be
applied in sequence (77 > T5), or that one member policy
should be applied, and if it fails to match a packet, some
other policy should act as a default (x> 7"). The follow-
ing paragraphs explain these policies in greater detail.

Actions (a): The most basic composed policy is an
atomic packet-processing action a. Such actions in-
clude any function from a packet to a set of packets im-
plementable in OpenFlow, such as the actions to drop
a packet (drop), to forward a packet out a particular
port (fwd(3)), or to send a packet to the controller
(to_controller(x)).

Parallel operator (+): The parallel composition of two
policies T + T, operates by logically (though not neces-
sarily physically) copying the packet, applying 7} to one
copy and 75 to the other, and taking the union of the re-
sults. For example, let M be a monitoring policy and Q
be a routing policy. If M counts packets based on source
IP prefix and Q forwards packets based on destination IP
prefix, M + Q does both operations on all packets.

Sequential operator (>>): The sequential operator en-
ables two controllers to process traffic one after another.
For example, let L be a load-balancing policy, and let Q
be a routing policy. More specifically, for packets des-
tined to anycast IP address 3.0.0.0, L rewrites the des-
tination IP to a server replica’s IP based on source IP
prefix, and Q forwards packets based on destination IP
prefix. To obtain the combined behavior of L and OQ—to
first rewrite the destination IP address and then forward
the rewritten packet to the correct place—the network ad-

Command Parameters
createVsw pSwy <pSwp, ., PSwp>
createVPort | vSw <pSw pPort>
createVLink | vSw; vPort; vSwyp vPortp

connectHost vSw vVvPort host
Table 1: API to construct a virtual network. Brackets <>

indicate optional arguments.

E = createvsw S // vswitch E
G = createvsSw § // vswitch G
1 = createvsw § // vswitch [
E| = createVPort E § 1 // port 1 on E
E, = createvPort E § 2 // port 2 on E
E; = createvPort E // port 3 on E
G| = createVPort G // port 1 on G

Ly = createvlLink £ 3 G 1 // link E—-G
remaining commands omitted for brevity.

Figure 2: Administrator configuration to create (a subset
of) the physical-virtual mapping shown in Figure 1.

ministrator uses the policy L > Q.

Override operator (>>): Each controller x provides Co-
Visor with a member policy specifying how x wants the
network to process packets. The policy x> T attempts
to apply x’s member policy to any incoming packet 7. If
x’s policy does not specify how to handle ¢, then T is
used as a default. For example, suppose one controller
x is running an elephant flow routing application and an-
other controller y is running an infrastructure routing ap-
plication. If we want x to override y for elephant flow
packets, y to route all regular traffic, and any packet not
covered by either policy to be dropped, we use the policy
x> (yr>drop).

2.2 Constraints on Individual Controllers

In addition to composing member policies, CoVisor al-
lows the administrator to virtualize the underlying topol-
ogy and restrict the packet-processing capabilities avail-
able to each controller. This helps administrators hide
infrastructure information from third-party controllers,
reuse topology-independent algorithms, and provide se-
curity against malicious or buggy control software.

2.2.1 Constraints on Topology Visibility

Rather than exposing the full details of the physical
topology to each controller, CoVisor provides each with
its own virtual topology. Table 1 shows the API to con-
struct a custom virtual network. createVSw creates
a virtual switch. It can be used to create two kinds
of physical-virtual mappings as follows. (1) many-to-
one (many physical switches map to one virtual switch):
call the function once with a list of physical switch
identifiers; (2) one-to-many (a single physical switch



maps to many virtual switches): call the function mul-
tiple times with the same physical switch identifier.
createVPort creates a virtual port. To map it to a
physical port, the administrator includes the correspond-
ing physical switch and port number. createVLink
creates a virtual link by connecting two virtual ports.
connectHost connects a host to a virtual port.

Example.  Consider the example physical-virtual
topology mapping shown in Figure 1. The physical
topology represents an enterprise network consisting of
an Ethernet island (shown in blue in Figure 1) connected
by a gateway router (multicolored and labeled S) to the IP
core (red). We abstract gateway switch S to three virtual
switches: E, G, and /. Figure 2 shows how the adminis-
trator uses CoVisor’s API to create the virtual mapping.

These four commands allow the administrator to cre-
ate one level of virtual topology on top of a physical net-
work. To create multiple levels of topology abstraction,
the administrator can run one CoVisor instance on top of
another. Supporting this behavior in a single instance of
CoVisor is part of our future work.

2.2.2 Constraints on Packet Handling

CoVisor imposes fine-grained access control on how
a controller can process packets by virtualizing switch
functionality. The administrator sets custom capabilities
on each controller’s virtual switches, thereby choosing
which functionalities of the physical network to expose
on a controller-by-controller basis.

Pattern: The administrator specifies which header fields
a controller can match and how each field can be matched
(i.e., exact-match, prefix-match, or arbitrary wildcard-
match). CoVisor currently supports the 12 fields in the
OpenFlow 1.0 specification, with prefix-match an option
only for source and destination IP addresses.

Action: The administrator specifies the actions a con-
troller can perform on matched packets. CoVisor cur-
rently supports the actions in the OpenFlow 1.0 specifi-
cation, including forward, drop (indicated by an empty
action list), and modify (the administrator determines
which fields can be modified). The administrator also
controls whether a controller can query packets and
counters from switches and send packets to switches.

Example. In the example in Figure 1, the administra-
tor can restrict the MAC learner to match only on source
and destination MAC and inport and the firewall to match
only on the five tuple. Also, the administrator can disal-
low both applications from modifying packets.

2.3 Handling Failures

Controllers, switches, and CoVisor itself can fail during
operation. We describe how CoVisor responds to them.

Controller failure: The administrator configures CoV-
isor with a default policy for each controller to execute
in the event of controller failure. The default policy is
application-dependent. For example, a logical default for
a firewall controller is drop (erase all installed rules and
install a rule that drops all packets), because a firewall
should fail safe. In contrast, the default policy for a mon-
itoring controller can be id (identical, i.e., leave all rules
in the switch), as monitoring rules are not critical to the
operation of a network, and the counters can be reused if
the monitoring controller recovers.

Switch failure: If a switch fails, all its rules are removed
and CoVisor notifies the relevant controllers. Moreover,
in the case of many-to-one virtualization, CoVisor allows
the virtual switch to remain functional by rerouting traf-
fic around the failed physical switch (if possible in the
physical network).

Hypervisor failure: We currently do not deal with hy-
pervisor failure. Replication techniques in distributed
systems may be applied to CoVisor, but a full exploration
is beyond the scope of this work.

3 Incremental Policy Compilation

Network management is a dynamic process. Applica-
tions update their policies in response to various network
events, like a change in the traffic matrix, switch and link
failures, and detection of attacks [6, 7, 8, 9, 10, 11, 12,
13, 14]. Therefore, CoVisor receives streams of member
policy updates from controllers and has to recompile and
update the composed policy frequently. In this section,
we first review policy compilation and introduce a straw-
man solution, and then we describe an efficient solution
based on a convenient algebra on rule priorities.

3.1 Background on Policy Compilation

The first stage of policy compilation entails combining
member policies into a single composed policy. Con-
trollers implement member policies by sending Open-
Flow rules to CoVisor. A rule r is a triple r = (p;m;a)
where p is a priority, m is a match pattern, and a is an
action list. Given a rule r = (p;m;a), we use the no-
tation r.priority to refer to p, r.match to refer to m, and
r.action to refer to a. We denote the set of packets match-
ing r.match as rmSet. Now we describe how to compile
each composition operator outlined in §2.1. We assume
all policy implementations include only OpenFlow 1.0
rules and that each switch has a single flow table.

Parallel operator (+): To compile 77 + T, we first com-
pile 71 and 75 into implementations Ry and R,. (In prac-
tice, each controller communicates its member policy to



(3; srcip =0.0.0.0/2,dstip = 3.0.0.0; dstip =2.0.0.1)

Monitoring Mg Parallel composition: comp_ (Mg, OR)
(1; srcip = 1.0.0.0/24; count) (5; sreip = 1.0.0.0/24,dstip = 2.0.0.1; count, fwd(1))
(O; *; drop) (4; srcip = 1.0.0.0/24,dstip = 2.0.0.2; counl,fwd(Z))
(3; srcip = 1.0.0.0/24; count)
Routing Og (2; dstip =2.0.0.1; fwd(1))
(1; dstip =2.0.0.1; fwd(1)) (1; dstip =2.0.0.2; fwd(2))
(1; dstip = 2.0.0.2; fwd(2)) (0; = drop)
(O; *; drop)
Sequential composition: comps. (Lg, Or)
Load balancing Lz (2; sreip =0.0.0.0/2,dstip = 3.0.0.0; dstip =2.0.0.1, fwd(1))

(1; dstip =3.0.0.0; dstip =2.0.0.2, fwd(2))

(1; srcip=1.0.0.0,dstip =2.0.0.1; fwd(3))

(1; dstip = 3.0.0.0; dstip =2.0.0.2) (0; *; drop)
(O; *; drop)

Override composition: compy. (Er, Or)
Elephant flow routing Eg (3; sreip=1.0.0.0,dstip =2.0.0.1; fwd(3))

(2; dstip =2.0.0.1; fwd(1))
(1; dstip=2.0.0.2; fwd(2))
(0; *; dr()p)

Figure 3: Example of policy compilation.

CoVisor in an already compiled form. We explicitly in-
clude this step because it represents the base case of the
recursive process.) Then, we compute comp.(Ry,R»)
by iterating over (rl,-,rzj) € Ry X Ry where ry; and rp;
are taken from R; and R;, respectively, by priority in
decreasing order. We produce a rule r in the com-
posed implementation if the intersection of rj;.mSet and
rpj.mSet is not empty. r.match is the intersection of
rii.match and ryj.match, and r.actions is the union of
rii.actions and raj.actions. We defer priority assign-
ment to later discussion in this subsection. Consider
the example of comp (Mg, Qg) in Figure 3. Let Mg =
my,...,m, and Qr = q1,...,qx. We begin by consider-
ing m| and g;. Since m|.mSet N q|.mSet # O, we pro-
duce a first rule r; in comp; (Mg, Qg) with match pat-
tern {srcip = 1.0.0.0/24,dstip =2.0.0.1} and action list
{count, fwd(1)}. Composing all (m;,q;) pairs gives the
composed policy implementation comp (Mg, Qg) of the
policy composition M + Q.

Sequential operator (>): To compile 71 > T5, we
again begin by generating implementations R; and
R;. Then, we compute comps (Ri,Rz). As with
comp, (R1,R>), we iterate over (r1;,r2;) € Ry X Ry where
ri; and rp; are taken from Ry and R», respectively, by
priority in decreasing order. However, now we pro-
duce a rule r in the composed policy if the intersection
of rpj.mSet and the set of packets produced by apply-
ing ryj.action to all packets in ry;.mSet is not empty.
Consider the example of comps. (Lg,Qgr) in Figure 3.
Again, we begin iterating over (/;,q;) € Lg X Qg pairs
by considering /; and q;. Applying [ .action to all pack-
ets in [;.mSet gives the set of packets matching pattern
{srcip = 0.0.0.0/2,dstip = 2.0.0.1}. The intersection
of this set and g;.mSet is not empty. Hence, we gener-

Routing Or

(1; dstip =2.0.0.1; fwd(1))
(1; dstip=2.0.0.2; fwd(2))
(1; dstip=2.0.0.3; fwd(3))
(O; *; drop)

Parallel composition: comp. (Mg, OR)

7; srcip=1.0.0.0/24,dstip=2.0.0.1; fwd(l),count)
6; srcip=1.0.0.0/24,dstip=2.0.0.2; fwd(2),c0unt)
5; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),c0unt)
4
3;

srcip=1.0.0.0/24; count)

dstip=2.0.0.1; fwd(l))
2; dstip=2.0.0.2; fwd(2))
1; dstip=2.0.0.3; de(3))
(O; *; drop)

(
(
(
(
(
(
(

Figure 4: Example of updating policy composition.
Strawman solution.

ate the first rule in the composed policy implementation
with match pattern {srcip = 0.0.0.0/2,dstip = 3.0.0.0}
and action list {dstip =2.0.0.1, fwd(1)}. Repeating this
process for all (/;,q;) pairs yields comps. (Lg,Qg), the
implementation of L >> Q.

Override operator (©>): To compile 7} > T;, we again
begin by generating implementations Ry and R,. Then,
we compute compy (R, Ry) by stacking R; on top of R,
with higher priority. For example in Figure 3, to com-
pile compy. (Eg,Qr), we put Eg’s rules above Qg’s rules.
Thus, packets with source IP 1.0.0.0 and destination IP
2.0.0.1 will be forwarded to port 3, and other packets
with destination IP 2.0.0.1 will be forwarded to port 1.

Priority assignment and policy update problem: Re-
call that a rule r is a triple (r.priority;r.match;r.action).
Thus far, we have explained how to generate a list
of (match;action) pairs, or pseudo-rules. Our list of



Monitoring Mg Parallel composition: comp. (Mg, QOR)

(1; sreip = 1.0.0.0/24; count) (2; sreip =1.0.0.0/24,dstip = 2.0.0.1; fwd(1),count)

(0; *; drop) (2; srcip = 1.0.0.0/24,dstip = 2.0.0.2; fwd(2),count)
(2; srcip=1.0.0.0/24,dstip=2.0.0.3; fwd(3),count)

Routing Qg (1; srcip =1.0.0.0/24; count)

(1; dstip =2.0.0.1; fwd(1)) (1; dstip=2.0.0.1; fwd(1))

(15 dstip =2.0.0.2; fwd(2)) (1; dstip =2.0.0.2; fwd(2))

(1; dstip=2.0.0.3; fwd(3)) (1; dstip=2.0.0.3; fwd(3))

(O; *; drop) (O; *; drop)

Load balancing Lg

Sequential composition: comps. (Lg, Or)

(3; srcip =0.0.0.0/2,dstip = 3.0.0.0; dstip =2.0.0.1)

(25; srcip =0.0.0.0/2,dstip = 3.0.0.0; dstip = 2,0,0.1,fwd(1))

(2; srcip=0.0.0.0/1,dstip=3.0.0.0; dstip=2.0.0.3) (17; srcip=0.0.0.0/1,dstip=3.0.0.0; ds_tip=2-0-0-3,fwd(3))
(15 dstip = 3.0.0.0; dstip = 2.0.0.2) (95 dstip = 3.0.0.0; dstip =2.0.0.2, fwd(2))
(0; *; dr()p) (0; *; drop)

Elephant flow routing Eg

Override composition: compy (Eg, Or)

(1; srcip =1.0.0.0,dstip =2.0.0.1; fwd(3))

(0

(9; srcip=1.0.0.0,dstip =2.0.0.1; fwd(3))
(1; dstip=2.0.0.1; fwd(1))

(1; dstip=2.0.0.2; fwd(2))

(1; dstip=2.0.0.3; fwd(3))

; drop)

Figure 5: Example of incremental update.

pseudo-rules is prioritized in the sense that each pseudo-
rule’s position indicates its relative priority, but we have
not addressed how to assign a particular priority value to
each pseudo-rule. Priority assignment is important for
minimizing the overhead of policy update. Ideally, a sin-
gle rule addition in one member policy implementation
should not require recomputing the entire composed pol-
icy from scratch, nor should it require clearing the phys-
ical switch’s flow table and installing thousands of flow-
mods. (A flowmod is an OpenFlow message to update a
rule in a switch.) In concrete terms, the update problem
involves minimizing the following two overheads:

e Computation overhead: The number of rule pairs
over which the composition function comp iterates
to recompile the composed policy.

e Rule update overhead: The number of flowmods
needed to update a switch to the new policy.

Strawman solution: The strawman solution is to assign
priorities to rules in the composed implementation from
bottom to top starting from 0 by increment of 1. Then,
it installs the difference between the old implementation
and the new one. For example, the priorities of rules in
Figure 3 are assigned in this way. This approach incurs
high computation and rule update overhead, because it
requires recompiling the whole policy to determine each
rule’s new relative position and updates rules that only
change priorities. For example, when a new rule is in-
serted to Qg (in bold in Figure 4), although only the third
and the seventh rules in comp (Mg, Qg) are new, five
rules change their priorities. We have to update these
five existing rules as well as add two new rules. Rules in

bold in Figure 4 count toward this rule update overhead.

3.2 Incremental Update

Ideally, the priority of rule r in the composed implemen-
tation is a function solely of the rules in the member im-
plementations from which it is generated. In this way,
any updates of other rules in member implementations
will not affect r. We observe that rule priorities form a
convenient algebra which allows us to achieve this goal.

Add for parallel composition: Let R be the composed
implementation of comp, (R1,R;). If rule ry € R is com-
posed from ry; € Ry and rp; € Ry, then ry.priority is the
sum of ry;.priority and rj.priority:

Tg.priority = ri;.priority +raj.priority. (1)

We show the example of comp (Mg,Qg) in Figure 5.
The first rule in comp (Mg, Qg) is composed from m;
and g;. Hence, its priority is m;.priority+ q;.priority =
2. Suppose a new rule (in bold in Figure 5) is inserted
to Qr. We only need to iterate over rule pairs (m;,q3)
for all m; € Mg, rather than iterate over all the rule pairs.
This generates two new rules (in bold in Figure 5). All
existing rules do not change.

Concatenate for sequential composition: Let R be the
composed implementation of comps. (Ry,Ry). If ry € R
is composed from ry; € Ry and r2j € Ry, then ry.priority
is the concatenation of ry;.priority and ry;.priority:

Tg.priority = ry;.priority o ryj.priority. 2)



Symbol o in Equation 2 represents the concatenation of
two priorities, where each priority is represented as a
fixed-width bit string. Concatenation enforces a lexico-
graphic ordering on the pair of priorities. Specifically,
let ay = byocy and ap = by ocy. Then a; > ap if and
only if (b] > by or (bl =by and ¢| > CQ)), and a; = ap
if and only if (b| = by and ¢; = ¢;). In practice, concate-
nation is computed as follows. Let r5; be in the range
[0,MAXg,) where MAXg, — 1 is the highest priority that
R, may use'. Then ry.priority is computed by
ry.priority = ry;.priority X MAXg, + raj.priority.

We show the example of comps. (Lg, Qr) in Figure 5. Let
MAXp, = 8. The first rule in comps. (Lg,Qr) is com-
posed from /; and ¢q;. Thus, its priority is [;.priority X
8 + q1.priority = 25. Suppose a new rule is inserted to
Lg (in bold in Figure 5). We only need to iterate over
rule pairs (/3,¢;) for all ¢; € Q. This generates a new
rule with priority 17 (in bold in Figure 5). All existing
rules do not change.

Stack for override composition: Let R be the composed
implementation of compy. (R1,R;), and let Ry’s priority
space be [0,MAXg,). To assign priorities in R, we in-
crease the priorities of R;’s rules by MAXp, and keep the
priorities of R;’s rules unchanged. This process essen-
tially stacks R;’s priority space on top of R,’s priority
space. Specifically, let r, € R. By definition of comp.,
i 1s in either Ry or Ry. Let ri.mPriority be ry’s priority
in the member implementation from which it comes. We
assign priority to ry as follows.

ri.mPriority + MAXg,

ry.mPriority,

if r, € Ry

3
if ry €Ry )

ry.priority = {
We show the example of Er I> Qg in Figure 5. Let
MAXp, = 8. The first rule in compy. (Eg, QOr) is gener-
ated from ey, so it is assigned priority e;.priority+8 =9.
The second rule in comp. (Eg, Qr) is generated from ¢,
so it is assigned priority gq;.priority = 1. When a new
rule g3 that matches dstip = 1.0.0.3 is inserted to Qr, we
simply add a new rule with priority 1 (in bold in Figure 5)
to compy (Eg, Qr) without affecting existing rules.

Remark 1 We show the proofs of correctness for paral-
lel and sequential composition in [18]. A similar proof
for override composition is straightforward. Also note
that we may waste the priority space if we do not have an
accurate estimation on MAXg, in sequential and over-
ride composition. This is not a weakness of the algo-
rithm, but a weakness of using OpenFlow as the primary
representation of the policy.

With the algebra on rule priorities above, CoVisor pro-
cesses the three kinds of rule updates as follows. Let R
be the composed policy implementation of R; and R».

CoVisor limits the priority space of each member policy, because
the bits for priority in hardware are limited in practice.

Algorithm 1 Symbolic path generation

1: function GENPATHS(pkt)

2 pkt.children < {evaluate policy on pkt}
3 for all childinpkt.children do

4: if not child.REACHEDEGRESS() then

5: GENPATHS (child)

Rule addition: When a new rule r] is added to R; (or
r3 to Ry), CoVisor composes this rule with each rule in
Ry (or Ry). It assigns priorities to new rules according to
Equations 1, 2, and 3 and installs them to switches. All
existing rules are untouched.

Rule deletion: When an old rule r} is deleted from R;
(or 5 from R;), CoVisor finds all rules in R that are com-
posed from this rule and deletes them from switches. All
other rules are untouched.

Rule modification: Modifying a rule is equivalent to
deleting an old rule and then inserting a new rule.

4 Compiling Topology Transformations

The first phase of compilation (§3) generates a composed
policy for the virtual network. The second phase, which
we describe in this section, compiles a policy for the vir-
tual topology into one for the physical network. It com-
prises two sub-cases as described in §2.2.1: many-to-one
and one-to-many. One-to-one is a degenerate case of
these two. While previous work has explored compila-
tion of the many-to-one case [19, 20], there does not ex-
ist any compilation algorithm for the one-to-many case.
Pyretic [15] offers the one-to-many feature but imple-
ments it by sending the first packet of each flow to the
controller and then installing micro-flow rules, a strategy
which incurs prohibitive overhead. We present the first
compilation algorithm for the one-to-many case.

Our algorithm is a novel combination of symbolic
analysis [21] and incremental sequential composition.
Intuitively, we inject a symbolic packet into the virtual
network, follow all possible paths to egress ports, and
sequentially compose the rules along each path. In this
way, we derive rules for the physical switch to process
traffic as intended by the controller’s policy for the vir-
tual network. To handle rule updates incrementally, we
keep all the symbolic paths computed during this anal-
ysis and minimally modify them when the virtual pol-
icy changes. We divide our description into three parts:
symbolic path generation (§4.1), sequential composition
on symbolic paths (§4.2), and incremental update (§4.3).
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Figure 6: One-to-many virtualization.

4.1 Symbolic Path Generation

For each ingress port of the virtual network, we inject a
single symbolic packet with wildcards in all fields (ex-
cept inport). At every hop, we evaluate the policy on
the packet, which generates zero, one, or more symbolic
packets. We follow the generated symbolic packets un-
til they all reach egress ports. Together, these symbolic
paths form a tree rooted at the ingress port.

Algorithm 1 shows pseudocode for the path genera-
tion algorithm. In Line 2, we create all child packets
that can result from evaluating the policy on pkt—one
child packet for each rule r that pkt matches. As we
construct the tree, we update child’s header, which de-
notes the subset of traffic represented by the symbolic
packet, according to the information encoded in the rule
responsible for generating child from pkt. By doing
so, we avoid creating branches for paths that no packet
could possibly follow.

We use the example in Figure 6 to illustrate the pro-
cess. Figure 6(a) shows a physical-virtual topology map-
ping in which a physical switch S is virtualized to three
virtual switches, A, B and C. The mapping between phys-
ical and virtual ports is color- and line type-coded. Fig-
ure 6(b) shows the policy of each virtual switch.

We inject a symbolic packet with header *, denoting
wildcards in all fields, into port 1 of A. When we apply
A’s policy to this packet, we generate two child symbolic
packets, p; and p;. p; has destination IP 2.0.0.0/16,
matches the first rule in A’s policy, Agi, and leaves the
network at port 2 of A; p, has destination IP 1.0.0.0/8,
matches A’s second rule, Ag,, and reaches port 1 of B.
We then evaluate B’s policy on p», again generating two
symbolic packets, py; and pj>. pz; matches Bg; and
leaves the network at port 2 of B; p,> matches Bg,, enters
C at port 1, matches Cgy, and finally leaves the network
at port 2 of C. In total, we get the following three sym-
bolic paths: (1) py : Ag1; (2) p21 : Arp — Bgy; and (3)
P22 :Ara — Bra — Cg1.

4.2 Sequential Composition

For each symbolic path, we sequentially compose all the
rules along its edges to generate a single rule. Then, we
derive a final rule for the physical switch by adding a
match on the inport value of the symbolic packet at the
root of the tree. Returning to our example in Figure 6,
the first symbolic path contains only Ag;. By adding port
1 to its match, we get the first rule for physical switch S.

Sr1 = (4; inport = 1,dstip =2.0.0.0/16; fwd(Z)).

Adding inport = 1 is necessary because traffic that enters
port 3 of C (port 5 of S) with destination IP 2.0.0.0/16
will be forwarded to port 2 of C (port 4 of S). Similarly,
for the second and third symbolic paths, we evaluate
comps.(Ag2,Bg1) and comps, (comps.(Ag2,Br2),Cri),
respectively. We assume the priority space for each
switch is [0,8). After adding ingress port, we obtain two
more rules.

Sgo = (14sinport = 1,dstip =1.0.0.0/24; fwd(3))
Sgs = (76sinport = 1,dstip = 1.0.0.0/8;
dstip =2.0.0.0, fwd(4))

Priority assignment: Because symbolic paths may have
different lengths, for the devirtualization phase of compi-
lation we need to augment the priority assignment algo-
rithm for sequential composition presented in §3.2. For
example, from sequential composition we get priorities
4, 14, and 76 for rules Sgi, Sga, and Sg3, respectively.
But, with these priorities, traffic entering port 1 at S with
source IP 1.0.0.0/24 would match Sg3 rather than Sg;,
even though Sk, should have a higher priority than Sgs.
This mismatch happens because Sg; is calculated from a
path with only two hops (its priority is 1 06 = 14) and Sg3
is calculated from one with three hops (10104 =76). To
address the mismatch, we set a hop length /*. If a path is
fewer than [* hops, we pad Os to the concatenation of the
rule priorities. In practice, we use the number of switches
in the virtual topology as [*, as a path will have more than
that number of hops only if the virtual policy contains a
loop. This modified algorithm correctly orders Sg, and
Sg3, assigning them respective priorities of 10600 =112
and 40000 = 256. Figure 7 shows the rules for S with



Flow table of S

(256; inport = 1,dstip =2.0.0.0/16; fwd(2))

(112; inport = 1,dstip = 1.0.0.0/24; fwd(3))

(76; inport = 1,dstip = 1.0.0.0/8; dstip = 2.0.0.0,fwd(4))

Figure 7: Flow table of switch S in Figure 6.

priorities calculated in this manner. We repeat the above
procedure for all ingress ports of the virtual topology to
get the final policy for S.

4.3 Incremental Update

By storing all the symbolic paths we generate when com-
piling a policy and partially modifying them upon a rule
insertion or deletion, we can incrementally update a pol-
icy. This strategy obviates the need to compile the whole
policy from scratch upon every rule update. In partic-
ular, when virtual switch V receives a rule update, we
reevaluate V’s policy on all symbolic packets that enter
V. As aresult, we may generate new symbolic packets,
which we then follow until they reach egress ports. V’s
policy update may also modify the headers of or elimi-
nate existing symbolic packets. Accordingly, we update
the paths of modified symbolic packets and remove the
paths of deleted packets. Then, we add and remove rules
from the physical switch as described in §4.2. Our prior-
ity assignment algorithm ensures that these rule additions
and deletions do not affect existing rules generated from
symbolic paths that have not changed.

S Exploiting Policy Structures

CoVisor imposes fine-grained access control on how
each controller can match and modify packets. These
restrictions both enhance security and provide hints that
allow CoVisor to further optimize the compilation pro-
cess. First, by knowing which fields individual poli-
cies match on and modify, we can build custom data
structures to index rules, instead of resorting to general
R-tree-based data structures for multi-dimensional clas-
sifiers as in [22, 23, 24]. Second, by correlating the
matched or modified fields of two policies being com-
posed, we can simplify their indexing data structures by
only considering the fields they both care about.

We first describe the optimization problem, and then
we show how to use the above two insights to solve it.
For ease of explanation, we first assume that member
policies are connected by the parallel operator. Later,
we’ll describe how to handle the sequential and override
operators. Now suppose we have a parallel composition
Ty + T, with implementation comp (R1,R3), and a new
rule, r{, is inserted into R;. With our incremental update
algorithm (§3.2), we need to iterate over all (r],r2;) pairs

Hash Map
(proto)

*

Trie

(srcip) o e A

dstip srcip, dstip,
srcprt, dstprt,
proto

(a) Example rule index.

(b) Example syntax tree.

Figure 8: Example of exploiting policy structures.

where r,; € R;. The iteration processes |R;| pairs in total,
where |R,| denotes the number of rules in R,. However,
if we know the structure of R,, we can index its rules in
a way that allows us to skip the rules that don’t intersect
with r], thereby further reducing computation overhead.

Index policies based on structure hints: Our goal is to
reduce the number of rule pairs to iterate in compilation.
A policy’s structure indicates which fields should be in-
dexed and how. For example, if R; is permitted only to
do exact-match on destination MAC, then we can store
its rules in a hash map keyed on destination MAC. If r}
also does exact-match on destination MAC, we simply
use the destination MAC as key to search for rules in
R;’s hash map. No rules in R, besides those stored un-
der this key can intersect with r}, because they differ on
destination MAC. If r] wildcards destination MAC, we
return all rules in Ry, as they all intersect with r}.

The preceding example is a simple case in which R,
matches on one field. In general, a policy may match on
multiple fields. We use single-field indexes (hash table
for exact-match, trie for prefix-match, list for arbitrary
wildcard-match) as building blocks to build a multi-layer
index for multiple fields. Specifically, we first choose
one field f; the policy can match and index the policy on
this field. We store all rules with the same value in f in
the same bucket of the index. This forms the first layer
of the index. Then we choose the second field f, and
index rules in each fj bucket on f,. We repeat this pro-
cess for all the fields on which the policy can match. We
choose the order of fields according to simple heuristics
like preferring exact-match fields to prefix-match fields.
In practice, a policy normally matches on a small number
of fields, which means the number of layers is small.

Consider a policy that does exact-match on proto (pro-
tocol number) and prefix-match on srcip. We first index
the policy based on proto. All rules with the same value
in proto go to the same bucket, as shown in Figure 8(a).
Note that the hash map contains a bucket keyed on * for
rules that do not match on proto. Then, we index all the
rules that contain the same proto value on srcip. Be-
cause our example policy does prefix match on srcip, the
second level of our multi-layer index comprises a trie for
each bucket in the hash map. Figure 8(a) shows this sec-



ond level for rules with proto = 1; bucket A contains all
the rules with proto = 1 and srcip = 128.0.0.0/1.

Correlate policy structures to reduce indexing fields:
When composing policies, we can leverage the informa-
tion we know about both to reduce the work we do to in-
dex each. Suppose R; matches on dstip and R, matches
on the five tuple (srcip, dstip, srcport, dstport, proto).
Instead of storing R; in a five-layer index, we need only
index the dstip. Because dstip is the only field on which
any rule r] added to Ry can match, r{ will intersect with
arule in R, as long as they intersect on dstip. Formally,
let R;. fields be the set of fields on which R; matches and
R;.index be the set of fields R; indexes. Given R; and R;
in a composition, we have

Ri.index = Rj.index = R;. fields \R;. fields. )
Back to our example, we have R;.index = Ry.index =
R .fieldsNRy.fields = {dstip}.

A policy R; itself may be composed from other poli-
cies R; and Ry. Unlike in the previous example, we do
not a priori know R;.fields and instead rely on the ob-
servation that a rule in a composed policy can match on a
field f if and only if at least one of its component mem-
ber policies can match on f. Hence, we get

R;.fields = R;.fields URy.fields. 5
Let’s look at an example (R; + R») + R3, which we show
as a syntax tree in Figure 8(b). Initially, we know the
match fields only for the leaf nodes. Then we cal-
culate the match fields for node +; with R;.fieldsU
Ry.fields = {srcip,dstip,srcprt,dstprt, proto}. Then,
we use Equation (4) to index 4 and R3 with +. fieldsN
R3.fields = {srcip, proto}.
Sequential and override composition: Suppose we
have sequential composition 77 > T, with implementa-
tion comps.(R1,R). Then R).fields not only contains
the fields R; matches but also the fields it modifies in
its action set. This is because, for r; € Ry and r, € Ry,
the pair (r1,r,) generates a rule for the composed policy
if the intersection of rp.mSet and the set of packets re-
sulting from applying r;.action to ri.mSet is not empty.
Similarly, when we index R;, the key for any rule ry; is
the value resulting from applying r;.action to ry.match.
We do not need to index policies for override composi-
tion, since we directly stack their rules.

6 Implementation

We implemented a prototype of CoVisor with 4000+
lines of Java code added to and modifying OpenVir-
teX [3]. We replaced the core logic of OpenVirteX,
which isolates multiple controllers, with our composi-
tion and incremental update logic (§3). To OpenVir-
teX’s built-in many-to-one virtualization, we added sup-
port for the one-to-many abstraction and our proactive
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compilation algorithm (§4). We further optimized com-
pilation by exploiting the structure of policies as de-
scribed in  §5. We used HashMap in the Java stan-
dard library [25] to index rules with exact-match fields
and RadixTree in the Concurrent-trees library [26] to
index rules with prefix-match fields. Given a key (e.g.,
1.0.0.0/16), RadixTree in the Concurrent-trees library
only returns values for keys starting with this key (e.g.,
1.0.0.0/24 and 1.0.0.0/30). We modified it to also give
values for keys included by this key (e.g., 1.0.0.0/8). Co-
Visor currently supports the OpenFlow flowmod mes-
sage; other commands, such as barrier messages and
querying counters, will be supported in later versions.

7 Evaluation

7.1 Methodology

Experiment Setup: We evaluate CoVisor under three
scenarios, the first two of which evaluate composition ef-
ficiency and the third of which evaluates devirtualization
efficiency. In each scenario, we stress CoVisor with a
wide range of policy sizes. Since compiling policies to
individual physical switches is independent in these sce-
narios, we show the results for a single physical switch.
We run CoVisor on Mininet [27] and use Floodlight con-
trollers [2]. The server is equipped with an Intel XEON
W5580 processor with 8 cores and 6GB RAM. We de-
scribe each scenario in more detail below.

e L2 Monitor + L2 Router: L2 Monitor counts pack-
ets for source MAC and destination MAC pairs;
L2 Router forwards packets based on destination
MAC. The MAC addresses are randomly generated.

o L3-L4 Firewall >> L3 Router: L3-L4 Firewall filters
packets based on the five tuple; L3 Router forwards
packets according to destination IP prefix. The fire-
wall policy is generated from ClassBench [28], a
tool for benchmarking firewalls. The L3 router pol-
icy is generated with IP prefixes extracted from the
firewall policy.

e Gateway virtualization: This is the topology vir-
tualization discussed in §2.2.1. A switch that con-
nects an Ethernet island to the IP core is abstracted
to three virtual switches, which operate as a MAC
learner, gateway, and IP router.

Metrics: We use the following metrics to measure effi-
ciency. The thick bars in Figures 9 and 11 indicate the
median, and the error bars show the 10th and 90th per-
centiles.
o Compilation time: The time to compile the policy
composition or topology devirtualization.
o Rule update overhead: The number of flowmods
to update the switch to the new flow table.
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o Total update time: The sum of compilation time,
rule update time, and additional system overhead
like OpenFlow message (un)marshalling. Since
hardware switches and software switches takes very
different time in rule updates, we show both of
them. As the software switches in Mininet do not
mimic the rule update latency of hardware switches
and do not give accurate timing on the actual rule
installation in software switches, we use the rule up-
date latency in [29] for hardware switches and that
in [30] for software switches when calculating rule
update times.

Comparison: We compare the following approaches.

e Strawman: Recompile the new policy from scratch
for every policy update.

¢ Incremental: Incrementally compile the new policy
using our algebra of rule priorities for policy com-
position (§3) and keeping symbolic path informa-
tion for topology devirtualization (§4).

o IncreOpt: Further optimize Incremental by exploit-
ing the structures of policies (§5).

7.2 Composition Efficiency

Figure 9 shows the result of L2 Monitor + L2 Router. In
this experiment, we initialize the L2 Monitor policy with
1000 rules, and then add 10 rules to measure the over-
head for each. We repeat this process 10 times. We vary
the size N of L2 Router policy from 1000 to 32,000 to
show how overhead increases with larger policies. Fig-
ure 9(a) shows the compilation time. As expected, the
compilation time of Strawman and Incremental increases
with the policy size, because larger policies force our al-
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Figure 9: Per-rule update overhead of L2 Monitor + L2 Router (log-log scale).
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Figure 10: Per-rule update overhead of L3-L4 Firewall >> L3 Router (log-log scale).

11

gorithm to consider more rule pairs. Since Strawman re-
compiles the whole policy, it is by far the slowest. On
the other hand, IncreOpt has almost constant compilation
time, because it indexes L2 Router’s rules in a hash table
keyed on destination MAC. When a rule is inserted to
L2 Monitor’s policy, the algorithm simply uses the rule’s
destination MAC to look up rules in the hash table.

Figure 9(b) shows the rule update overhead in terms
of number of rules (same for hardware and software
switches). Because of its naive priority assignment
scheme, Strawman unnecessarily changes priorities of
many existing rules and thus generates more flowmods
than Incremental and IncreOpt. Incremental and Incre-
Opt generate the same policy, and therefore they have
the same rule update overhead. We also observe that the
rule update overhead does not increase with the size of L2
Router’s policy. This is because the size of L2 Monitor’s
policy is fixed, and each monitor rule only intersects with
one rule in L2 Router, since they both do exact-match on
destination MAC.

Finally, Figures 9(c) and 9(d) show the total time. No-
tably, Incremental and IncreOpt are significantly faster
than Strawman, and the gap between Incremental and In-
creOpt is larger when using software switches. This is
because software switches update rules faster than hard-
ware switches, and therefore the compilation time ac-
counts for a larger fraction of the total time for software
switches.

Figure 10 shows the result of L3-L4 Firewall > L3
Router. As before, we initialize L3-L4 Firewall’s policy
with 1000 rules and add 10 rules. Since the trend is simi-
lar to Figure 9 when we vary the size N of L3 Router, we
instead show the CDF when L3 Router policy has 8,000
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rules. Figure 10(a) shows the compilation time. Again,
Strawman is several orders of magnitude slower than In-
cremental and IncreOpt. However, unlike in our previous
experiment, we see a stepwise behavior of Incremental,
and the difference between Incremental and IncreOpt also
disappears after 80th percentile. This is an artifact of the
content of L3-L4 Firewall from ClassBench. The firewall
policy comprises approximately 80% rules matching on
very specific destination IP prefix (/31, /32) and around
20% rules matching very general destination IP prefix
(/1, /0). A firewall rule with a very specific destination
IP prefix only composes with a few router rules, in which
case IncreOpt processes fewer rule pairs in compilation
than Incremental. On the other hand, a firewall rule with
a very general destination IP prefix like /1 or /0 composes
with half or all rules in the router policy, in which case In-
cremental and IncreOpt process a similar number of rule
pairs and have similar compilation time. This reasoning
also explains the shape of Incremental and IncreOpt in
Figures 10(b), 10(c) and 10(d).

7.3 Devirtualization Efficiency

We use the gateway scenario to evaluate the efficiency of
the devirtualization phase of compilation. In this exper-
iment, we have 100 hosts in the Ethernet island. The
MAC learner installs forwarding rules for connections
between host pairs. To the Ethernet island, switch G sim-
ply appears as another host; hosts use G’s MAC as des-
tination MAC when they want to reach hosts across the
IP core. We initialize the MAC learner policy with 1000
rules in switch E. Then, we add a new host to the Eth-
ernet island. When the new host tries to talk to another
host across the IP core, the MAC learner adds two rules
to establish a bidirectional connection between the host
and switch G. To compile this update, we compose the
two new rules with the existing rules in switches G and
I. The gateway policy at G is simply a MAC-rewriting
repeater and ARP server. The IP router forwards packets
based on destination IP prefix. We vary the size of the
IP router policy at 7 from 1000 to 32,000 to evaluate how
the overhead increases with larger policies.
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Figure 11: The switch connecting an Ethernet island to the IP core is virtualized to switches that operate as MAC
learner, gateway, and IP router. Figures show the overhead of adding a host to the Ethernet island (log-log scale).
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Figure 11 shows the overhead. Strawman exhibits a
long compilation time, as it has to recompile the policy
from scratch. Strawman also generates more flowmods
than necessary, because its priority assignment scheme
may change the priorities of existing rules. In contrast,
Incremental and IncreOpt incur significantly less over-
head, because they keep all the symbolic paths and only
need to change a few upon receiving the new rules. Fi-
nally, we notice that Incremental and IncreOpt do not
show much difference in this experiment and the abso-
lute values of total update time are high. This is because
the MAC learner policy in switch E and the IP router
policy in switch I match on different fields. Thus, when
we do sequential composition on virtual paths, Incremen-
tal and IncreOpt iterate over a similar number of rule
pairs and the result policy is almost a cross-product of the
two policies at E and I. The cross-product is inevitable
when compiling to a single flow table as the two poli-
cies match on different fields. Finally, we note that the
multi-table support in OpenFlow 1.3 and newer hardware
platforms like P4 [31] can make devirtualization more ef-
ficient. If multiple tables in a switch can be configured to
in a pipeline to mirror the virtual network topology, then
updating virtual switch tables can be directly mapped to
updating physical tables. This can dramatically reduce
compilation and rule update overhead. A complete ex-
ploration of this direction is part of our future work.

8 Related Work

Slicing: Existing network hypervisors mostly focus on
slicing; they target multi-tenancy scenarios in which each
tenant operates on a disjoint subset, or slice, of the traf-
fic [3, 4, 32, 33]. In contrast, CoVisor allows multiple
controllers to collaborate on processing the same traffic.

Topology abstraction: Many projects studied the many-
to-one case [15, 19, 20, 34]. Pyretic [15] explored the
one-to-many case, but its implementation reactively in-
stalls micro-flow rules. CoVisor provides the first proac-
tive compilation algorithm by leveraging symbolic anal-
ysis to build symbolic paths [21] and applying incremen-
tal sequential composition to generate the rules.



Composition: The parallel and sequential operators are
proposed in the Frenetic project [5, 15], and the over-
ride operator is described in [16, 17]. An incremental
compilation algorithm for Frenetic policies is introduced
in [17]. CoVisor is novel in using these operators to
compose policies written on a variety of controller plat-
forms, rather than just Frenetic. Furthermore, CoVisor
takes advantage of the OpenFlow rules’ explicit priori-
ties; it uses a convenient algebra to calculate priorities for
composed rules, thereby eliminating the need to build de-
pendency graphs for rules and maintain scattered priority
distributions [17]. Moreover, [17] only optimizes prior-
ity assignment for Frenetic policies; it is not a hypervi-
sor to compose controllers, and does not have algorithms
to compile topology virtualizations and optimizations by
exploiting policy structures. Finally, it is an open prob-
lem to design a good interface for Frenetic to aid incre-
mental update.

CoVisor is built upon our previous workshop pa-
per [18], which presents the rule priority algebra for the
parallel and sequential operators. This work includes
new results on the algebra for the override operator,
a proactive and incremental compilation algorithm for
one-to-many virtualization, further optimization of com-
pilation algorithms by exploiting policy structures, and a
prototype implementation and evaluation.

Switch table type patterns: Table Type Patterns [35]
and P4 [36] provide a syntax for describing flow table
capabilities (e.g., fields that can be matched and modi-
fied). CoVisor uses this kind of information to build a
customized data structure to optimize compilation. CoV-
isor’s optimization technique differs from existing ways
to index and accelerate multi-dimensional classifiers that
don’t know policy structures a priori [22, 23, 24, 37].

9 Conclusion

We present CoVisor, a compositional hypervisor that al-
lows administrators to combine multiple controllers to
collaboratively process a network’s traffic. CoVisor uses
a combination of novel algorithms and data structures
to efficiently compile policies in an incremental manner.
Evaluations on our prototype show that it is several or-
ders of magnitude faster than a naive implementation,
and we believe this is just the start of research on com-
positional hypervisors. There are many interesting future
directions. In particular, extending existing and explor-
ing new compilation techniques for multi-table support
in compositional hypervisor setting is a very promising
direction [31, 38]. First, this allows us to make efficient
use of hardware capabilities and reduce the size of final
policies for composition and devirtualization. Second,
it introduces an incremental deployment path for hard-
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ware with OpenFlow 1.3 support as legacy applications
written in OpenFlow 1.0 can run on top of CoVisor with
CoVisor compiling them to OpenFlow 1.3.
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