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Abstract

Short-lived traffic surges can cause periods of unexpectedly
high queue utilization. As a consequence, network operators
are forced to deploy more expensive switches with larger,
mostly under utilized packet buffers, or risk packet loss and
delay. Instead, we argue that switches should detect con-
gestion as it forms, and take corrective action on individual
flows before the situation gets worse. This requires identi-
fying the specific culprit flows responsible for the buildup,
and marking, dropping, or rerouting the associated packets
automatically in the data plane. However, collecting fine-
grained statistics about queue occupancy in real time is chal-
lenging, even with emerging programmable data planes. We
present ConQuest, a system that identifies the flows caus-
ing queue buildup within the data plane. Our evaluations
show that ConQuest accurately targets the responsible flows
at the sub-millisecond level, achieving Precision and Recall
of over 90% using about 2KB of switch memory. Addition-
ally, we propose and implement a novel framework for ana-
lyzing queuing in legacy switches using link tapping and an
off-path programmable switch running ConQuest.

1 Introduction

Queue utilization in network switches is a major concern for
network operators. As shown in Figure 1, on a link with rel-
atively stable utilization, short periods of high queue utiliza-
tion can arise. Transient congestion, which typically lasts
hundreds of microseconds to tens of milliseconds, can be
caused by legitimate or adversarial traffic bursts. This short-
lived congestion often leads to higher queuing delay, requir-
ing longer buffers or otherwise risking potential packet loss.

Understanding the cause of transient congestion requires
real-time visibility into the switch’s queuing dynamics. Un-
fortunately, most existing network devices report traffic
statistics at the timescale of minutes or at best seconds. They
often only report the total queue length, providing little visi-
bility of what is happening inside the queue. Therefore, net-
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Figure 1: Queue utilization over a 24-hour period in a car-
rier network switch, highlighting transient congestion events
with more than double the average queue length.

work operators cannot find the root cause for this congestion
in real time, let alone alleviate it. Unlike data-center net-
work fabrics, which can perform congestion control by co-
ordinating between hosts in the network, transit network op-
erators cannot prevent bursty workloads from entering their
networks. To maintain high performance, transit network op-
erators are forced to run links at lower utilization or maintain
sufficiently large queuing buffers, which are both wasteful.

Our ultimate goal is to prevent the high queuing delay and
potential packet loss caused by transient congestion. We
achieve this by identifying the individual culprit flows re-
sponsible for the queue build-up, and taking immediate ac-
tion against the associated packets. Possible actions may
include marking or dropping packets, sending feedback up-
stream to affect future packets of this flow, or reporting to a
collector for further analysis. Subsequently, network opera-
tors would not need to maintain large buffers to withstand the
presence of bursty flows. They could run their network us-
ing cheaper commodity switches with smaller buffers, while
sustaining high performance. To accomplish this goal, our
solution needs to operate:

• In real time: Switches need to act quickly on packets
of the culprit flows to alleviate congestion as it forms.

• In the data plane: A rapid response relies on measur-
ing and acting on congestion directly in the data plane.

• At a fine granularity: To target the responsible traffic,



the switch should measure the queue at the flow level.

• With high accuracy: Accuracy is important to avoid
missing culprit flows or penalizing innocent traffic.

A new generation of programmable switches offers
greater visibility into queue dynamics as well as more flex-
ible packet processing. Moreover, they can perform cus-
tomized actions on each packet, which is crucial for detect-
ing and alleviating congestion in the data plane. Yet, per-
forming sophisticated analysis completely within the data
plane is still challenging. To operate at line rate, these
switches process packets in a hardware pipeline with a lim-
ited number of stages and a limited number of operations
per stage. Furthermore, the memory for storing state across
packets is limited, and each memory unit is bound to a par-
ticular stage in the pipeline. We discuss these constraints and
an overview of the measurement problem we solve in further
detail in Section 2.

Several recent works leverage programmable switches to
analyze queuing dynamics and perform data aggregation.
Solutions such as SpeedLight [19], BurstRadar [12], and
*FLow [17] report congestion statistics by recording traf-
fic with fine-grained timestamps in the data plane, and per-
form detailed analysis of the data in control-plane software
or at remote hosts. In contrast, our goal is to perform per-
packet corrective action within the data plane, rather than re-
lying on offline analysis. In this paper, we present ConQuest
(Congested Queue Tracking), a scalable system to detect
and diagnose congestion in the data plane of programmable
switches. ConQuest can run in programmable switches de-
ployed in an operational network, or “on the side” to monitor
legacy network devices that offer limited visibility into con-
gestion. We make the following contributions:

Efficient switch-level data structure. We introduce a
data structure which maintains multiple “snapshots” of the
queue occupants over time. As each packet arrives, Con-
Quest updates one snapshot and queries multiple past snap-
shots, to determine the contribution of each flow to the con-
gestion, directly in the data plane. The use of multiple snap-
shots allows ConQuest to achieve the desired accuracy (§ 3).

Monitoring legacy network devices. Most legacy net-
work devices only report queue length at the timescale of
multiple seconds and do not provide flow-level queue statis-
tics. We propose an off-path monitoring technique that taps
multiple links of a legacy switch, and feeds the data into
a version of ConQuest extended to match the ingress and
egress observations of the same packet (§ 4).

ConQuest hardware prototype. We implemented Con-
Quest on a Barefoot Tofino programmable switch using the
P4 language [7]. We verified the accuracy of the prototype
on a testbed, where ConQuest analyzed the queuing dynam-
ics of a Cisco CRS switch with multiple 10 Gbps links (§ 5).

Simulations using real packet traces. We further eval-
uated ConQuest using multi-factor simulation experiments
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Figure 2: Queuing in a PISA programmable switch typically
happens at a per-port basis before the egress pipeline pro-
cessing. Thus, queuing analysis programs in a PISA switch
can reside in the egress pipeline.

with real-world packet traces (§ 6). ConQuest can achieve
high accuracy (over 90% Precision and Recall) using a mod-
est amount of register memory (less than 2KB).

Then, we discuss possible control actions to alleviate con-
gestion (§ 7) and extend ConQuest from FIFO queues to ar-
bitrary queuing disciplines (§ 8). Finally, we summarize the
related work (§ 9) and our conclusions (§ 10).

The initial, workshop version of this paper presented only
a simulation-based evaluation, whereas this paper provides
an implementation and evaluation of a prototype on a hard-
ware switch. Furthermore, the workshop paper focused only
on PISA switches, whereas this paper also shows how to use
a PISA switch to monitor the packet queues of a legacy de-
vice. Additionally, while the workshop paper worked solely
for a FIFO queue, in this paper we have extended our algo-
rithm to support general queuing disciplines.

2 Analyzing Congestion in PISA Switches

To analyze congestion, we developed a mechanism to iden-
tify the flows contributing to queue buildup in real time. In
this section we first provide a description of the queuing and
packet-processing model of Protocol Independent Switch
Architecture (PISA) programmable switches [4, 7], as well
as the challenges imposed by this architecture. We then in-
troduce the measurement problem that ConQuest solves.

2.1 Working Within the PISA Architecture
To analyze queuing dynamics directly in the data plane, our
system must support line-rate packet processing. To better
explain the limitations this imposes, we give an overview of
the PISA switch architecture and describe its constraints.

2.1.1 PISA Switch Architecture

Figure 2 illustrates several key components of a PISA switch.
To achieve low latency and high throughput, PISA switches
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process packets in a pipeline with a limited number of stages.
A PISA switch is composed of at least one ingress pipeline,
a crossbar, and at least one egress pipeline. Each egress port
is served by one or more queues.

Packet processing pipeline. Each pipeline stage consists
of a match-action unit and a limited amount of stateful reg-
ister memory, and supports a limited number of concurrent
operations. A packet traversing the pipeline may access two
kinds of state: (i) metadata that a packet carries from one
stage to the next and (ii) the register memory arrays associ-
ated with each stage. At any given time, different pipeline
stages process different packets simultaneously. Therefore,
any register memory array can only be accessed from a par-
ticular pipeline stage; otherwise, concurrent writes from dif-
ferent stages by different packets could lead to hazards.

Queuing discipline. Upon entering the switch, a packet
first goes through ingress pipeline processing to determine
its egress port. Subsequently, the packet enters a queue asso-
ciated with the selected egress port. Upon exiting the queue,
the packet undergoes egress processing before leaving the
switch. For ease of illustration, we consider the case where
each egress port is associated with a single FIFO (first-in-
first-out) queue. We discuss how ConQuest works with more
general queuing models in Section 8.

2.1.2 Challenges of Running on PISA Switches

Per-stage memory access. A packet can only access each
register memory array once as it goes through the packet-
processing pipeline. Although it is possible to recirculate a
packet, any recirculated packet must compete with incoming
packets for resources, possibly reducing throughput.

Limited pipeline stages. Practical switches have a lim-
ited number of pipeline stages to maintain low forwarding
latency. Thus, we need to parallelize computation as much
as possible to fit sophisticated algorithms in the data plane.

No controller assistance. Since ConQuest works on the
timescale of individual packets, any action by a software
controller would lag behind. We cannot use the switch con-
troller (onboard CPU) to help maintain the data structure or
perform garbage collection. ConQuest should perform all
data-structure housekeeping within the data plane.

2.2 ConQuest Congestion Diagnosis Problem

ConQuest identifies the flows causing the buildup in the
queue, who are to “blame” for the congestion. Detecting
and acting on culprit flows in real time would seem to re-
quire maintaining a precise count of how many packets each
flow has in the queue, and support queries on all of these
counters, all of the time. Unfortunately, it is difficult (if not
impossible) to design a data structure in the data plane that
meets these requirements. Specifically, the memory access
requirement prevents us from updating the same data struc-
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Figure 3: Scatter plot of packet departure vs. arrival time.
For packet i arriving at ai and departing at di, how many of
packets of flow fi departed “while packet i is waiting”?

ture in both the ingress and egress pipelines. Otherwise, we
could simply maintain some flow size counter data structure
from both ends of the queue, adding to it when a packet en-
ters and subtracting from it when the packet departs.

Fortunately, to catch the culprit flows, it is sufficient to
maintain approximate flow sizes and only query the size of
each packet’s own flow.

Querying a packet’s own flow size. To take corrective
action for the flows causing congestion, as the burst is form-
ing, we need only identify the contribution of the current
packet’s flow to the queue buildup. Thus, we do not need to
obtain a list of all culprit flows. Instead, from each packet’s
perspective, we just need to query the size of that packet’s
own flow within the queue, to see if the packet belongs to a
culprit flow. This greatly simplifies the requirement for the
data structure we maintain. More precisely, for each packet,
we ask: when I entered the queue, what fraction of the pack-
ets in the queue belonged to my flow?

Accuracy when and where it matters. Furthermore, to
alleviate congestion, ConQuest only needs to focus on the
heavy flows, and does not need to report precise counts for
all the small flows. As long as we can clearly distinguish the
culprit flows from the harmless small flows, it is sufficient to
maintain an approximate count of the flow sizes in the queue.
This allows us to use approximation techniques and adapt to
the constraints imposed by programmable switches.

Problem definition. A packet i of flow fi enters the queue
at time ai and departs at time di, experiencing a queuing de-
lay of (di− ai), as shown in Figure 3. For each egress port,
the packet-processing pipeline witnesses packets leaving the
queue as a stream of (ai,di, fi) tuples. At the egress pipeline
of the switch, ai and di are provided in the queuing meta-
data, and fi is extracted from packet headers. Congestion
arises when the queuing delay of one or more packets ex-
ceeds a threshold τ . When congestion occurs, our system
aims to identify the culprit flows as those consuming at least
an α fraction of the congested queue.

We also denote {x | ai ≤ dx ≤ di} as the packets that de-
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parted the queue while packet i was waiting in the queue.
Note that for a FIFO queue, this definition is equivalent
to what packets were in the queue when packet i entered.
For each packet i, if (di − ai) ≥ τ , ConQuest tries to an-
swer the following query: Does the fraction of packets in
{x | ai ≤ dx ≤ di} that satisfy fx = fi exceed the culprit
threshold α? If the answer is yes, fi is considered a cul-
prit flow and the data plane should take a corrective action
(e.g., mark, drop, report, or reroute), possibly weighted by
the fraction of traffic, on packet i.

In Figure 3, all packets belonging to fi are shaded blue.
For now we use α = 20%. When packet i arrives, the queue
has four packets from flow fi in the {x | ai ≤ dx ≤ di} range
(satisfying fx = fi), including i itself. This roughly accounts
for 40% of all the packets that were served by the queue
while i was waiting (greater than α), thus flow fi contributes
to queue buildup significantly and we call it a culprit flow.
After detecting the culprit flow, the switch can avoid further
queue buildup by marking, dropping, or rerouting packet i or
subsequent packets from flow fi.

3 Efficient Switch-Level Data Structure

To overcome the challenges of running in the data plane,
ConQuest uses a snapshot-based data structure to record traf-
fic and answer queries. In this section, we first present the ra-
tionale behind the snapshot-based data structure design. We
then explain how we use the data structure to answer real-
time flow-size queries and how we can clean and reuse snap-
shots in the data structure without controller mediation.

For simplicity, all definitions and discussions in this sec-
tion assume all packets have unit size. However, it is straight-
forward to extend each definition to consider packet length.

3.1 Traffic Snapshots for Bulk Deletion
Given a stream of packets with (ai,di, fi) tuples, ConQuest
determines how many packets in the queue (i.e., {x | ai ≤
dx ≤ di}) belong to the same flow as packet i (i.e., fx = fi).
During congestion, if these packets compose a fraction of the
queue that exceeds α , we call flow fi a culprit flow.

To determine if a packet is a part of a culprit flow, Con-
Quest needs to maintain a data structure for past packet de-
partures. Whenever a packet departs the queue, ConQuest
queries packets in the past based on the time range [ai,di],
and also inserts this packet and its departure timestamp (i,di)
into the data structure to support future queries.

When implementing the above data structure on PISA
switches, ConQuest has to take into account a set of con-
straints imposed by the architecture, as described in Sec-
tion 2.1. We observe that one of the primary difficulties for
maintaining such a data structure is to accurately delete ex-
pired packets, whose departure timestamp had become too
small to be included in any future packet’s query. Given the
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(a) Each snapshot captures a fixed-sized time window of traffic. 

(b) We aggregate snapshots to approximate the set of packets in queue.

(c) We clean and recycle the oldest snapshot for future time windows. 

Figure 4: Traffic time-window snapshots on a FIFO queue.

strict processing time bound, it is challenging to precisely
track each packet’s expiration for deletion. For this reason
we decided to use time-window snapshots that allow us to
implicitly delete expired packets in bulk.

The time-window snapshots structure works as follows:
we split the departing traffic into small time windows, each
lasting a fixed interval T . The packets are grouped by their
departure timestamp. For example in Figure 4(a), if we
choose time window T = 3, the rightmost packet (shaded
blue) has a departure timestamp di = 0, thus it goes to time
window b0/Tc = 0. The other blue packet from flow A de-
parts later at time 4 and has a departure timestamp d j = 4 (as
shown in Figure 4(c)), thus falling in window b4/Tc= 1.

During each time window, we count the total number of
packets for each flow. Afterwards, we query this snapshot to
obtain the sizes of different flows on behalf of other packets.

Using time window snapshots, we can now implicitly
delete old packets in bulk from the system by no longer
querying the oldest snapshot. We can forget about them, or
better yet, recycle and reuse them (illustrated in Figure 4(c)).
We discuss recycling snapshots in more detail in Section 3.3.

Since we wish to analyze congestion and take action di-
rectly in the data plane, the snapshots also need to be queried
within the data plane, using primitive operations that PISA
supports. If the number of flows is limited and known before-
hand, we may assign simple per-flow counters. For a transit
network with flow identifiers not known beforehand, we can
utilize sketches, or approximate data structures, as we mostly
care about the heavy flows in the queue. Any sketch that sup-
ports inserting/incrementing counts and querying flow sizes
with reasonable accuracy can achieve our purpose; in our
implementation, we use the Count-Min Sketch (CMS) data
structure [8] due to its ease of implementation in the data
plane. The CMS is an approximate data structure which can
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estimate flow sizes with a possible overestimation error due
to hash collisions. The error bound is determined by the se-
lected size of the structure.

There are two kinds of approximation errors that should
be considered when we analyze the queue in this approach.
When we slice traffic into time windows, the query for a
particular time range [ai,di] can have some rounding error.
Meanwhile, the use of sketches to maintain the counters also
incurs some approximation error. We further analyze the ef-
fect of both types of error in the evaluation in Section 6.

3.2 Aggregating Over Multiple Snapshots
Ideally, to decide if packet i is a culprit we could look back-
ward in time and compute fi’s flow size within the depar-
ture time range [ai,di]. ConQuest approximates this range by
looking at several recent time windows: from window d ai

T e
to window b di

T c. Thus, if we aggregate the flow size of fi
reported by the corresponding snapshots, we know approxi-
mately how many packets from fi departed during [ai,di].

As a concrete example, in Figure 4(b), the leftmost packet
(shaded yellow) from flow C arrived at ai = 2. Later, it de-
parts the queue at di = 8 (not shown in the figure). The pack-
ets of interest are those that departed in the time range [2,8],
i.e., the seven packets shown inside the queue in Figure 4(b);
out of these packets, there are four packets from flow C (yel-
low packets). Snapshot #1 recorded one packet for flow C,
while Snapshot #2 recorded two packets. By aggregating the
two shaded snapshots, #1 and #2, we can get an approximate
value 3, i.e., there are around three packets from flow C that
departed between time [2,8].

Aggregating snapshots would cause at most T rounding
error at both ends of the range. When the queuing delay
(di− ai) is much larger than T , i.e., when the queue is con-
gested and therefore we are interested in measuring, we have
smaller relative error.

Besides simple summation, we may also aggregate snap-
shots differently to compute other metrics in the data plane.
This creates more applications for snapshots beyond analyz-
ing congestion. For example, we can detect rapid changes in
flow throughput in the data plane, by computing the differ-
ence between the flow sizes reported by the two most recent
snapshots. This technique would help network operators lo-
cate flows which rapidly ramp-up without obeying conges-
tion control. Note that currently ConQuest uses a fraction of
queuing delay as the time window, while different applica-
tions may find a different time window more suitable.

3.3 Cleaning and Reusing Expired Snapshot
For a FIFO queue in the switch, the maximum queuing delay
(di−ai) is bounded by the maximum queuing buffer size Q
(bytes) divided by line rate R (bytes/second). Subsequently,
we know each snapshot would only be queried for the next
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Figure 5: Round-Robin between h Snapshots. In any given
time window, ConQuest writes into one snapshot, reads
many, and cleans one snapshot for the next time window.

d Q
R×T e time windows. As a concrete example, a queue with

R = 10Gbps drain rate and maximum Q = 5MB buffer size
has Q/R = 4ms; if we use T = 1ms time window, only the
most recent four time windows will be queried.

Therefore, we only need to maintain a constant number of
recent snapshots. Figure 4(c) illustrates that when the pack-
ets recorded in a snapshot are no longer useful, we can recy-
cle the snapshot for recording future traffic.

We can maintain h > d Q
R×T e snapshots in total, and use

them in a Round-Robin fashion. As illustrated in Figure 5,
the roles of snapshots rotate every T seconds, synchronized
with the progress of the time window.

Every packet leaving the queue can be added to the snap-
shot that is currently in a Write phase, according to the cur-
rent time window (modulo h). The other most recent h− 2
snapshots are in Read phase and can be queried. The oldest
snapshot is no longer useful, and is in Clean phase. The data
structure is cleared and prepared for writing in the next time
window.

To illustrate the idea further, let us assign h variable in-
dices to indicate which snapshot to read, write, or clean: Iw

is the write index, Ic is the clean index and Ir
1, · · · , Ir

h−2 are the
read indices. Within a snapshot window, for each packet i of
flow fi that departs the queue, the following is performed:

1. In snapshot Iw we increment the count of flow fi by 1.

2. To extract the estimated flow size in the queue for fi,
we first read the n = b di

T c−d
ai
T e most recent snapshots

based on the arrival time ai and departure time di of the
packet i. Subsequently, we sum the estimated flow sizes
reported by Ir

1, · · · , Ir
n.

3. Data structure in snapshot Ic is being cleared for future
use.

Implementing the snapshot round-robin is straightforward
in PISA switches. First, the PISA switch tags ai and di to
each packet as a part of the queuing metadata, and extract
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packet header fields to determine flow ID fi. We can di-
vide di by the time window T to find the current time win-
dow b di

T c. Subsequently, we compute its modulo over h to
find Iw, the current snapshot to write into. We can also de-
rive other indexes for read and clean, based on Ic = Iw + 1
mod h and Ir

i = Iw− i mod h. We also decide how many
old snapshots to read from by dividing ai over T . Due to the
limited arithmetic operations supported by the PISA switch,
implementing division and rounding is not straightforward.
We implement these operations in the PISA switch by using
bitwise right shift, and by erasing the most significant bits.
Note that these operations requires that both T and h be inte-
ger powers of two.

In our implementation of ConQuest, each snapshot is rep-
resented as several hash-indexed arrays to form a Count-Min
Sketch. To read from or write to a snapshot, a packet first
finds the indices based on flow ID fi, then read or increment
the value at those indices. Since snapshots rotate quickly,
we cannot rely on the switch controller to clean out regis-
ter memory arrays. To clean and recycle a snapshot in the
data plane, we maintain a cyclic pointer as the index to be
cleaned in the array. The pointer is incremented once per
packet; when it grows above the largest index in the array
it overflows back to zero. This way, the incoming packets
can clean the oldest snapshot cyclically, by writing zeroes
one index at a time to every index in the array. We store
the pointer itself in a single-slot register memory array in an
earlier stage.

The operation on each snapshot takes several hardware
pipeline stages. If we arrange all snapshots sequentially, we
can easily run out of hardware pipeline stages. Fortunately,
the operations performed are independent across snapshots
and can be done in parallel. We can place multiple hash-
indexed arrays in the same pipeline stage and execute their
actions simultaneously, essentially “stacking” multiple snap-
shots to save the number of pipeline stages needed to im-
plement ConQuest. The height of stacking depends on the
number of parallel operations we can perform per stage on
the particular hardware target.

4 Monitoring Legacy Network Devices

Existing networks are not going to replace legacy switches
with programmable switches overnight. Still, advanced fine-
grained monitoring techniques are necessary today. We pro-
pose a novel framework to analyze and diagnose queuing in
legacy, non-programmable switches, in a non-intrusive man-
ner, by tapping the existing ingress and egress links and using
the programmable switch to process the tapped traffic. This
allows us to gain visibility into a legacy device’s queuing dy-
namics using temporary tapping, without having to replace
the device with a programmable one.

4.1 Monitoring Queues on Legacy Devices

Legacy network devices are not designed for precise queu-
ing analysis. They often support polling the queue length
statistics, but only at a coarse-grained time interval. Further-
more, they provide no information about which flows are
occupying the queue. By monitoring and analyzing pack-
ets going through the legacy devices, we can have a much
closer look at the underlying congestion. Furthermore, a
more detailed understanding of typical queuing dynamics in
the network can help operators make informed decisions re-
garding whether/when/where to deploy programmable com-
modity switches. Meanwhile, tapping links is quite easy in
a carrier network, as the equipment for tapping is already in
place.

Figure 6 illustrates the setup for using a PISA pro-
grammable switch to monitor queuing in a legacy switch. We
tap a subset of the legacy switch’s ingress and egress ports
and mirror their traffic to the PISA switch. The PISA switch
records the arrival timestamps (ai) and departure timestamps
(di) for packets going through the legacy switch, based on
their time of appearance on the tapped link.

Our goal is to recover a stream of (ai,di, fi) tuples for the
queue in the legacy device, and subsequently run ConQuest
on the programmable switch to perform the same queuing
analysis. We can then detect transient congestion and report
culprit flows. However, we will not be able to act on individ-
ual packets in this non-intrusive tapping setup.

There are several practical considerations for this tapping
setup. First, we should ensure that all tapped links have
equal tapping latency. A higher latency would not affect
our analysis, as it creates equal offset for ai and di. How-
ever, an inconsistency in latency would cause persistent er-
ror in estimated queuing delay. Also, in a multi-pipeline pro-
grammable switch, all tapped links need to enter at ports as-
sociated with the same ingress packet-processing pipeline,
so the arriving and departing packets can have access to
the same register memory array. Finally, note that the to-
tal tapped throughput is not limited by the line rate or max-
imum switching throughput of the programmable switch, as
we only require programmable processing—there is no need
to forward or queue the tapped packets. Therefore, we also
move ConQuest to the ingress pipeline of the programmable
switch under this setup, to avoid being unnecessarily limited
by the throughput of the egress links.

4.2 Matching Ingress/Egress Packets

A major implementation challenges is matching packets be-
tween tapped ingress and egress links. Once packets are
matched, we may derive queuing latency for the moni-
tored egress port in the legacy switch. For multiple moni-
tored egress ports, we run a copy of ConQuest in the pro-
grammable switch for each egress port in the legacy switch.
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Figure 6: Using a programmable switch to analyze queuing
in a legacy switch, by tapping both ingress and egress links.

Matching packets. We would like to recover the
(ai,di, fi) tuple from the tapped traffic. Getting di is rela-
tively straightforward, as we can witness all packets depart-
ing from the queue at the tapped egress port. We can parse
packet header to get flow ID fi.

If the same packet comes from a tapped ingress link, we
also know ai for this packet. The programmable switch
needs to match the two appearances and pair ai with di.

When the programmable switch first sees packet i from
the tapped ingress link, it uses a packet identifier IDi as the
hash key to store the (IDi,ai) pair in a hash-indexed register
memory array. Later, when it sees i again from the tapped
egress link, it tries to retrieve the entry for packet i to get ai
and erase the entry. We need to generate a packet identifier
IDi in order to recognize the two appearances of the same
packet, and distinguish it from other packets.

For IPv4 packets, we can examine the IPID field. For
TCP packets, we also can observe the sequence/ack num-
ber to distinguish individual packets within the same flow.
Uniquely identifying UDP or IPv6 packets is more challeng-
ing and we omit the implementation details here. In our pro-
totype, we simply take the usually unique header fields (se-
quence numbers, checksums, etc.) and hash all of them using
CRC32 to form a 32-bit packet identifier IDi.

Hash collisions. Although a collision for the 32-bit packet
ID is possible, it is unlikely to happen given the timescale
ConQuest is working on—ConQuest sees much less than 232

packets during an entire cycle of snapshot rotation, which
should be roughly equivalent to the maximum queuing de-
lay in a switch. Two different packets appearing on tapped
links on this timescale are unlikely to have the same packet
identifier.

Meanwhile, as we store arrival timestamps in a hash-
indexed register memory array, hash collision can cause fail-
ures in finding ai when multiple packets are hashed into the
same entry in the array. We must maintain a sufficiently large
array to reduce hash collisions to an adequately low level. In
practice, we need the size of the array to be as large as the

Legacy Switch

Programmable Switch 

1 2

Packet 2 Not
Tapped on Ingress

Packet 1, 3 Tapped 
on Ingress

2 1
3

3

Packet 1 Not
Tapped on Egress

Packet 2, 3 Tapped 
on Egress

Figure 7: Packet 1 appears on tapped ingress links but not
the tapped egress link; it did not contribute to congestion in
the monitored queue. Packet 2 appears on tapped egress link
but not the ingress links; we don’t know its arrival time or
queuing delay, but still count it towards congestion analysis
for packets of the same flow. Packet 3 appears on both tapped
ingress and egress so we can match its two occurrences to
know (a3,d3, f3).

maximum number of packets in the monitored queue. In our
implementation we use 65,536 entries, about the same mag-
nitude as the maximum number of packets in queue.

When a collision happens, the egress packet i will be cou-
pled with an ingress packet entry (ID j,a j) with a different
packet identifier ID j 6= IDi and fail to match, thus ai will be
missing, and queuing delay (di−ai) becomes unknown. This
is similar to the “Unmonitored Ingress” situation discussed
in the next subsection. We ignore this packet for analyzing
queuing delay but still record it for the current time window,
and therefore, occasional collisions would not affect our con-
gestion analysis.

4.3 Robustness to Unmatched Packets

Unmonitored egress. We may not see all ingress packets
again at the tapped egress link. Some of them may be routed
to an egress link that is not being monitored, and some of
them may be dropped due to congestion. For example, in
Figure 7, packet 1 was tapped on an ingress link, but was
routed to an egress port not being tapped. These packets
would fill up the register memory array with packet IDs and
arrival timestamps that would not be matched later and are
therefore useless. Meanwhile, the register memory array
cannot garbage collect by itself, and would gradually get
filled by these entries. We solve this issue by implicitly ex-
piring entries: we allow an entry to be evicted from the array
once its arrival timestamp has aged more than the maximum
possible queuing delay and can thus be considered expired.

A flow may exit the switch from multiple egress links.
If only a subset of a flow’s packets appears on the tapped
egress link, only this subset contributes to the congestion in
the monitored queue. ConQuest only analyzes congestion
for this subset of packets.

Unmonitored ingress. Symmetrically, some packets ob-
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Figure 8: Queuing delay measured by our prototype matches
the ground-truth queue-depth reported by the legacy switch.

served on an egress link might have entered the switch from
an ingress link that is not being monitored. In Figure 7,
packet 2 comes in from an untapped ingress port, but appears
on the tapped egress port. For these packets, we do not have
their arrival timestamp. However, we still insert them into
the current snapshot as usual, as they contributed to the con-
gestion at our monitored egress port and snapshot insertion
only requires the departure timestamp.

A flow may also enter the switch from multiple ingress
links. If only a subset of the flow’s packets is coming from
tapped ingress links, only this subset has a valid arrival time-
stamp in the system. Thus, ConQuest can only identify
whether such a packet is a culprit for packets in this sub-
set. However, since all packets in this flow are inserted to the
snapshots, regardless of if their ingress link is tapped or not,
they are all be accounted for when determining the flow’s
size in the queue.

5 P4 Prototype on Hardware Switch

We implemented a four-snapshot prototype of ConQuest in
P4 on a programmable Barefoot Tofino Wedge-100 switch
(“programmable switch”) under the tapping setup described
in Section 4, to analyze the traffic on a Cisco CRS 16-Slot
Single-Shelf System (“legacy switch”). We tapped 3 ingress
links and 1 egress link, all running at 10 Gbps. To evalu-
ate ConQuest, We use an IXIA traffic generator to generate
traffic to feed to the 3 ingress ports. The legacy switch is
configured to route all traffic to the same egress port, into a
single FIFO queue.

The P4 program used in the testbed also includes the logic
for matching ingress/egress packets and computing ground-
truth statistics for evaluation. The combined P4 program has
around 1,200 lines of code.

Estimating queuing delay. Since our P4 program needs

to first match two appearances of the same packet and com-
pute queuing delay before maintaining snapshots, we veri-
fied such matching by comparing the measured queuing de-
lay with the ground truth maximum queue depth reported by
the legacy switch. The legacy switch is capable of reporting
maximum queue depth approximately every 0.5 seconds. We
sent bursty traffic into the legacy switch to maximize conges-
tion and observe the queue depth. As shown in Figure 8, the
queuing delay computed by our P4 program nicely aligns
with the queue depth reported by the legacy switch (divided
by line rate 10Gbps). Later, we use the queuing delay mea-
sured by our P4 program to approximate ground truth queu-
ing delay. Since the measured maximum queuing delay is
around 4ms, we set our time window to be T = 1ms accord-
ingly, which is 1/h of maximum queuing delay.

Estimating queue constituents. To evaluate ConQuest
on the testbed, we need to know the ground truth of whether
each packet is actually a culprit packet, based on α . Fortu-
nately, since the testbed uses a FIFO queue, the set of pack-
ets that departed while packet i is waiting is equivalent to
the packets that were in the queue when i entered. Thus, we
simply need to know the size of flow fi in the queue.

Although we cannot know exactly the ground truth per-
flow size in the queue in real time, we maintained a best-
effort estimate. For each flow, we first configure IXIA to gen-
erate packets with a sequentially increasing sequence num-
ber (using TCP SEQ header field, conveniently), and observe
the difference between this sequence number as it appears
on the ingress and egress links. This allows us to estimate
fairly accurately how many packets are in the queue for each
flow in real-time, notwithstanding packet drops. We report
this estimated flow size in the queue for every egress packet
and use this to approximate the ground truth flow size. Note
that this estimation technique requires maintaining per-flow
state in the PISA switch and is made possible by only having
tens of flows in our evaluation testbed, while ConQuest itself
works with any number of flows.

Evaluating the prototype. The P4 prototype of ConQuest
uses a two-row Count-Min Sketch data structure for each
snapshot with 64 counters per row. Since the testbed setup
can only send tens of flows, we won’t observe estimation er-
ror caused by hash collisions. The estimation error will be
mostly caused by rounding error of time windows.

To maintain consistency with the approximated ground
truth flow size measured by the testbed, we configure Con-
Quest to count packets instead of bytes in the testbed setup.

We evaluate the performance of the ConQuest prototype
by looking at the Precision-Recall curve for identifying cul-
prit flows, defined as follows. First, whenever queuing de-
lay exceeds τ =0.5ms (1/8 of the maximum queuing delay),
ConQuest reports the result of its per-packet analysis. Now,
for each packet i, ConQuest queries the number of packets
that departed between ai and di that also belong to fi, and
compares the fraction of those packets (among all packets
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Figure 9: Precision and Recall for ConQuest’s P4 prototype.

that departed during [ai,di]) to a threshold. When this frac-
tion is larger than a predefined culprit threshold α , we call
the packet a culprit packet. ConQuest’s Precision is defined
as the number of culprit packets correctly estimated by Con-
Quest divided by all packets ConQuest believed to be culprit,
and its Recall is defined as the number of culprit packets cor-
rectly estimated divided by the ground truth number of cul-
prit packets. As a standard metric for evaluating a binary
classifier, the Precision and Recall curve captures how Con-
Quest trades false positives for false negatives and achieves
balanced accuracy.

In our experiment, we generate 10 background flows with
various throughput, ranging from 1% to 50% of line rate, and
3 periodically bursty flows, with varying burst duration from
50 µs to 5 ms. We varied the culprit threshold from α=1% to
20%. For evaluation purpose, we forward all tapped pack-
ets to a collection server (alongside ConQuest’s estimate)
to enable Precision-Recall analysis. In actual deployment,
ConQuest would only report to a collector when it detects a
culprit flow according to its estimate.

The Precision-Recall curves for the experiment result is
shown in Figure 9. As we can see, ConQuest performs rea-
sonably well achieving both above 90% Precision and 80%
Recall for identifying packets belonging to culprit flows, for
various thresholds α . We present a more in-depth analysis
of ConQuest’s Precision and Recall in the next section.

6 Experimental Results

Simulation experiments allows us to freely tune all parame-
ters of ConQuest that practical hardware may not permit, and
gives us full detail about the queuing dynamics at any given
time. We now describe the setup of our simulation experi-
ments and present our results.
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Figure 10: Simulated Queue buildup on the UW Trace shows
low average utilization with occasional bursts, as in Figure 1.

6.1 Dataset and Implementation

To simulate congestion, we utilize the publicly available Uni-
versity of Wisconsin Data Center Measurement trace UNI1
(UW trace) [3], by feeding the trace through a single FIFO
queue with constant 10Gbps drain rate and unlimited queu-
ing buffer. Since the original trace has an average throughput
of only 25.3 Mbps, we replay the trace 50x faster. As we can
see from Figure 10, the queue length exhibits a bursty pattern
over time. Similar pattern arise when we use different drain
rates ranging from 5Gbps to 20Gbps.

We simulate ConQuest using Python. Contrary to the
testbed setup, the simulated queuing can provide us ground
truth per-flow size measurements in bytes. Therefore, we
also have ConQuest report in bytes instead of number of
packets. We use an otherwise similar setup as the one de-
scribed in Section 5: ConQuest reports per-packet analysis
results whenever queuing delay grows over τ =0.8ms (about
1/8 of maximum queue depth observed). When a large frac-
tion of the packets that departed within [ai,di] are from the
same flow fi as packet i, and this fraction exceeded a culprit
threshold α=1%, we define packet i as belonging to culprit
flow. We again use Precision and Recall metrics to evaluate
ConQuest (see Section 5).

We define a flow based on the standard 5-tuple (source and
destination IP address, protocol, and source and destination
port). The UW trace has around 550,000 flows in total. In
our queuing simulation, there are on average 63.6 distinct
flows in the queue during each transient congestion, with an
average of 3.7 culprit flows.

There are two primary design choices for ConQuest, the
snapshot data structure’s memory size and the snapshot time
window size. Using more memory to construct larger Count-
Min Sketch (CMS) data structures reduces collisions and
improves accuracy. Using a smaller time window T pro-
vides better granularity when approximating the range [ai,di]
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by lowering the rounding error, at the cost of using more
pipeline stages. We evaluate the effect of both choices on
ConQuest’s accuracy.

6.2 Effect of Limited Per-Snapshot Memory

We first evaluate the memory needed to achieve adequate ac-
curacy. In each snapshot, we use a 4-row CMS to record
and estimate the total flow size for each flow during each
snapshot time window. When memory is insufficient, CMS
suffers from hash collisions and over-estimates the size of
flows, reporting more false positives and lowering Precision
(but Recall does not change since CMS would not underes-
timate flow size). Figure 11 shows the effect of varying the
total number of counters in the CMS on Precision. The Pre-
cision plateaus at 24 to 32 counters (6 to 8 columns per row)
with diminishing returns for allocating additional counters.

6.3 Effect of Snapshot Time Window Size

Next, we evaluate the effect of snapshot window granular-
ity on accuracy. We focus on improving Recall in this eval-
uation, since Figure 11 already demonstrated that the esti-
mation yields high Precision when given enough memory.
The multiple curves in Figure 12 almost overlap, since pro-
viding more than enough memory yields negligible differ-
ence on Recall, or even slightly decreases Recall; this is
because hash collisions lead to overestimates, creating both
more false positives and true positives simultaneously.

Increasing the number of snapshots h (therefore using a
shorter time window T ) reduces ConQuest’s rounding error
when computing d ai

T e and b di
T c. Using fewer snapshots (and

larger windows) would cause bursts that departed immedi-
ately before ai to be erroneously included in the [ai,di] range,
thus the rounding error would lead to lower Recall. In the
worst case, ConQuest can only look at one snapshot and can-
not adapt to the change in queuing delay. As shown in Fig-
ure 12, by aggregating a maximum of h = 8 snapshots each
spanning T =0.8ms of traffic, we can already achieve a high
Recall, and have diminishing returns afterwards. Note that
since the maximum queuing delay in the simulated queue is
around 6ms, we choose h×T = 6.4ms in all combinations.

6.4 Estimating the Flow Size Distribution

ConQuest produces flow size estimates for all flows, not only
the largest ones. Thus, we can use the snapshots to report the
flow size distribution for all packets during a congestion. A
network operator may use such a distribution to gain insights
on the nature of congestion in a specific switch, and decide
on the most appropriate action. For example, if there’s usu-
ally only one large flow occupying 90% of the queue, then it
may be sensible to mark or drop the heaviest flow.
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Figure 11: Precision vs. snapshot data structure size. Using
24-32 counters is adequate for achieving high Precision.
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Figure 12: Recall vs. snapshot time window size. Using 8
snapshots gives sufficiently high Recall.

We evaluate the accuracy of this estimation by compar-
ing all estimated flow sizes with the ground truth. In this
evaluation, shown in Figure 13, we use parameters derived
from previous experiments to achieve high accuracy using
minimal resources: maintaining h = 4 to 64 snapshots, each
accumulating traffic in a window of T =0.1 to 1.6ms, and
each using a 32-counter CMS. Since the culprit flows oc-
cupy most of the queue, their estimated size are close to
integer multiples of the snapshot window size, causing the
presented staircase-like graph when ConQuest uses fewer
snapshots. For the smaller flows, a small absolute error is
normally achieved, with higher relative error. During con-
gestion, the mean estimation error is 120KB while median
estimation error is 79 KB for h = 16 snapshots, implying
the estimation is adequately accurate for a majority of flows.
For h = 4 snapshots, the mean and median errors increased
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Figure 13: Estimated vs. actual flow sizes in the queue in simulation experiments, using different snapshot time window T .
The staircase pattern observed for larger T is caused by rounding errors, and diminishes as we reduce T and use more snapshots.

to 461KB and 281KB respectively. As a reference, under the
h =4 snapshots (T =1.6ms), 10Gbps line rate setup, the total
traffic recorded in each time window is 2MB.

7 Control Actions on the Culprit Flows

In previous sections, we mainly focused on measuring a flow
f ’s weight in the queue (w f ). Now we discuss the potential
actions that may be taken to alleviate congestion.

Figure 14 depicts the same simulated queue shown in Fig-
ure 10. Here we highlight the portion of the queue that is
occupied by the single heaviest flow in the queue. Dur-
ing periods of congestion, the top-1 flow occupies most of
the queue, whereas all of the other flows do not surpass the
marked threshold. Therefore, acting on the top-1 flow alone
has the potential to significantly reduce the required buffer
size (e.g., from 8MB to 2MB), while avoiding loss and delay
for the other flows. We now discuss what potential actions
we can take to achieve these gains.

Act on the current packet. The switch data plane can
mark the Early Congestion Notification (ECN) bit of the
packets of a culprit flow. If queuing delay deteriorates fur-
ther, the switch can go one step further by dropping such
packets. Dropping all packets with a probability proportional
to a small constant c that depends on the queue utilization, is
equivalent to the primitive Random Early Detection (RED)
queuing discipline. Instead, we could use flow f ’s weight
w f in the dropping probability. For example, dropping the
packet with probability P[drop] ∝ max(w f −c,0)2 is similar
to the CHOKe [14] algorithm at its steady state for unre-
sponsive flows. ConQuest therefore enables fast prototyping
of active queue management algorithms that target culprit
flows by using probabilistic dropping.

Act on future packets. Upon identifying a culprit flow,
the switch can feed this information from the egress pipeline
back to the ingress pipeline using packet recirculation. The
ingress pipeline can then prevent this flow from exacerbating
the imminent queue buildup, by re-routing, rate-limiting, or
dropping the packets from this flow temporarily.

Report and aggregate flows. Transient congestion is
sometimes not caused by individual culprit flows. In some
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Figure 14: In the simulation on the UW trace, the top-1 flow
in the queue occupies most of the queuing buffer during tran-
sient congestion.

cases, we can identify the cause of the congestion by defin-
ing flows at a coarser level of granularity. For example, TCP
incast [6] is caused by many sources sending packets to the
same destination simultaneously, and can be accurately cap-
tured by defining flows by destination IP address. In other
cases, ConQuest can report packets from culprit flows to a
software collector for further analysis, such as aggregating
the reports to detect hierarchical heavy hitters or other group-
ings of flows belonging to a single distributed application
(e.g., coflows). We leave these extensions as future work.

8 General Queuing Disciplines

Practical switch configuration sometimes incorporate non-
FIFO queuing due to multiple traffic classes. The question
we focus on, namely, for each packet i—“which packets de-
parted while i was waiting”—is still well defined, as long as
we have arrival and departure timestamps (ai,di) for each
packet. Therefore, we can still use ConQuest to analyze
queuing and congestion in such settings.

However, unlike a FIFO queue, the queuing delay can
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be unbounded for packets in a general non-FIFO queuing
setting. We can either manually specify a “realistic upper-
bound” for the queuing delay (di−ai) based on practical ex-
perience, or maintain multiple hierarchical groups of snap-
shot with different timescales, similar to the design in [18].
For example, we can maintain three groups of snapshots,
with the first group of snapshots each recording traffic in a
time window of T1 = 100µs. The second group can have a
larger time window T2 = 1ms, and the third group can have
T3 = 10ms. When a packet experienced a 32.1ms delay, we
aggregate one snapshot from the first group, two from the
second group, and three from the third group; this allows us
to query T1 + 2T2 + 3T3 = 32.1ms duration of recent packet
departures.

We can further generalize the queuing delay analysis be-
yond a single switch. As network operators, we may be in-
terested in analyzing the end-to-end delay a packet experi-
enced between the time it entered and the time it departed
the network. Using this analysis we can learn which flows
caused increased latency for other packets at which queue.
This analysis can also be performed, as long as we can col-
lect and analyze (ai,di) pairs.

9 Related Work

Measuring microbursts. Zhang et al. [21] implemented a
high-precision microburst measurement framework in data-
center networks, by polling multiple switches’ queue depth
counter at high frequency, and analyzing duration and inter-
arrival time of microbursts. However, the system provides
limited insight into the contents of the bursts, such as flow-
size distribution and the ID of most significant flows. Speed-
Light [19] is a system capable of recording synchronized
traffic snapshots across multiple switches for offline analy-
sis, when triggered by a network event such as high queue
utilization. Similarly, BurstRadar [12] can also capture the
traffic during microbursts for offline analysis. *Flow [17]
uses programmable switches to aggregate per-packet statis-
tics before sending them to remote hosts for further analysis.
The aggregation at the switch reduces the computation bur-
den for remote hosts caused by the need to analyze line rate
traffic. Speedlight, BurstRadar and *Flow can all provide
detailed analysis for transient congestion offline, by ferry-
ing the information to switch controllers or remote hosts.
They can generate almost immediate reports on a human
timescale, but are still insufficient for taking actions to sup-
press the microburst directly in data plane.

Load balancing. We can prevent congestion in the net-
work by load balancing. Existing solutions in data center
networking such as Fastpass [15] offer a centralized traf-
fic orchestration approach for treating queue buildup using
scheduling methods. These attempts are too slow for ana-
lyzing and suppressing transient congestions, as most of the
damage is already done by the time high delay or loss can be

detected centrally. Presto [11], NDP [10], and Homa [13]
minimize queuing delay at switches by requiring hosts in
the network to participate in advanced congestion control
schemes, and are thus less suitable for transit networks.
Other solutions, such as DRILL [9] and CONGA [2], per-
form load balancing to disperse the load within the data
plane. General solutions such as routing changes or load
balancing may disrupt the well-behaved flows, not just the
culprits. Instead, solving the microburst problem requires a
better understanding of the cause of a transient congestion
event as opposed to just detecting it. For instance, finding
out that congestion is caused by a single bursty flow or by
a certain application opens the opportunity for a targeted re-
mediation such as packet marking, rate limiting, or selective
dropping.

Fair queuing. An alternative method to prevent bursty
flows from affecting other traffic is to use fair queuing.
Sharma et al. [16] recently proposed an approximate per-
flow fair queuing mechanism using programmable switches.
Instead of enforcing fairness among all flows, ConQuest fo-
cuses on individual flows causing queue buildup, and only
acts upon those flows during congestion.

Sliding window query. We note that our proposed
framework continues a series of theoretical works present-
ing streaming algorithms for querying in a sliding window.
For example, the work in [1, 5, 20] proposed algorithms for
membership or heavy-hitter query in a fixed-size sliding win-
dow. However, our work deals with a dynamic query win-
dow size di−ai, which varies across every query. ConQuest
reads from a variable number of time window snapshots to
solve the issue that query window size is unknown at inser-
tion time. Additionally, as far as we know, our system is
the first solution to be implemented within the computational
model constraints of practical programmable switches.

10 Conclusion

We present ConQuest, a scalable framework for analyzing
queuing and transient congestion in network switches in real
time. ConQuest reports which flows contributed to the queue
buildup, and enables direct per-packet action in the data
plane to prevent transient congestion. We propose a novel
framework to use ConQuest to monitor queuing in legacy
network switches, and implement a P4-based prototype of
ConQuest under this setup. Testbed evaluation and simula-
tion experiments show ConQuest can achieve high accuracy
in identifying the flows contributing to the queue buildup
while using only 2KB register memory, a modest resource
consumption on programmable switches.
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