
BUFFALO: Bloom Filter Forwarding Architecture
for Large Organizations

Minlan Yu
Princeton University

minlanyu@cs.princeton.edu

Alex Fabrikant
Princeton University

alexf@cal.berkeley.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

ABSTRACT
In enterprise and data center networks, the scalability of
the data plane becomes increasingly challenging as forward-
ing tables and link speeds grow. Simply building switches
with larger amounts of faster memory is not appealing, since
high-speed memory is both expensive and power hungry.
Implementing hash tables in SRAM is not appealing ei-
ther because it requires significant overprovisioning to en-
sure that all forwarding table entries fit. Instead, we pro-
pose the BUFFALO architecture, which uses a small SRAM
to store one Bloom filter of the addresses associated with
each outgoing link. We provide a practical switch design
leveraging flat addresses and shortest-path routing. BUF-
FALO gracefully handles false positives without reducing
the packet-forwarding rate, while guaranteeing that pack-
ets reach their destinations with bounded stretch with high
probability. We tune the sizes of Bloom filters to minimize
false positives for a given memory size. We also handle
routing changes and dynamically adjust Bloom filter sizes
using counting Bloom filters in slow memory. Our exten-
sive analysis, simulation, and prototype implementation in
kernel-level Click show that BUFFALO significantly reduces
memory cost, increases the scalability of the data plane, and
improves packet-forwarding performance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching
networks

General Terms
Algorithms, Design, Performance

Keywords
Bloom filter, Enterprise and data center networks, Packet
forwarding

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

The Ethernet switches used in today’s enterprise and data-
center networks do not scale well with increasing forwarding-
table size and link speed. Rather than continuing to build
switches with ever larger and faster memory in the data
plane, we believe future switches should leverage Bloom fil-
ters for a more scalable and cost-effective solution.

1.1 Memory Problems in the Data Plane
Enterprises and data centers would be much easier to de-

sign and manage if the network offered the simple abstrac-
tion of a virtual layer-two switch. End hosts could be iden-
tified directly by their hard-coded MAC addresses, and re-
tain these addresses as they change locations (e.g., due to
physical mobility or virtual-machine migration). The hosts
could be assigned IP addresses out of a large pool, without
the artificial constraints imposed by dividing a network into
many small IP subnets. However, traditional Ethernet can
only support this abstraction in small network topologies,
due to a heavy reliance on network-wide flooding and span-
ning tree. Recent advances [1, 2, 3] have made it possible
to build much larger layer-2 networks, while still identifying
hosts by their MAC addresses. These new architectures fo-
cus primarily on improving the control plane, enabling the
use of shortest-path routing protocols (instead of spanning
tree) and efficient protocols for disseminating end-host in-
formation (instead of flooding data packets).

As these new technologies enable the construction of ever
larger “flat” networks, the scalability of the data plane be-
comes an increasingly serious problem. In today’s Ethernet
and in proposed solutions like TRILL [1, 2], each switch
maintains a forwarding-table entry for each active MAC ad-
dress. Other solutions [3] cache a smaller number of end-host
MAC addresses, but still require a relatively large amount
of data-plane state to reach every switch in the network.
Large networks can easily have tens or hundreds of thou-
sands of end-host MAC addresses, due to the proliferation
of PDAs (in enterprises) and virtual machines (in data cen-
ters). In addition, link speeds are increasing rapidly, forc-
ing the use of ever-faster—and, hence, more expensive and
power-hungry—memory for the forwarding tables. This mo-
tivates us to explore new ways to represent the forwarding
table that require less memory and (perhaps more impor-
tantly) do not require memory upgrades when the number
of end hosts inevitably grows.

To store the forwarding table, one simple solution is to use
a hash table in SRAM to map MAC addresses to outgoing
interfaces. However, this approach requires significant over-
provisioning the fast memory for three reasons: First, when



switches are out of memory, the network will either drop
packets in some architectures [1, 2] or crash in others [3].
Second, it is difficult and expensive to upgrade the mem-
ory for all the switches in the networks. Third, collisions
in hash tables (i.e., different destination addresses mapped
to the same place in the hash table) require extra memory
overhead to handle them, and affect the throughput of the
switch.

Given these memory problems in the data plane, our goal
is to make efficient use of a small, fast memory to perform
packet forwarding. Such small fast memory can be the L1
or L2 cache on commodity PCs serving as software switches,
or dedicated SRAM on the line cards. When the memory
becomes limited with the growth of forwarding table, we
ensure that all packet-forwarding decisions are still handled
within the SRAM, and thus allow the switches last longer
with the increase of forwarding table size.

1.2 The BUFFALO Forwarding Architecture
Most enterprise and data center networks are “SPAF net-

works”, which uses Shortest Path routing on Addresses that
are Flat (including conventional link-state, distance-vector,
and spanning tree protocols). Leveraging the unique proper-
ties in SPAF networks, we propose BUFFALO, a Bloom Fil-
ter Forwarding Architecture for Large Organizations. BUF-
FALO performs the entire address lookup for all the packets
in a small, fast memory while occasionally sending the pack-
ets through a slightly longer path.

To make all packet-forwarding decisions with a small fast
memory, we use a Bloom filter [4], a hash-based compact
data structure for storing a set of elements, to perform the
flat address lookup. Similar to previous work on resource
routing [4, 5]1, we construct one Bloom filter for each next
hop (i.e., outgoing link), and store all the addresses that are
forwarded to that next hop. By checking which Bloom filter
the addresses match, we perform the entire address lookup
within the fast memory for all the packets. In contrast,
previous work [6] uses Bloom filters to assist packet lookup
and every address lookup still has to access the slow memory
at least once.

To apply our Bloom filter based solution in practice, we
provide techniques to resolve three issues:

Handling false positives: False positives are one key
problem for Bloom filters. We propose a simple mechanism
to forward packets experiencing false positives without any
memory overhead. This scheme works by randomly select-
ing the next hop from all the matching next hops, excluding
the interface where the packet arrived. We prove that in
SPAF networks the packet experiencing one false positive
(which is the most common case for the packet) is guaran-
teed to reach the destination with constant bounded stretch.
We also prove that in general the packets are guaranteed to
reach the destination with probability 1. BUFFALO grace-
fully degrades under higher memory loads by gradually in-
creasing stretch rather than crashing or resorting to exces-
sive flooding. In fact, in enterprise and data center networks
with limited propagation delay and high-speed links, a small
increase in stretch would not run the risk of introducing net-
work congestion. Our evaluation with real enterprise and
data center network topologies and traffic shows that the

1These studies design the algorithms of locating resources
by using one Bloom filter to store a list of resources that
can be accessed through each neighboring node.

expected stretch of BUFFALO is only 0.05% of the length of
the shortest path when each Bloom filter has a false-positive
rate of 0.1%.

Optimizing memory and CPU usage: To make ef-
ficient use of limited fast memory, we optimize the sizes
and number of hash functions of the Bloom filters to min-
imize the overall false-positive rate. To reduce the packet
lookup time, we let the Bloom filters share the same group
of hash functions and reduce the memory access times for
these Bloom filters. Through extensive analysis and simu-
lation, we show that BUFFALO reduces the memory usage
by 65% compared to hash tables.

Handling routing dynamics: Since routing changes
happen on a much longer time scale than packet forwarding,
we separate the handling of routing changes from the packet
forwarding and use counting Bloom filters in the large, slow
memory to assist the update of the Bloom filters. To reduce
the false-positive rate under routing changes, we dynamically
adjust the sizes and number of hash functions of Bloom fil-
ters in fast memory based on the large fixed-size counting
Bloom filters in slow memory.

We implement a prototype in the Click modular router [7]
running in the Linux kernel. By evaluating the prototype
under real enterprise and data center network topologies
and traffic, we show that in addition to reducing memory
size, BUFFALO forwards packets 10% faster than tradi-
tional hash table based implementation. BUFFALO also
reacts quickly to routing changes with the support of count-
ing Bloom filters.

The rest of the paper is organized as follows: Section 2
describes the underlying SPAF networks we focus on in this
paper. Section 3 presents an overview of the BUFFALO
architecture. Section 4 describes how to handle false pos-
itives and proves the packet reachability. In Section 5, we
adjust the sizes of Bloom filters to make the most efficient
use of limited fast memory. In Section 6, we show how to
dynamically adjust the sizes of Bloom filters using counting
Bloom filters. Section 7 presents our prototype implemen-
tation and the evaluation. Section 8 discusses several exten-
sions of BUFFALO. Section 9 and 10 discuss related work
and conclude the paper.

2. SHORTEST PATHS & FLAT ADDRESSES
This paper focuses on SPAF networks, the class of net-

works that perform Shortest-Path routing on Addresses that
are Flat. In fact, most enterprise and data center networks
are SPAF networks.

Flat addresses: Flat addresses are used widely in en-
terprise and data center networks. For example, MAC ad-
dresses in Ethernet are flat addresses. New protocols with
flat address spaces (e.g., SEATTLE [3], ROFL [8], AIP [9])
have been proposed to facilitate network configuration and
management, because they simplify the handling of topology
changes and host mobility without requiring administrators
to reassign addresses. Even IP routing can be done based
on flat addresses, by converting variable-length IP prefixes
into multiple non-overlapping fixed-length (i.e., /24) sub-
prefixes.

Shortest path routing: We also assume shortest-path
routing on the network topology, based on link-state proto-



cols, distance-vector protocols, or spanning-tree protocols.2

Recent advances in Ethernet such as Rbridges [1, 2] and
SEATTLE [3] all run link-state protocols that compute short-
est paths.

Based on the above two properties, we define the SPAF
network as a graph G = (V, E), where V denotes the set of
switches in the network, and E denotes all the links viewed
in the data plane. In the SPAF network we assume all the
links in E are actively used, i.e., the weight on link e(A,B)
is smaller than that on any other paths connecting A and
B. This is because if a link is not actively used, it should
not be seen in the data plane. Let P (A, B) denote the set
of all paths from A to B. Let l(A,B) denote the length of
the shortest path from A to B, i.e., the length of e(A,B),
and the length of a path p is l(p) =

P

e∈p l(e). We have:

∀A, B ∈ V, p ∈ P (A,B), l(A, B) ≤ l(p).

In this paper, we propose an efficient data plane that
supports any-to-any reachability between flat addresses over
(near) shortest paths. We do not consider data-plane sup-
port for Virtual LAN (VLANs) and access-control lists (ACLs),
for three main reasons. First, the new generation of layer-
two networks [1, 2, 3] do not perform any flooding of data
packets, obviating the need to use VLANs simply to limit
the scope of flooding. Second, in these new architectures, IP
addresses are opaque identifiers that can be assigned freely,
allowing them to be assigned in ways that make ACLs more
concise. For example, a data center could use a single block
of IP addresses for all servers providing a particular ser-
vice; similarly, an enterprise could devote a small block of
IP addresses to each distinct set of users (e.g., faculty vs.
students). This makes ACLs much more concise, making
it easier to enforce them with minimal hardware support at
the switches. Third, ACLs are increasingly being moved out
of the network and on to end hosts for easier management
and better scalability. In corporate enterprises, distributed
firewalls [10, 11], managed by Active Directory [12] or LDAP
(Lightweight Directory Access Protocol), are often used to
enforce access-control policies. In data-center networks, ac-
cess control is even easier since the operators have complete
control of end hosts. Therefore, the design of BUFFALO
focuses simply on providing any-to-any reachability, though
we briefly discuss possible ways to support VLAN in Sec-
tion 8.

3. PACKET FORWARDING IN BUFFALO
In this section, we describe the BUFFALO switch archi-

tecture in three aspects: First, we use one Bloom filter for
each next hop to perform the entire packet lookup in the
fast SRAM. Second, we leverage shortest-path routing to
forward packets experiencing false positives through slightly
longer paths without additional memory overhead. Finally,
we leverage counting Bloom filters in slow memory to en-
able fast updates to the Bloom filters after routing changes.
Figure 1 summarizes the BUFFALO design.

3.1 One Bloom Filter Per Next Hop
One way to use a small, fast memory is route caching.

The basic idea is to store the most frequently used entries of

2In today’s Ethernet the control plane constructs a span-
ning tree and the data plane forwards packets along shortest
paths within this tree.

Slow memory:

Counting 

Bloom Filters

Fast memory:

Bloom Filters

Control Plane

routing 

updates

FIB updates

Nexthop0

NexthopT-1

... ...

BF updates

Nexthop0

NexthopT-1

... ...

Nexthop1

Nexthop1

matching 

next hop set False Positive 

Handler

routing 

updates

packets packets

Figure 1: BUFFALO Switch Architecture

the forwarding table (FIB) in the fast memory, but store the
full table in the slow memory. However, during cache misses,
the switch experiences low throughput and high packet loss.
Malicious traffic with a wide range of destination addresses
may significantly increase the cache miss rate. In addition,
when routing changes or link failures happen, many of the
cached routes are simultaneously invalidated. Due to its
bad performance under worst-case workloads, route caching
is hardly used today.

To provide predictable behavior under various workloads,
we perform the entire packet lookup for all the packets in
the fast memory by leveraging Bloom filters, a hash-based
compact data structure to store a set of elements. We set one
Bloom filter BF (h) for each next hop h (or outgoing link),
and use it to store all the addresses that are forwarded to
that next hop. For a switch with T next hops, we need T
Bloom filters. A Bloom filter consists of an array of bits.
To insert an address into Bloom filter BF (h), we compute
k hash values of the address, each denoting a position in
the array. All the k positions are set to 1 in the array. By
repeating the same procedure for all the addresses with next
hop h, Bloom filter BF (h) is constructed.

It is easy to check if an address belongs to the set with
Bloom filter BF (h). Given an address, we calculate the
same k hash functions and check the bits in the correspond-
ing k positions of the array. If all the bits are 1, we say that
the element is in the set; otherwise it is not. To perform
address lookup for an address addr, we check which BF (h)
contains addr, and forward the packet to the corresponding
next hop h.

Note that there are different number of addresses associ-
ated with each next hop. Therefore we should use different
size for each Bloom filter according to the number of ad-
dresses stored in it, in order to minimize the overall false-
positive rate with a fixed size of fast memory. We formu-
late and solve the false-positive rate optimization problem
in Section 5.

3.2 Handling False Positives in Fast Memory
One key problem with Bloom filters is the false positive —

an element can be absent from the set even if all k positions
are marked as 1, since each position could be marked by
the other elements in the set. Because all the addresses



belong to one of the Bloom filters we construct, we can easily
detect packets that experience false positives if they match
in multiple Bloom filters.3

One way to handle packets experiencing false positives
is to perform a full packet lookup in the forwarding table
stored in the slow memory. However, the lookup time for
packets experiencing false positives will be much longer than
others, leading to the throughput decrease. Attackers may
detect those packets with longer latency and send a burst
of them. Therefore, we must handle false positives in fast
memory by picking one of the matching next hops.

For the packets that experience false positives, if we do
not send them through the next hop on the shortest path,
they may experience stretch and even loops. One way to
prevent loops is to use a deterministic solution by stor-
ing the false positive information in the packets (similar to
FCP [13]). When a packet is detected to have false posi-
tives in a switch, we store the switch and the next hop it
chooses in the packet. So next time the packet travels to the
same switch, the switch will choose a different next hop for
the packet. However, this method requires modifying the
packets and has extra payload overhead.

Instead, we use a probabilistic solution without any mod-
ification of the packets. We observe that if a switch sends
the packet back to the interface where it comes from, it will
form a loop. Therefore, we avoid sending the packet to the
incoming interface. To finally get out the possible loops,
we randomly pick one from all the remaining matching next
hops. In Section 4, we prove that in SPAF networks, the
packet experiencing one false positive (which is the most
common case for the packet) is guaranteed to reach the des-
tination with constant bounded stretch. In general, pack-
ets are guaranteed to reach the destination with probability
1. This approach does not require any help from the other
switches in the network and thus is incrementally deploy-
able.

3.3 CBFs for Handling Routing Changes
When routing changes occur, the switch must update the

Bloom filters with a new set of addresses. However, with a
standard Bloom filter (BF) we cannot delete elements from
the set. A counting Bloom filter (CBF) is an extension of the
Bloom filter that allows adding and deleting elements [14].
A counting Bloom filter stores a counter rather than a bit
in each slot of the array. To add an element to the count-
ing Bloom filter, we increment the counters at the positions
calculated by the hash functions; to delete an element, we
decrement the counters.

A simple way to handle routing changes is to use CBFs
instead of BFs for packet forwarding. However, CBFs re-
quire much more space than BFs. In addition, under rout-
ing changes the number of addresses associated with each
next hop may change significantly. It is difficult to dynami-
cally increase/decrease the sizes of CBFs to make the most
efficient use of fast memory according to routing changes.

3The handling of addresses that should have multiple
matches (e.g., Equal-Cost Multi-Path) are discussed in Sec-
tion 8. Addresses that have no match in the FIB should be
dropped. Yet these packets may hit one Bloom filter due to
false positives. We cannot detect these addresses, but they
will eventually get dropped when they hit a downstream
switch that has no false positives. In addition, an adversary
cannot easily launch an attack because it is hard to guess
which MAC addresses would trigger this behavior.

Fortunately, since routing changes do not happen very of-
ten, we can store CBFs in slow memory, and update the BFs
in small fast memory based on the CBFs. We store CBF in
slow memory rather than a normal FIB because it is easier
and faster to update BFs from CBFs under routing changes.
With a CBF layer between BFs and control plane, we can
even change the sizes of BFs to the optimal values with low
overhead. By using both CBFs and BFs, we make an effi-
cient use of small fast memory without losing the flexibility
to support changes in the FIB. The details of using CBFs
are discussed in Section 6.

As shown in Figure 1, there are three layers in our switch
architecture. The control plane can be either today’s Eth-
ernet or new Ethernet techniques such as Rbridges [1, 2]
and SEATTLE [3]. CBFs are stored in slow memory and
learn about routing changes from the control plane. BFs are
stored in the fast memory for packet lookup. During routing
changes, the related BFs will be updated according to the
corresponding CBFs. If the number of addresses associated
with a BF changes significantly, BFs are reconstructed with
new optimal sizes from CBFs.

4. HANDLING FALSE POSITIVES
When BUFFALO detects packets that experience false

positives, it randomly selects a next hop from the candidates
that are different from the incoming interface, as discussed
in Section 3.2. In the case of a single false positive, which is
the most common, avoiding sending the packet to the incom-
ing interface guarantees that packets reach destination with
tightly bounded stretch. In the improbable case of multiple
false positives, this randomization guarantees packet reach-
ability with probability 1, with a good bounds on expected
stretch.

Notation Definition
NHsp(A) The next hop for shortest path at switch A
NHfp(A) The matching next hop due to a sole false

positive at switch A
l(A, B) The length of the shortest path from

switch A to B
P (A,B) All the paths from switch A to B

Table 1: Notations for the false-positive handler

4.1 Handling One False Positive by Avoiding
Incoming Interface

We first investigate the case that a packet only experiences
one false positive at one switch, i.e., at switch A, the packet
has two matching next hops. Let NHsp(A) denote the next
hop A should forward the packet to on the shortest path,
and NHfp(A) denote the additional next hop matched by a
Bloom filter false positive. (The notations are summarized
in Table 4.) Note that this single false positive case is the
most common case, because with reasonable Bloom filter
parameters the probability of multiple false positives is much
lower than one false positive. Since switch A connects to
each end host through one switch port, there is no false
positives for the ports that connect to end hosts. Therefore,
NHfp(A) must be a switch rather than an end host.

The one false positive case is shown in Figure 2(a). (We
hereafter use 99K to denote false positive link, and → for



A B
(i)

dst

(ii)

(a) One false positive

A B

CDdst

(b) Multiple false positives

Figure 2: Loops caused by false positives (99K false
positive link, −→ shortest path link)

shortest path link.) Switch A has a false positive, and ran-
domly picks a next hop B (NHfp(A) = B). Switch B re-
ceives the packet, and may (i) send it to a next hop different
from A, which leads to the destination or (ii) send it back to
A. For (i), we will prove that there are not any loops. For
(ii), when A receives the packet, it will not pick B since the
packet comes from B.

In general, we have the following theorem:

Theorem 1. In SPAF networks, if a packet only expe-
riences one false positive in one switch, it is guaranteed to
reach the destination with no loops except a possible single
transient 2-hop one.

Proof. Suppose the packet matches two next hops at
switch A: NHsp(A) and some B = NHfp(A). If A picks
NHsp(A), there is no loop. If B is selected, it will have a
path B → . . . → dst to forward the packet to the desti-
nation, since the network is connected. With a single false
positive, a packet will follow the correct shortest-path hops
at all nodes other than A. Thus, the only case that can
cause a loop is the packet going through A again (A 99K

B → . . . → A → . . . → dst). However, in SPAF networks,
we assume the link e(B, A) is actively used (This assumption
is introduced in Sec. 2), i.e.,

l(NHfp(A), A) ≤ l(p),∀p ∈ P (NHfp(A), A).

Thus, on a shortest path from B to dst, if the packet visits A
at all, it would be immediately after B. If the packet is sent
back to A, A will avoid sending it to the incoming interface
NHfp(A), and thus send the packet to NHsp(A), and the
shortest path from there to dst can’t go through A. Thus,
the packet can only loop by following A 99K NHfp(A) →
A → . . . → dst. So the path contains at most one 2-hop
loop.

Now we analyze the stretch (i.e., latency penalty) the
packets will experience. For two switches A and B, let
l(A, B) denote the length of the shortest path from A to
B. Let l′(A, B) denote the latency the packet experiences
on the path in BUFFALO. We define the stretch as:

S = l′(A, B) − l(A, B)

dst

BA

C

D E

F G

Figure 3: BUFFALO forwarding graph (99K false
positive link, −→ shortest path tree)

.

Theorem 2. In SPAF networks, if a packet experiences
just one false positive at switch A, the packet will experience
a stretch of at most l(A,NHfp(A)) + l(NHfp(A),A).

Proof. Since there is one false positive in A, A will
choose either NHsp(A) or NHfp(A). If A picks NHsp(A),
there is no stretch. If A picks NHfp(A), there are two cases:
(i) If NHfp(A) sends the packet to the destination without
going through A, the shortest path from NHfp(A) to the
destination is followed. Based on the triangle inequality, we
have:

l(NHfp(A), dst) ≤ l(NHfp(A),A) + l(A,dst)

l′(A, dst) − l(A,dst) ≤ l(A, NHfp(A)) + l(NHfp(A), A)

(ii) If NHfp(A) sends the packet back to A, the stretch is
l(A, NHfp(A)) + l(NHfp(A), A).

Therefore, we prove that in the one false positive case,
packets are guaranteed to reach the destination with bounded
stretch in SPAF networks.

4.2 Handling Multiple False Positives with Ran-
dom Selection

Now we consider the case where all the switches in the net-
work apply our Bloom filter mechanism. We choose different
hash functions for different switches so that the false posi-
tives are independent among the switches. (We can choose
different keys for key-based hash functions to generate a
group of hash functions.) Thus it is rare for a packet to
experience false positives at multiple switches.

Let us fix a destination dst, and condition the rest of
this section on the fixed forwarding table and memory size
(which, per Section 5, means the Bloom filter parameters
are fixed, too). Let f(h) be the probability of Bloom filter h
erroneously matching dst (a priori independent of dst if dst
shouldn’t be matched). Then, k, the number of Bloom fil-
ters mistakenly matching d is, in expectation, F =

P

h f(h).
If all values of f are comparable and small, F is roughly bi-
nomial, with Pr[k > x] decays exponentially for x ≫ 2f |E|.

There may exist loops even when we avoid picking the in-
coming interface. For example, in Figure 2(b), A may choose
the false-positive hop to B at first, and B may choose the
false-positive next hop C. However, the packet can even-
tually get out of the loop if each switch chooses the next
hop randomly: any loop must contain a false-positive edge,



C D

F

BA

E

dst

G d=3

d=2

d=1

d=0

Figure 4: Coupling for the expected stretch proof:
all nodes at the same hop distance from dst are col-
lapsed into 1 node. Forward false positive links, like
D to B, are dropped. The number of backward edges
on the line graph is the maximum over all nodes at
that distance of the number of backward and same-
depth false-positive links (B’s edges at d = 1, D’s
edges at d = 2). A random walk on the line graph
converges no faster than a random walk on the orig-
inal. The line graph itself is a valid network, thus
allowing for tight bounds.

and the source node of that edge will with some probabil-
ity choose its correct hop instead. E.g., A will eventually
choose the next hop D to get out of the loop. Such random
selection may also cause out-of-order packets. This may not
be a problem for some applications. For the applications
that require in-order packet forwarding, we can still reorder
packets in the end hosts.

In general, in SPAF networks there is a shortest path tree
for each destination, with each packet to dst following this
tree. In BUFFALO, packets destined to dst are forwarded in
the directed graph consisting of a shortest path tree for dst
and a few false positive links. We call this graph BUFFALO
forwarding graph. An example is shown in Figure 3, where
2 false positives occurred at A and B. Note that, if the
shortest-path links are of similar length, the link from A to
F can’t be less than about twice that length: otherwise F ’s
shortest path would go through A. If all links are the same
length (latency), no false positive edge can take more than
1 “step” away from the destination.

If a packet arrives at the switch that has multiple outgo-
ing links in BUFFALO forwarding graph due to false pos-
itives, we will randomly select a next hop from the can-
didates. Thus, the packet actually takes a random walk on
the BUFFALO forwarding graph, usually following shortest-
path links with occasional “setbacks”.

Theorem 3. With an adversarially designed BUFFALO
network with uniform edge latencies, and even worst-case
placement of false positives, the expected stretch of a packet
going to a destination associated with k false positives is at
most S(k) = ρ · ( 3

√
3)k, where ρ = 529

54· 3
√

3
< 6.8.

Proof sketch: We couple the random walk on the BUF-
FALO graph with a random walk on a “line” graph which
only records the current hop distance to the destination, as
shown in Figure 4. The tight bound is produced by the
worst-case scenario of the network shaped like a line itself,
with three false positives at all but 4-6 steps pushing the
packet “back up” the line. The complete proof is shown
in [15].

Though this is exponential, this is counterbalanced by the
exponentially low probability of k false positives. Tuning the
Bloom filter parameters to optimize memory usage will allow
us to bound F , yielding at least a superlinear tail bound
on the probability of large stretches, assuming f values are
comparable to 1/2m or smaller, yielding F = O(1):

Theorem 4. For any z satisfying z/ log3 z ≥ 7.3221·3F +
529/9, the probability of stretch exceeding z is bounded by:

Pr [stretch > z] ≤ 4 ·
„

37.1 ln z

z

«1.892

Proof sketch: Assume the worst-case arrangement of false
positive locations. Consider packets starting at the source
with the worst expected stretch to the destination. With k
false positives, by the Markov bound, the stretch will be at
most 2S(k) with probability 0.5. After every 2S(k) steps,
any such packet not at the destination can be “reset” to
the worst possible starting location without shortening its
current expected arrival time. Thus, with probability 1/2α,
the stretch is 2αS(k). We can bound the overall stretch by
picking, with foresight, k = ⌊3(log3 z−log3 log3 z−log3 6ρ)⌋,
and using a union bound:

Pr[stretch > z] ≤ Pr[stretch > z| ≤ k false pos] + (1)

+ Pr[≤ k false pos] (2)

If k > 2eF , the Chernoff bound limits the second part to
2−k. Setting α = k, we get z > 2αS(k), producing the
bound in the theorem. The detailed proof is given in [15].

This bound characterizes the worst-case configuration the
network may end up in after any particular control-plane
event. As a description of the typical behavior, on the other
hand, this bound is quite crude. We expect that an average-
case analysis over false positive locations, corresponding to
the typical behavior of BUFFALO, will yield polynomial ex-
pected stretch for fixed k: the exponential worst-case behav-
ior relies on all the false-positives carefully “conspiring” to
point away from the destination, and randomly placed false
positives, as with real Bloom filters, will make the random
walk behave similarly to a random walk on an undirected
graph, producing polynomial hitting times. This will allow
z = poly(k) and hence an exponentially decaying stretch
distribution.

While our scheme works with any underlying network
structure, it works particularly well with a tree topology.
Tree topologies are common in the edges of enterprise and
data center networks. A logical tree is usually constructed
with the spanning tree protocols in today’s Ethernet. Roughly
speaking, in a tree, a lot of distinct false positives are needed
at each distance from the destination in order to keep“push-
ing” the packet away from the destination.

Claim 5. If the underlying network is a tree, with no
multiple links between any one pair of routers, the expected



 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1e-06  1e-05  0.0001  0.001  0.01E
xp

ec
te

d 
S

tr
et

ch
 N

or
m

al
iz

ed
by

 S
ho

rt
es

t P
at

h 
Le

ng
th

False Positives [fraction]

Data Center, Campus
ISP

Figure 5: Expected stretch

 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

 0  1  2  3  4  5  6

C
C

D
F

Stretch Normalized by Shortest Path Length

fp=0.5%
fp=0.1%
fp=1e-4
fp=1e-5
fp=1e-6

Figure 6: Stretch with real traces in campus network

stretch with k false positives, even if they are adversarially
placed, is at most 2(k − 1)2.

Proof sketch: Consider any configuration of the short-
est path tree and the extra false positive edges. Since there
are no multiedges, each edge of the shortest path tree has
1 or 0 antiparallel false positive edges. Contracting all the
tree edges without a corresponding false positive edge will
not decrease the expected stretch. A random walk on the
resulting graph is identical to a random walk on an undi-
rected tree, shown in, e.g., Sec. 5.3 of [16] to have expected
the hitting time of at most 2(k − 1)2. The details are given
in [15].

We believe that similar results should apply when we allow
heterogeneous latencies, especially when the per-link laten-
cies are within a small constant factor of each other, as is
likely in many geographically-local networks.

4.3 Stretch in Realistic Networks
We evaluate the stretch in three representative topologies:

Campus is the campus network of a large (roughly 40,000
students) university, consisting of 1600 switches [17]. AS
1239 is a large ISP network with 315 routers [18]. (The
routers are viewed as switches in our simulation.) We also
constructed a model topology similar to the one used in [3],
which represents a typical data center network composed
of four full-meshed core routers each of which is connected
to a mesh of twenty one aggregation switches. This roughly
characterizes a commonly-used topology in data centers [19].

In the three topologies, we first analyze the expected stretch
given the false-positive rate. We then use simulation to
study the stretch with real packet traces.

Analysis of expected stretch: We pick the false-positive
rate of Bloom filters and calculate the expected stretch for
each pair of source and destination in the network by ana-

lyzing all the cases with different numbers and locations of
false positives and all the possible random selections. The
expected stretch is normalized by the length of the short-
est path. We take the average stretch among all source-
destination pairs. We can see that the expected stretch in-
creases linearly with the increase of the false-positive rate.
This is because the expected stretch is dominated by the
one false-positive case. Since we provide a constant stretch
bound for the one false-positive case in BUFFALO, the ex-
pected stretch is very small. Even with a false-positive rate
of 1%, the expected stretch is only 0.5% of the length of the
shortest path (Figure 5).

Simulation on stretch distribution: We also study the
stretch of BUFFALO with packet traces collected from the
Lawrence Berkeley National Lab campus network by Pang
et. al. [20]. There are four sets of traces, each collected over
a period of 10 to 60 minutes, containing traffic to and from
roughly 9,000 end hosts distributed over 22 different sub-
nets. Since we cannot get the network topology where the
trace is collected, we take the same approach in [3] to map
the trace to the above campus network while preserving the
distribution of source-destination popularity of the original
trace. Figure 6 shows the distribution of stretch normal-
ized by shortest path length. When the false-positive rate
is 0.01%, 99% of the packets do not have any stretch and
0.01% of the packets have a stretch that is twice as long as
the length of the shortest path. Even when the false-positive
rate is 0.5%, only 0.0001% of the packets have a stretch of
6 times of the length of the shortest path. Note that in an
enterprise or data center, the propagation delays are small,
so the stretch caused by false positives is tolerable.

5. OPTIMIZING MEMORY USAGE
In this section, we consider a switch with M -bit fast mem-

ory (i.e., SRAM) and a fixed routing table. We formulate the
problem of minimizing the overall false-positive rate through
tuning the sizes in the Bloom filters. This optimization is
done by a Bloom filter manager implemented in a BUFFALO
switch. We then show numerical results of false positives
with various sizes of memory and forwarding tables.

5.1 Optimizing Bloom-Filter Sizes
Our goal is to minimize the overall false-positive rate. If

any one of the T Bloom filters has a false positive, an address
will hit in multiple Bloom filters. In this case, we send the
packets through a slightly longer path as described in Sec-
tion 4. To reduce the stretch, we must minimize the false
positives in each switch. We define the overall false-positive
rate for a switch as the probability that any one of the T
Bloom filters has a false positive. As above, let f(h) denote
the false-positive rate of Bloom filter BF (h). Since Bloom
filters for different next hops store independent sets of ad-
dresses, and thus are independent of each other, the overall
false-positive rate of T Bloom filters is

F = 1 −
T

Y

h=1

(1 − f(h)) ≈
T

X

h=1

f(h)

(when f(h) ≪ 1/T, ∀h = 1..T )

Optimizing the sum approximation for F also directly opti-
mizes the applicability threshold for Theorem 4, expressed
in terms of the sum as such.



Since there are different numbers of addresses per next
hop, we should use different sizes for the Bloom filters ac-
cording to the number of addresses stored in them, in order
to minimize the overall false-positive rate with the M-bit
fast memory.

In addition to constraining the fast memory size, we should
also avoid overloading the CPU. We bound the packet lookup
time, which consists of hash computation time and memory
access time. To reduce the computational overhead of ad-
dress lookup, we apply the same group of hash functions to
all T Bloom filters. Since we use the same hash functions
for all the Bloom filters, we need to check the same positions
in all the Bloom filters for an address lookup. Therefore, we
put the same positions of the Bloom filters in one memory
unit (e.g., a byte or a word), so that they can be accessed by
one memory access. In this scheme, the packet lookup time
is determined by the maximum number of hash functions in
T Bloom filters (kmax = maxT

h=1(k(h)), where k(h) denotes
the number of hash functions used in BF (h)). Let uhash de-
note the number of hash functions that can be calculated in
a second. We need kmax/uhash time for hash computation.
Let tfmem denote the access time on small, fast memory.
Assume there are b bits in a memory unit which can be read
by one memory access. We need ⌈(Tkmax/b)tfmem⌉ mem-
ory access time. Since both hash computation and memory
access time are linear in the maximum number of hash func-
tions kmax, we only need to bound kmax in order to bound
the packet lookup time.4

We minimize the lookup time for each packet by choosing
m(h) (the number of bits in BF (h)) and k(h) (the number
of hash functions used in BF (h)), with the constraint that
Bloom filters must not take more space than the size of the
fast memory and must have a bounded number of hash func-
tions. Let n(h) denote the number of addresses in Bloom
filter BF (h). The optimization problem is formulated as:

Min F =
T

X

h=1

f(h) (3)

s.t. f(h) = (1 − e−k(h)n(h)/m(h))k(h) (4)

T
X

h=1

m(h) = M (5)

k(h) ≤ kmax,∀h ∈ [1..T ] (6)

given T, M, kmax, and n(h)(∀h ∈ [1..H ])

Equation (3) is the overall false-positive rate we need to
minimize. Equation (4) shows the false-positive rate for a
standard Bloom filter. Equation (5) is the size constraint of
the fast memory. Equation (6) is the bound on the number
of hash functions. We have proved that this problem is a
convex optimization problem.5 Thus there exists an opti-
mal solution for this problem, which can be found by the
IPOPT [22] (Interior Point OPTimizer) solver. Most of our
experiments converge within 30 iterations, which take less
than 50 ms. Note that the optimization is executed only

4In switch hardware, the 4-8 hash functions can be calcu-
lated in parallel. We also assert that fabrication of 6 to 8
read ports for an on-chip Random Access Memory is attain-
able with today’s embedded memory technology [21]. The
cache line size on a Intel Xeon machine is about 32 bytes
to 64 bytes, which is enough to put all the positions of T
Bloom filters in one cache line.
5The proof is omitted due to lack of space.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 200  400  600  800  1000

O
ve

ra
ll 

F
al

se
-P

os
iti

ve
R

at
e 

(f
ra

ct
io

n)

Memory Size M (KB)

kmax=4
kmax=6
kmax=8

Figure 7: Effect of memory size (T = 10, N = 200K)

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0  50  100  150  200

O
ve

ra
ll 

F
al

se
-P

os
iti

ve
R

at
e 

(f
ra

ct
io

n)

# Next Hop (T)

kmax=4
kmax=6
kmax=8

Figure 8: Effect of number of next hops (M =
600KB, N = 200K)

when the forwarding table has significant changes such as a
severe link failure leading to lots of routing changes. The op-
timization can also be executed in the background without
affecting the packet forwarding.

5.2 Analytical Results of False Positives
We study in a switch the effect of forwarding table size,

number of next hops, the amount of fast memory, and num-
ber of hash functions on the overall false-positive rate.6 We
choose to analyze the false positives with synthetic data to
study various sizes of forwarding tables and different mem-
ory and CPU settings. We have also tested BUFFALO with
real packet traces and forwarding tables. The results are
similar to the analytical results and thus omitted in the pa-
per. We studied a forwarding table with 20K to 2000K en-
tries (denoted by N), where the number of next hops (T )
varies from 10 to 200. The maximum number of hash func-
tions in the Bloom filters (kmax) varies from 4 to 8. Since
next hops have different popularity, Pareto distribution is
used to generate the number of addresses for each next hop.
We have the following observations:
(1) A small increase in memory size can reduce the
overall false-positive rate significantly. As shown in
Figure 7, to reach the overall false-positive rate of 0.1%, we
need 600 KB fast memory and 4-8 hash functions to store a
FIB with 200K entries and 10 next hops. If we have 1 MB
fast memory, the false-positive rate can be reduced to the
order of 10−6.

6In Section 4, the false-positive rate is defined for each
Bloom filter. Here the overall false-positive rate is defined
for the switch because different Bloom filters have differ-
ent false-positive rates. The overall false-positive rate can
be one or two orders of magnitude larger than individual
Bloom-filter false-positive rate.



 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

20K    200K   500K 1000K 2000K

O
ve

ra
ll 

F
al

se
-P

os
iti

ve
R

at
e 

(f
ra

ct
io

n)

# Forwarding Table Entries (N)

M=0.5MB
M=1MB
M=2MB

Figure 9: Effect of number of entries (T = 10, kmax =
8)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

20K    200K   500K 1000K 2000K

F
as

t M
em

or
y 

S
iz

e 
(K

B
)

# Forwarding Table Entries (N)

hashtable
fp=0.01%

fp=0.1%
fp=1%

Figure 10: Comparison of hash table and Bloom fil-
ters (T = 10, kmax = 8)

(2) The overall false-positive rate increases almost
linearly with the increase of T . With the increase of
T and thus more Bloom filters, we will have larger overall
false-positive rate. However, as shown in Figure 8, even for
a switch that has 200 next hops and a 200K-entry forward-
ing table, we can still reach a false-positive rate of 1% with
600KB fast memory (kmax = 6). This is because if we fix
the total number of entries N , with the increase of T , the
number of addresses for each next hop drops correspond-
ingly.
(3) BUFFALO switch with fixed memory size scales
well with the growth of forwarding table size. For ex-
ample, as shown in Figure 9, if a switch has a 1MB fast
memory, as the forwarding table grows from 20K to 1000K
entries, the false-positive rate grows from 10−9 to 5%. Since
packets experiencing false positives are handled in fast mem-
ory, BUFFALO scales well with the growth of forwarding
table size.
(4) BUFFALO reduces fast memory requirement by at
least 65% compared with hash tables at the expense of
a false-positive rate of 0.1%. We assume a perfect hash
table that has no collision. Each entry needs to store the
MAC address (48 bits) and an index of the next hop (log(T )
bits). Therefore the size of a hash table for an N-entry for-
warding table is (log(T ) + 48)N bits. Figure 10 shows that
BUFFALO can reduce fast memory requirements by 65%
compared with hash tables for the same number of FIB en-
tries at the expense of a false-positive rate of 0.1%. With the
increase of forwarding table size, BUFFALO can save more
memory. However in practice, handling collisions in hash
tables requires much more memory space and affects the
throughput. In contrast, BUFFALO can handle false posi-
tives without any memory overhead. Moreover, the packet

forwarding performance of BUFFALO is independent of the
workload.

6. HANDLING ROUTING CHANGES
In this section, we first describe the use of CBFs in slow

memory to keep track of changes in the forwarding table.
We then discuss how to update the BF from the CBF and
how to change the size of the BF without reconstructing the
CBF.

6.1 Update BF Based on CBF
In a switch, the control plane maintains the RIB (Routing

Information Base) and updates the FIB (Forwarding Infor-
mation Base) in the data plane. When FIB updates are
received, the Bloom filters should be updated accordingly.
We use CBFs in slow memory to assist the update of Bloom
filters. We implement a group of T CBFs, each containing
the addresses associated with one next hop. To add a new
route of address addr with next hop h, we will insert addr
to CBF (h). Similarly, to delete a route, we remove addr in
CBF (h). The insertion and deletion operations on the CBF
are described in Section 2. Since CBFs are maintained in
slow memory, we set the sizes of CBFs large enough, so that
even when the number of addresses in one CBF increases
significantly due to routing changes, the false-positive rates
on CBFs are kept low.

After the CBF (h) is updated, we update the correspond-
ing BF (h) based on the new CBF (h). We only need to
modify a few BFs that are affected by the routing changes
without interrupting the packet forwarding with the rest
BFs. To minimize the interruption of packet forwarding with
the modified BFs, we implement a pointer for each BF in
SRAM. We first generate new snapshots of BFs with CBFs
and then change the BF pointers to the new snapshots. The
extra fast memory for snapshots is small because we only
need to modify a few BFs at a time.

If the CBF and BF have the same number of positions,
we can easily update the BF by checking if each position in
the CBF is 0 or not. The update from CBF to BF becomes
more challenging when we have to dynamically adjust the
size of the BF to reduce the overall false-positive rate.

1        2          ...          m    m+1  m+2   ...        2m       ...        3m  ...            4m  ...         S

1      2          ...           m               BF 

        (m bits)

               CBF

           (S bits)
   ... ...     ... ...  

               BF*

         (2m bits)
1      2          ...           m      ...     ...                      2m 

   ... ...     ... ...  

Figure 11: Adjust BF size from m to 2m based on
CBF

6.2 Adjust BF Size Without Reconstructing CBF
When the forwarding table changes over time, the number

of addresses in the BF changes, so the size of the BF and
the number of hash functions to achieve the optimal false-
positive rate also change. We leverage the nice property



that to halve the size of a Bloom filter, we just OR the first
and second halves together [4]. In general, the same trick
applies to reducing the size of a Bloom filter by a constant c.
This works well in reducing the BF size when the number of
addresses in the BF decreases. However, when the number
of addresses increases, it is hard to expand the BF.

Fortunately, we maintain a large, fixed size CBF in the
slow memory. we can dynamically increase or decrease the
size of the BF by mapping multiple positions in the CBF to
one position in the BF. For example in Figure 11, we can
easily expand the BF with size m to BF ∗ with size 2m by
collapsing the same CBF.

To minimize the overall false-positive rate under routing
changes, we monitor the number of addresses in each CBF,
and periodically reconstruct BFs to be of the optimal sizes
and number of hash functions. Since resizing a BF based on
a CBF requires the BF and CBF to use the same number
of hash functions. We need to adjust the number of hash
functions in the CBF before resizing the BF. The procedure
of reconstructing a BF with an optimal size from the corre-
sponding CBF is described in three steps:

Step 1: Calculate the optimal BF size and the number of
hash functions. Solving the optimization problem in Sec-
tion 5, we first get the optimal size of each BF and denote
it by m∗. Then we round m∗ to m′, which is a factor of S,

m′ = S/c, where c = ⌈S/m∗⌉.

Finally we calculate the optimal number of hash functions
to minimize false positives with size m′ and the number of
addresses n in the BF, which is m′ ln 2/n based on standard
Bloom filter analysis [4]. We also need to bound the num-
ber of hash functions by kmax. Thus the number of hash
functions is k′ = min(kmax, m′ ln 2/n).

Step 2: If k 6= k′, change the number of hash functions in
the CBF from k to k′. The number of hash functions does
not always change because routing changes are sometimes
not significant and we have the kmax bound. When we must
change k, there are two ways with either more computa-
tion or more space: (i) If k′ > k, we obtain all the addresses
currently in the forwarding table from the control plane, cal-
culate the hash values with the k′−k new hash functions on
all the addresses currently in the BF, and update the CBF
by incrementing the counters in corresponding positions. If
k′ < k, we also calculate k − k′ hash values, and decre-
menting the corresponding counters. (ii) Instead of doing
the calculation on the fly, we can pre-calculate the values of
these hash functions with all the elements and store them in
the slow memory.

Step 3: Construct the BF of size m′ = S/c based on the
CBF of size S. As shown in Figure 11, the value of the
BF at position x (x ∈ [1..m′]) is updated by c positions in
CBF x, 2x, ... cx. If all the counters in the c positions of
CBF are 0, we set the position x in BF to 0; otherwise, we
set it to 1. During routing changes, the BFs can be updated
based on CBFs in the same way.

7. IMPLEMENTATION AND EVALUATION
To verify the performance and practicality of our mecha-

nism through a real deployment, we built a prototype Buf-
faloSwitch in kernel-level Click [7]. The overall structure
of our implementation is shown in Figure 1. BuffaloSwitch
consists of four modules:

Counting Bloom filters: The counting Bloom filter mod-
ule is used to receive routing changes from the control plane
and increment/decrement the counters in the related CBFs
correspondingly.

Bloom filters: The Bloom filter module maintains one
Bloom filter for each next hop. It also performs the packet
lookup by hash calculation and checking all the Bloom fil-
ters. When it finds out the multiple next hop candidates
due to false positives, it will call the false positive handler.

Bloom filter manager: The Bloom filter manager mon-
itors the number of addresses in each BF. If the number of
addresses in one BF changes significantly (above threshold
TH), we recalculate the optimal size of the BF and recon-
struct it based on the CBF.

False positive handler: The false positive handler mod-
ule is responsible for selecting a next hop for the packets
that experience false positives.

To evaluate our prototype, we need a forwarding table
and real packet traces. We map the Lawrence Berkeley Na-
tional Lab Campus network traces [20] to the campus net-
work topology [17] as described in Section 4.3. We then
calculate shortest paths in the network and construct the
forwarding table accordingly. The forwarding table consists
of 200K entries.

We run BuffaloSwitch on a 3.0 GHz 64-bit Intel Xeon ma-
chine with a 8 KB L1 and 2 MB L2 data cache. The main
memory is a 2 GB 400 Mhz DDR2 RAM. We take the fast
memory size M as 1.5MB to make sure Bloom filters fit in
the L2 cache. The Bloom filter manager optimizes sizes of
Bloom filters given the forwarding table and M . To avoid
the potential bottleneck at the Ethernet interfaces, we run
the Click packet generator on the same machine with Buf-
faloSwitch. We send the packet with constant rate and mea-
sure the peak forwarding rate of BuffaloSwitch. The packet
size is set as 64 bytes, which is the minimum Ethernet packet
size, so that the packet payload does not pollute the cache
much. For comparison, we also run EtherSwitch — a stan-
dard Click element which performs Ethernet packet forward-
ing using hash tables.

Our experiment shows that BuffaloSwitch achieves a peak
forwarding rate of 365 Kpps, 10% faster than EtherSwitch
which has 330 Kpps peak forwarding rate. This is because
all the Bloom filters in BuffaloSwitch fit in the L2 cache,
but the hash table in EtherSwitch does not and thus takes
longer time to access memory. The forwarding rate with
BuffaloSwitch can be further improved by parallelizing the
hash calculations on multiple cores.

To measure the performance of BuffaloSwitch under rout-
ing changes, we generate a group of routing updates which
randomly change FIB entries and replay these updates. It
takes 10.7 µsec for BuffaloSwitch to update the Bloom filters
for one route change. Under significant routing changes, it
takes an additional 0.47 seconds to adjust the Bloom filter
sizes based on counting Bloom filters. This is because CBFs
are very large and takes longer time to scan through them.
However, it is much faster than recalculating hash functions
for all FIB entries to reconstruct Bloom filters.

8. EXTENSIONS TO BUFFALO
In this section we discuss the extensions of BUFFALO

to support ECMP, VLAN, broadcast and multicast packets,
and backup routes.



Supporting ECMP: In shortest-path routing protocols
like OSPF and IS-IS, ECMP (Equal-Cost Multi-Path) is
used to split traffic among shortest paths with equal cost.
When a destination address has multiple shortest paths, the
switch inserts the destination address into the Bloom fil-
ter of each of the next hops. Since packets with this address
match multiple next hops, the BUFFALO false-positive han-
dler will randomly choose one next hop from them, achieving
even splitting among these equal-cost multiple paths.

Supporting virtual LANs: VLAN is used in Ethernet
to allow administrators to group multiple hosts into a single
broadcast domain. A switch port can be configured with one
or more VLANs. We can no longer use just a single Bloom
filter for each port because due to false positives a packet in
VLAN A may be sent to a switch which does not know how
to reach VLAN A and thus get dropped. To support VLANs
in BUFFALO, we use one Bloom filter for each (VLAN, next
hop) pair. For a packet lookup, we simply check those Bloom
filters that have the same VLAN as the packet. However,
this does not scale well with a large number of VLANs in the
network. For future architectures that have simpler network
configuration and management methods rather than VLAN,
we do not have this problem.

Broadcast and multicast: In this paper, we have fo-
cused on packet forwarding for unicast traffic. To support
Ethernet broadcast, the switch can identify the broadcast
MAC address and forward broadcast packets directly with-
out checking the Bloom filters. Supporting multicast in the
layer-2 network is more complex. One way is to broadcast
all the multicast packets and let the NIC on the hosts decide
whether to accept or drop the packets. Another way is to
allow switches to check whether the destination IP address
of the packet is a multicast-group packet, and leverage IP
multicast solutions such as storing the multicast forwarding
information in packets [23, 24].

Fast failover to backup routes: When a significant
failure happens such as one of the switch’s own links fail,
many routes change in a short time. In order to quickly re-
cover from significant failures, we provide an optional opti-
mization of BUFFALO. The control plane calculates backup
routes for every link/node failure case in advance, and no-
tifies the data plane about the failure event. In addition to
the original routes stored in CBF (h) (h ∈ [1..T ]), we pre-
calculate backup counting Bloom filters CBF (h1, h2) (for all
h1 ∈ [1..T ], h2 ∈ [1..T ]), which denotes the set of addresses
that are originally forwarded to next hop h1, but if h1 is not
accessible, they should be forwarded to next hop h2. When
the failure happens and thus h1 is not accessible, we simply
need to update the Bloom filters based on the original Bloom
filters and backup counting Bloom filters. For example, we
update BF (h2) based on the old BF (h2) and CBF (h1, h2).
This is fast because merging two Bloom filters is just OR
operations.

9. RELATED WORK
Bloom filters have been used for IP packet forwarding, and

particularly the longest-prefix match operation [6]. The au-
thors use Bloom filters to determine the length of the longest
matching prefix for an address and then perform a direct
lookup in a large hash table in slow memory. The authors
in [25] design a d-left scheme using d hash functions for IP
lookups. To perform an IP lookup, they still need to access

the slow memory at least d times. The paper [26] stores
Bloom filter in the fast memory, and stores the values in a
linked structure in the slow memory such that the value can
be accessed via one access on the slow memory most of the
times. Different from these works, we focus on flat addresses
and perform the entire lookup in fast memory at the expense
of a few false positives. We also propose a simple scheme
that handles false positives within fast memory, and proves
its reachability and stretch bound.

Bloom filters have also been used in resource routing [4,
5], which applies Bloom filters to probabilistic algorithms
for locating resources. Our “one Bloom filter per next hop”
scheme is similar to their general idea of using one Bloom fil-
ter to store the list of resources that can be accessed through
each neighboring node. To keep up with link speed in packet
forwarding with a strict fast memory size constraint, we dy-
namically tune the optimal size and the number of hash func-
tions of Bloom filters by keeping large fixed-size counting
Bloom filters in slow memory. We also handle false positives
without any memory overhead. BUFFALO is also similar to
Bloomier filters [27] in that we both use a group of Bloom
filters, one for each value of a function that maps the key to
the value. However, Bloomier filters only work for a static
element set.

Bloom filters are also been used for multicast forwarding.
LIPSIN [24] uses Bloom filters to encode the multicast for-
warding information in packets. False positives in Bloom
filters may cause loops in its design. LIPSIN caches packets
that may experience loops and send the packets to a dif-
ferent link when a loop is detected. However, they do not
show how well they can prevent loops and the cache size they
need. In contrast, our loop prevention mechanism is simple
and effective, and does not have any memory overhead.

To handle routing changes, both [6] and [26] store count-
ing Bloom filters (CBFs) in fast memory, which uses more
memory space than the Bloom filters (BFs). We leverage
the fact that routing changes happen on a much longer time
scale than address lookup, and thus store only the BF in
fast memory, and use the CBF in slow memory to handle
routing changes. Our idea of maintaining both the CBF and
BF is similar to the work in [14], which uses BFs for sharing
caches among Web proxies. Since cache contents change fre-
quently, the authors suggest that caches use a CBF to track
their own cache contents, and broadcast the corresponding
BF to the other proxies. The CBF is used to avoid the cost
of reconstructing the BF from scratch when an update is
sent; the BF rather than the CBF is sent to the other prox-
ies to reduce the size of broadcast messages. Different from
their work, we dynamically adjust the size of the BF without
reconstructing the corresponding CBF, which may be useful
for other Bloom filter applications.

Our idea of using one Bloom filter per port is similar to
SPSwitch [28] which forward packets on flat identifiers in
content-centric networks. Our workshop paper [29] applies
Bloom filters for enterprise edge routers by leveraging the
fact that edge routers typically have a small number of next
hops. However, it does not deal with loops caused by false
positives. The paper uses one Bloom filter for each (next
hop, prefix length) pair and discusses its effect on false pos-
itives. It also proposes the idea of using CBF to assist the
BF update and resizing. We consider flat address lookup in
SPAF networks in this paper, and thus eliminate the effect
of various prefix lengths. We also propose a mechanism to



handle false positives in the network without extra memory.
We perform extensive analysis, simulation, and prototype
implementation to evaluate our scheme.

10. CONCLUSION
With recent advances in improving control plane scala-

bility, it is possible now to build large layer-2 networks.
The scalability problem in the data plane becomes challeng-
ing with increasing forwarding table sizes and link speed.
Leveraging flat addresses and shortest path routing in SPAF
networks, we proposed BUFFALO, a practical switch de-
sign based on Bloom filters. BUFFALO performs the en-
tire packet forwarding in small, fast memory including those
packets experiencing false positives. BUFFALO gracefully
degrades under higher memory loads by gradually increasing
stretch rather than crashing or resorting to excessive flood-
ing. Our analysis, simulation and prototype demonstrate
that BUFFALO works well in reducing memory cost and
improving the scalability of packet forwarding in enterprise
and data center networks.

11. ACKNOWLEDGMENT
Alex Fabrikant was supported by Princeton University

postdoctoral fellowship and a grant from Intel. We would
like to thank our shepherd Sanjay Rao for the help on im-
proving the final version of the paper. We would also like to
thank Matt Caesar, Changhoon Kim and Yi Wang for their
comments on improving the paper.

12. REFERENCES
[1] “IETF TRILL working group.” http://www.ietf.org/

html.charters/trill-charter.html.

[2] R. Perlman, “Rbridges: Transparent routing,” in Proc.
IEEE INFOCOM, 2004.

[3] C. Kim, M. Caesar, and J. Rexford, “Floodless in
SEATTLE: A scalable Ethernet architecture for large
enterprises,” ACM SIGCOMM, 2008.

[4] A. Broder and M. Mitzenmacher, “Network
applications of Bloom filters: A survey,” Internet
Mathematics, vol. 1, no. 4, pp. 485–509, 2005.

[5] S. C. Rhea and J. Kubiatowicz, “Probabilistic location
and routing,” in Proc. IEEE INFOCOM, 2002.

[6] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor,
“Longest prefix matching using Bloom filters,” in Proc.
ACM SIGCOMM, 2003.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click modular router,” ACM
Transactions on Computer Systems, Aug. 2000.

[8] M. Caesar, T. Condie, J. Kannan,
K. Lakshminarayanan, and I. Stoica, “ROFL: Routing
on flat labels,” in Proc. ACM SIGCOMM, 2006.

[9] D. Andersen, H. Balakrishnan, N. Feamster,
T. Koponen, D. Moon, and S. Shenker, “Accountable
Internet protocol (AIP),” in Proc. ACM SIGCOMM,
2008.

[10] S. M. Bellovin, “Distributed firewalls,” ;login:, Nov.
1999.

[11] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith, “Implementing a distributed firewall,”
ACM Conference on Computer and Communications
Security, 2000.

[12] “Introduction to server and domain isolation.”
technet.microsoft.com/en-us/library/cc725770.

aspx.

[13] K. Lakshminarayanan, M. Caesar, M. Rangan,
T. Anderson, S. Shenker, and I. Stoica, “Achieving
convergence-free routing using failure-carrying
packets,” in Proc. ACM SIGCOMM, 2007.

[14] L. Fan, P. Cao, J. Almeida, and A. Z. Broder,
“Summary cache: A scalable wide-area web cache
sharing protocol,” in IEEE/ACM Transactions on
Networking, 2000.

[15] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO:
Bloom filter forwarding architecture for large
organizations,” Princeton University Technical Report
TR-869-09, 2009.

[16] D. Aldous and J. Fill, “Reversible markov chains and
random walks on graphs.” Monograph manuscript at
http:

//www.stat.berkeley.edu/~aldous/RWG/book.html,
retrieved on 2009-10-07.

[17] Y.-W. E. Sung, S. Rao, G. Xie, and D. Maltz,
“Towards systematic design of enterprise networks,” in
Proc. ACM CoNEXT, 2008.

[18] N. Spring, R. Mahajan, D. Wetherall, and
T. Anderson, “Measuring ISP topologies with
Rocketfuel,” in IEEE/ACM Transactions on
Networking, 2004.

[19] M. Arregoces and M. Portolani, Data Center
Fundamentals. Cisco Press, 2003.

[20] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney, “A first look at modern enterprise
traffic,” in Proc. Internet Measurement Conference,
2005.

[21] B. Dipert, “Special purpose SRAMs smooth the ride,”
EDN magazine, 1999.

[22] “Interior point optimizer.” www.coin-or.org/Ipopt/.

[23] S. Ratnasamy, A. Ermolinskiy, and S. Shenker,
“Revisiting ip multicast,” in ACM SIGCOMM, 2006.

[24] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and
P. Nikander, “LIPSIN: Line speed publish/subscribe
inter-networking,” in Proc. ACM SIGCOMM, 2009.

[25] A. Broder and M. Mitzenmacher, “Using multiple
hash functions to improve IP lookups,” in Proc. IEEE
INFOCOM, 2001.

[26] H. Song, S. Dharmapurikar, J. Turner, and
J. Lockwood, “Fast hash table lookup using extended
Bloom filter: An aid to network processing,” in Proc.
ACM SIGCOMM, 2005.

[27] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The
Bloomier filter: An efficient data structure for static
support lookup tables.,” in Proc. Symposium on
Discrete Algorithms, 2004.

[28] C. Esteve, F. L. Verdi, and M. F. Magalhaes,
“Towards a new generation of information-oriented
internetworking architectures,” ReArch Workshop,
2008.

[29] M. Yu and J. Rexford, “Hash, don’t cache: Fast
packet forwarding for enterprise edge routers,” in Proc.
ACM SIGCOMM Workshop on Research in
Enterprise Networks, 2009.


