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ABSTRACT
In the Internet today, traffic management spans congestion
control (at end hosts), routing protocols (on routers), and
traffic engineering (by network operators). Historically, this
division of functionality evolved organically. In this paper,
we perform a top-down redesign of traffic management us-
ing recent innovations in optimization theory. First, we pro-
pose an objective function that captures the goals of end
users and network operators. Using all known optimiza-
tion decomposition techniques, we generate four distributed
algorithms that divide traffic over multiple paths based on
feedback from the network links. Combining the best fea-
tures of the algorithms, we construct TRUMP: a traffic man-
agement protocol that is distributed, adaptive, robust, flexi-
ble and easy to manage. Further, TRUMP can operate based
on implicit feedback about packet loss and delay. We show
that using optimization decompositions as a foundation, sim-
ulations as a building block, and human intuition as a guide
can be a principled approach to protocol design.

1. INTRODUCTION
Traffic management is the adaptation of source rates

and routing to efficiently use network resources. Traffic
management has three players: users, routers, and oper-
ators. In today’s Internet, users run congestion control
to adapt their sending rates at the edge of the network.
Inside a single Autonomous System (AS), routers run
shortest-path routing based on link weights. Opera-
tors tune link weights to minimize a cost function [1].
The current division of labor between the three players
slowly evolved over time without any conscious design,
resulting in a few shortcomings. First, operators tune
link weights assuming that the traffic is inelastic and
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end hosts adapt their sending rates assuming routing is
fixed. Second, tuning link weights is an indirect way to
control traffic flow through a network; further, the link-
weight setting problem is NP-hard, forcing operators to
resort to heuristics that can lead to highly suboptimal
solutions. Finally, since this offline optimization occurs
at the timescale of hours, it does not adapt to changes
in the offered traffic.

In this paper, we rethink Internet traffic management
using optimization theory as a foundation. Optimiza-
tion decomposition is the process of decomposing a sin-
gle optimization problem into many sub-problems, each
of which is solved locally. While decomposition is a use-
ful tool for deriving distributed algorithms, it has rarely
been used to design a practical protocol, with FAST
TCP [2] as a notable exception. The barriers are two-
fold. First, any mathematical modeling makes simplify-
ing assumptions. Second, while multiple decomposition
methods exist, it is unclear how to compare them. To
the best of our knowledge, this is the first work that
compares multiple decomposition solutions, then builds
a practical protocol that combines best features from
each one.

In our top-down redesign of traffic management, we
start by selecting an intuitive and practical objective
function in Section 2 . In Section 3, we derive four
distributed solutions where sources adapt their sending
rates along multiple paths, based on different kinds of
feedback from the links, using optimization decomposi-
tion techniques discussed in [3]. Optimization theory
guarantees that these algorithms converge to a stable
and optimal point, while simulations allow us to com-
pare rate of convergence and robustness to tunable pa-
rameters in Section 4. We combine the best features
of each algorithm to construct a simple traffic manage-
ment protocol in Section 5. Our contributions are:

• Protocol Design using Decompositions: We
demonstrate how to create a practical network pro-
tocol by deriving multiple distributed algorithms,
comparing their practical properties, and synthe-
sizing their best features into a practical protocol.



• Redesigned Traffic Management: We intro-
duce TRUMP, a TRaffic-management Using Mul-
tipath Protocol to replace congestion control and
traffic engineering. TRUMP is easy to manage and
robust to small-timescale traffic shifts.

TRUMP converges faster than the four algorithms
presented in Section 3, and has the fewest tunable pa-
rameters. As with any mathematical modeling, the
TRUMP algorithm leaves many protocol details un-
specified. We use out intuition to address these de-
tails. In Section 6, the TRUMP protocol is evaluated
using packet-level simulations with realistic topologies
and traffic patterns. The protocol still leaves room for
interpretation regarding the division of functionality.
We defer the discussions on deployment issues until Sec-
tion 7. Finally, we discuss related work in Section 8 and
conclude in Section 9.

2. CHOOSING AN OBJECTIVE FUNCTION
Every optimization problem consists of an objective

function, constraint set and variables. For traffic man-
agement, by having both routing and source rate as op-
timization variables, we have the most flexibility in re-
source allocation. In our problem, the constraint is that
link load does not exceed capacity. The objective func-
tion remains to be designed. In this section, we start
with an objective of maximizing aggregate user utility,
but simulations reveal its solution converges slowly and
is sensitive to step size. In addition, maximizing utility
leads to bottlenecks in the network, making the network
fragile to traffic bursts. To address practical challenges,
we select an objective which balances maximizing user
utility with minimizing operator’s cost function.

2.1 Maximizing Aggregate Utility: DUMP
One natural objective for the traffic management sys-

tem is to maximize aggregate user utility, where utility
Ui(xi) is a measure of “happiness” of source-destination
pair i (referred to as source i in this paper) as a func-
tion of the total transmission rate xi. U is a concave,
non-negative, increasing and twice-differentiable func-
tion, e.g. log(xi), that can also represent the elasticity
of the traffic or determine fairness of resource alloca-
tion. This is the objective implicitly achieved by TCP
congestion control today [4, 5]. We represent the rout-
ing by matrix Rli that captures the fraction of source
i’s flow that traverses link l, and we let cl denote the
capacity of link l. As proposed in [6, 7], the resulting
optimization problem is:

maximize
∑

i Ui(xi)
subject to Rx ¹ c, x º 0 (1)

where both R and x are variables.
A distributed solution to (1) can be derived through

dual decomposition if (1) is a convex optimization prob-

lem. In its current form, (1) has a non-convex constraint
set, which can be transformed into a convex set if the
routing is allowed to be multipath. To capture multi-
path routing, we introduce zi

j to represent the sending
rate of source i on its jth path. We also represent avail-
able paths by a matrix H where

Hi
lj =

{
1, if path j of source i uses link l
0, otherwise.

H does not necessarily present all possible paths in the
physical topology, but a subset of paths chosen by op-
erators or the routing protocol. Then we can rewrite
(1) as:

maximize
∑

i Ui(
∑

j zi
j)

subject to
∑

i

∑
j Hi

ljz
i
j ≤ cl, ∀l. (2)

In this form, (2) is a convex optimization problem. A
distributed solution to (2) can be derived using dual
decomposition [6], where a dual variable is introduced to
relax the capacity constraint. The resulting Dual-based
Utility Maximizing Protocol (DUMP) involving sources
and links is summarized in Figure 1. Similar to the
reverse engineering of the congestion-control protocol
in [5], s can be interpreted as link prices.

Feedback price update at link l:

sl(t+1) =


sl(t)− βs(t)


cl(t)−

∑

i

∑

j

Hi
ljz

i
j(t)







+

,

where βs is the feedback price step size.

Path rate update at source i, path j:

zi
j(t+1) = maximizezi

j


Ui


∑

j

zi
j


− zi

j

∑

l

sl(t)Hi
lj




Figure 1: The DUMP algorithm.

Here t represents the iteration number and each it-
eration is at the same timescale as the longest Round
Trip Time (RTT) of the network. At each link, sl is
updated based on the difference between the link load∑

i

∑
j Hi

ljz
i
j and the link capacity. As indicated by

[]+, sl is only positive when the link load exceeds the
link capacity, i.e. when the network is congested. Each
source updates zi

j based on explicit feedback from the
links, in the form of feedback prices sl. In particular,
each source maximizes its own utility, while balancing
the price of using path j. The path price is the product
of the source rate with the price per load for path j
(computed by summing sl over the links in the path).



DUMP is similar to the TCP dual algorithm in [5] ex-
cept the local maximization is conducted over a vector
zi, as opposed to only a scalar xi, to capture the mul-
tipath nature of DUMP.

From optimization theory, certain choices of step sizes,
such as βs(t) = β/t where β > 0 is a constant, guar-
antee that DUMP will converge to the joint optimum
as t → ∞ [8]. However, such diminishing step size
is difficult to implement in practice as it requires syn-
chronization of time across the nodes, and particularly
difficult to do with dynamic arrivals of new flows. Even
under the simplest of topologies and assuming greedy
flows, DUMP has poor convergence behavior [6, 9]. We
observe that, when the step size is too large, DUMP
will constantly overshoot or undershoot, never reaching
the ideal utility. On the other hand, when the step size
is too small, DUMP converges very slowly. Even at the
optimal stepsize, DUMP only converges after about 100
iterations. This highlights that choosing an appropriate
step size for DUMP is challenging.

2.2 New Objective for Traffic Management
Let us reflect for a moment on why DUMP has poor

convergence behavior. If we look at the form for feed-
back price, we see it is only nonzero when links are
overloaded, therefore, the feedback from the links is
not fine-grained. This corresponds to the current con-
gestion control mechanism where sources only reduce
their sending rates once packets are already lost, caus-
ing the sawtooth behavior. In fact, the feedback price in
DUMP has the same formulation as the congestion price
in [5]. In addition, utility is only based on throughput,
while having low delay is also important to traffic man-
agement. In addition, the authors of [10] suggest the
network would be driven to a solution where some links
are operating near capacity if only utility is maximized.
This is an undesirable operating point which is very
fragile to traffic bursts. This indicates that maximizing
the aggregate utility enhances performance of the indi-
vidual users, but leaves the network as a whole fragile.

To avoid the poor convergence properties of DUMP,
we look for an alternative problem formulation which
also takes into account the operator’s objective. To-
day, traffic engineering solves the following optimization
problem with only R as a variable (and x constant):

minimize
∑

l f(
∑

i Rlixi/cl). (3)

f is a convex, non-decreasing, and twice-differentiable
function that gives increasingly heavier penalty as link
load increases, e.g. e

P
i Rlixi/cl . The intuition behind

choosing this f is two-fold. First, f can be selected to
model M/M/1 queuing delay. Second, network opera-
tors want to penalize solutions with many links at or
near capacity and do not care too much whether a link
is 20% loaded or 40% loaded [1]. If we solve (3) with

both x and R as variables, then the solution would end
up with zero throughput, which is also undesirable.

A better traffic management objective could be to
combine performance metrics (users’ objective) with net-
work robustness (operator’s objective), leading to the
following formulation as a joint optimization over (x,R):

maximize
∑

i Ui(xi)− w
∑

l f(
∑

i Rlixi/cl)
subject to Rx ¹ c, x º 0.

(4)

This objective favors a solution that strikes a trade-off
between high aggregate utility and a low overall network
congestion, to satisfy the need for performance and ro-
bustness. Similar problem formulations were proposed
in [10, 11], though without w. Here w is a tuning pa-
rameter which adjusts the balance between the utility
function and the cost function. When w is small, (4) is
very close to (1) since the utility term dominates. When
w is large, the solution is more conservative in avoid-
ing solutions which are close to capacity. Today, oper-
ators tune link weights today depending on the given
traffic, in this case, they can tune w depending on the
given traffic. Fairness is another important considera-
tion. From a theoretical perspective, the solution to (4)
is α-fair as w → 0, where α-fairness is defined in [12].
While this does not hold for general values of w, our
experimental results in Section 6.4 are encouraging.

Before generating distributed solutions in Section 3,
we first transform (4) to a convex optimization problem:

maximize
∑

i Ui(
∑

j zi
j)− w

∑
l f(yl/cl)

subject to y ¹ c,
yl =

∑
i

∑
j Hi

ljz
i
j , ∀l.

(5)

Note that to decouple the objective which contains U
(a per-source function) and f (a per-link function), we
introduce an extra variable yl to provide feedback before
link load exceeds actual capacity.

3. MULTIPLE DECOMPOSITIONS
In this section, we describe the distributed algorithms

generated from optimization decompositions of (4) (the
decomposition techniques are surveyed in [3, 4]). In
all four resulting algorithms, the solutions update their
path rates based on feedback prices from links. Opti-
mization decomposition leads us to three useful notions:
effective capacity, consistency price and direct path-rate
update. Practically, there are several other similarities
between the four algorithms. They only impose a small
amount of overhead on the links including measuring
the link load. They also incur the same amount of mes-
sage passing overhead, i.e., passing one link price to the
sources. While computations can involve solving a local
optimization problem and taking derivatives, U and f
are twice differentiable, therefore closed-form solutions



are available and they are just simple function evalua-
tions. The computational complexity for all four algo-
rithms are constant per link and linear per source. The
main difference is the number of tunable parameters of
each algorithm, which varies from one to three.

3.1 Effective Capacity
The first three algorithms prevent link loads from

reaching link capacity by providing feedback based on
effective capacity rather than actual capacity. In the
resulting algorithms, the sources update the path rates
based on feedback price just as in Figure 1. The feed-
back price is similar to that in Figure 1, except based
on effective capacity yl:

sl(t + 1) = sl(t)− βs


yl(t)−

∑

i

∑

j

Hi
ljz

i
j(t)


 . (6)

As in Section 2.1, we consider constant stepsize for
practical reasons, thus we remove the t argument from
all the step sizes.

3.1.1 Local Optimization: Partial-Dual
The derivation process for the partial-dual algo-

rithm is identical to Section 2.1 except with effective
capacity y as an additional primal variable. The con-
straint y ¹ c is enforced, resulting in the following equa-
tion for updating effective capacity:

yl(t + 1) = minimize(yl≤cl)wf(yl/cl)− sl(t)yl. (7)

In (7), yl is updated by solving a local optimization
using information from feedback price and the cost func-
tion f . An economic interpretation is that the effective
capacity balances the cost of using a link (represented
by f) and revenue from traffic transmission (represented
by the product of feedback price with the effective ca-
pacity). There is an explicit solution to (7). Note that
the effect of the cost function is proportional to w.

3.1.2 Subgradient Update: Primal-Dual
The primal-dual decomposition first decomposes (5)

into two subproblems, one responsible for each primal
variable. The master problem solves for y assuming a
given x∗, while the subproblem solves for x assuming a
fixed y. The master problem is as follows:

maximize
∑

i Ui(x∗)− w
∑

l f(yl/cl)
subject to y ¹ c. (8)

where x∗ is a solution to the following subproblem:

maximize
∑

i Ui(xi)
subject to Rx ¹ y.

(9)

Note that (9) is identical to (2) except the constraint
is on y rather than c. The solution to the subproblem
is then identical to that presented in Figure 1 except for
the feedback price update uses the effective capacity y
rather than actual capacity c.

The master problem can be solved through an itera-
tive update on effective capacity :

yl(t + k) = min(cl, yl(t) + βy(sl(t)−wf ′(yl(t)))), (10)

where βy is the effective capacity step size. Taking a
closer look at (10), the minimization ensures effective
capacity stays below the actual capacity. The parame-
ter k is an integer greater than 1 since (8) is updated
less frequently than (9). The subgradient update it-
self consists of balancing the price the link can charge
(sl), and the cost that link must pay (f ′l (yl)). In a nut-
shell, the primal-dual decomposition is identical to the
partial-dual decomposition in Section 3.1.1 except that
the effective capacity is updated iteratively through (10)
rather than by solving a local minimization problem.

3.2 Consistency Price: Full Dual
The full-dual decomposition is quite similar to the

partial-dual decomposition in Section 3.1.1, but a sec-
ond dual variable p is introduced to relax the constraint
y ¹ c. This dual variable can be interpreted as consis-
tency price as it ensures consistency between effective
capacity and the capacity constraint at the equilibrium
point. As with the feedback price, the consistency price
is updated over time using a subgradient method:

pl(t + 1) = [pl(t)− βp(cl − yl(t))]+,

where βp is the step size for consistency price. Con-
sistency price only comes into play when the capacity
constraint is violated, therefore, it is mapped to a non-
negative value. The effective capacity update is based
on both link prices:

yl(t + 1) = minimizeyl
wf(yl/cl)− (sl(t) + pl(t))yl.

The path rate update and feedback price update are
identical to that of the previous two algorithms. The
full-dual algorithm closely resembles an algorithm pre-
sented in [10], though our objective contains w as a
weighing factor. Appendix 2 of [10] also shows a com-
plete derivation of the full-dual algorithm.

3.3 Direct Path Rate Update: Primal
In all the previous algorithms, auxiliary dual vari-

ables were introduced to relax the constraints. In this
primal decomposition, we find a direct solution by in-
troducing a penalty function, as in appendix of [13].
Let the penalty function gl(

∑
i

∑
j Hi

ljz
i
j) replace the

capacity constraint Hz ¹ c. The penalty function is a
continuous, increasing, differentiable and convex func-
tion that is sufficiently steep such that link loads will



not overshoot capacity. If it is also sufficiently close to
zero for values less than capacity, it will not affect the
optimal point [14]. If we add g and the cost function
f to get a penalty-cost function Pl(

∑
i

∑
j Hi

ljz
i
j), then

(5) can be transformed into the following:

maximize
∑

i

Ui(
∑

j

zi
j)−w

∑

l

Pl(
∑

i

∑

j

Hi
ljz

i
j). (11)

The derivative of (11) is:

dzi

dt
= βz

∂Ui

∂zi
j

(xi(t))− w
∑

l

P ′l (
∑

i

∑

j

Hi
ljz

i
j(t)), (12)

where βz is the stepsize for path rate. Converting
(12) into a subgradient update form and separating link
information from source information, we obtain the al-
gorithm in Figure 2.

Path rate update:

zi
j(t + 1) = zi

j(t) + βzz
i
j(t)(

∂Ui

∂zi
j

(xi(t))−
∑

l

Hi
ljsl(t))

Feedback price update:

sl(t + 1) = wP ′l (
∑

i

∑

j

Hi
ljz

i
j(t)),

Figure 2: The Primal algorithm.

The path rates are iteratively updated based on the
difference between the rate of change of the utility func-
tion and the associated path feedback price. The feed-
back price here directly represents how quickly the penalty
function is changing at a given link load. The primal
algorithm in Figure 2 differs significantly from the first
three decompositions in two ways. First, it uses direct
subgradient update on the path rates. Second, it does
not use the concept of effective capacity.

4. CONVERGENCE PROPERTIES
In this section, we study convergence properties of the

four algorithms, and make three observations which will
guide our design of a new protocol in Section 5. First,
we find that there is a trade-off between the speed of
convergence and the achievable aggregate utility. Sec-
ond, we find algorithms which use local minimizations
instead of iterative updates converge faster. Third, we
find consistency price can aid convergence for small w.

4.1 Set-up of MATLAB Experiments
Due to the multitude of tuning parameters, finding

the optimal values requires fine-grained sweeping of the

parameter space. Thus we use MATLAB simulations
along with simple topologies and simple traffic patterns
to identify the key properties that improve convergence.
For all algorithms, we update the source and link vari-
ables at each iteration based on link load from the pre-
vious iteration. For the utility function U , we use a
logarithmic function commonly associated with propor-
tional fairness and TCP Reno today [12]. For the cost-
function f , we use an exponential function, which is
the continuous version of the function used in various
studies of traffic engineering [1].

We study two realistic topologies as shown in Fig-
ure 3. On the left is a tree-mesh topology, which is
representative of a common access-core network struc-
ture. On the right is the Abilene backbone network [15].
We select six source-destination pairs for access core
and four pairs for Abilene. For each source-destination
pair, we choose three minimum-hop paths as possible
paths for access-core and four minimum-hop paths as
possible paths for Abilene. The simulations assume the
link capacities follow a truncated (to avoid negative val-
ues) Gaussian distribution, with an average of 100 and
a standard deviation of 10. For this set of experiments,
we define convergence as reaching 99.9% of the optimal
aggregate utility of (4). We found the convergence rates
to be independent of initial routing conditions. Due to
space constraints, we omit extra graphs when the same
trends are observed across algorithms, topologies and
values of w, more graphs can be found in [9].

4.2 Weighing User Utility and Operator Cost
In this section, we illustrate a trade-off between ag-

gregate utility and convergence time. In Figure 4, we
plot the number of iterations before convergence against
step-size for three values of w for the partial-dual algo-
rithm from Section 3.1.1. For each step-size, 10 random
capacity distributions are chosen and the average num-
ber of iterations before convergence is highlighted in a
solid line. Comparing across Figure 4 from left to right,
we see that as w shrinks, the convergence time at the
optimal step size grows and the range of step sizes with
a good convergence time shrinks. This helps understand
why DUMP (w = 0) is hard to tune.

In Figure 5, we plot the aggregate utility achieved by
solving (4) as a percentage of maximal aggregate utility
achieved by solving (1), for a range of w values. From
the graph, we observe that there is a knee region for
both topologies. For the access-core topology, this knee
region is w = [1/4, 1/6]; for the Abilene topology, this
knee region is w = [1/6, 1/10]. Below this knee region,
the algorithm achieves near maximal aggregate utility,
since the cost function f is weighed sufficiently lightly
to not change the solution. Above this knee region, the
aggregate utility achieved decreases, as the cost function
f becomes a significant part of the objective.
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Figure 3: Two topologies.
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Figure 4: Plots of partial-dual algorithm showing dependence of convergence time on step-size. ’x’
represent the actual data points and ’o’ represent the average value. Access-core topology.
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Figure 5: Plot of w versus percentage of maximal
utility achieved.

Looking at Figure 4 and 5 together, one can observe
there are some values of w that have faster convergence
and less sensitivity to step size without much sacrifice in
utility. Below the knee region of Figure 5, the gains in
aggregate utility do not offset the gain in convergence
time. Otherwise, there is a trade-off between aggre-
gate utility and convergence time. Depending on the
conditions of their network, operators can choose their
desired operation point.

4.3 Comparing Between the Algorithms
In this subsection, we do a series of comparisons be-

tween convergence time and step-size sensitivity of the
four algorithms, and find partial-dual in Figure 4 is the
best overall, with a good convergence profile and fewest
tunable parameters. Due to space constraints, we sum-
marize our observations in Table 1, but more details can
be found in [9].

Comparing the primal-dual algorithm in Section 3.1.2
to the partial-dual algorithm, we find the two extra tun-
able parameters do not improve the convergence proper-
ties. The convergence times of primal-dual and partial-
dual algorithms are almost identical for well-chosen βy

and k. For other values of βy, however, we find the
primal-dual algorithm converges more slowly than the
partial-dual algorithm.

Comparing the full-dual algorithm in Section 3.2 to
the partial-dual algorithm, we find consistency price
may improve convergence properties. From Table 1, we
note that βp has no effect on the convergence time when
w = 1. This is because the effective capacity stays far
below actual capacity when w is high, so consistency
price pl stays at 0 and its step size plays no role. For
w = 1/6 (which is the edge of the knee region seen in
Figure 5), we find that the full-dual algorithm can con-
verge faster than the partial-dual algorithm. This is
because if we allow the capacity constraint to be vio-



Algorithm Partial-Dual Primal-Dual Full-Dual Primal
w = 1, Access-Core 15 25* 15 25

w = 1/6, Access-Core 50* 75** 125* 150*
w = 1, Abilene 15 25* 15 25

w = 1/6, Abilene 125* 100** 50* 150*

Table 1: Summary of average number of iterations to convergence for best chosen tuning parameters.
Here * denotes sensitivity to step-size variation and ** denotes extra sensitivity to step-size variation.

lated during transient periods, the algorithm can take
more aggressive steps and potentially converge faster.

Comparing the primal algorithm in Section 3.3 to
the partial-dual algorithm, we find local minimization
update has better convergence properties than subgradi-
ent update. This is intuitive as the subgradient update
with a constant step-size is constrained to react with
the same strength each time, while local minimization
can react more flexibly. From Table 1, the primal algo-
rithm takes longer to converge at the optimal step size
(25 iterations versus 15 iterations). In addition, the pri-
mal algorithm also requires operators to tune a second
parameter g.

5. TRUMP
While the algorithms introduced in Section 3 con-

verge faster than DUMP, we seek an algorithm with
even better convergence properties. In this section, we
introduce Traffic-management Using Multipath Proto-
col (TRUMP) with only one easy to tune parameter.

5.1 TRUMP: A Mathematical Algorithm
Our simulations in the previous section suggest that

simpler algorithms with fewer tunable parameters con-
verged faster, although having a second link price can
help for small w. Using those observations, we combine
the best parts of all four algorithms to construct the
TRUMP algorithm described in Figure 6. In TRUMP,
the feedback price has two components as in the full-
dual algorithm: pl and ql. Since we observed that local
optimization worked better than subgradient update,
we use the feedback price update from primal algorithm
in Figure 2 as our ql. This has the additional benefit of
removing one tuning parameter from the protocol since
the update of ql involves no step size.

By a similar argument, we use a local optimization for
the path rate update as in the dual-based algorithms.
The w-value is only known at the sources where the z’s
are computed, and there is only a single value for the
network. The exact value is a judgment call based on an
understanding (from measurements) of how stochastic
the traffic is. Simulations such as those performed in
Section 6.2 could reveal the right trade-off between the
level of stochasticity and the value of w.

Through simulations, we find that TRUMP indeed

Feedback price update:

sl(t + 1) = pl(t + 1) + ql(t + 1),

Loss price update:

pl(t + 1) = [pl(t)− βp(cl −
∑

i

∑

j

Hi
ljz

i
j(t))]

+,

Delay price update:

ql(t + 1) = wf ′


∑

i

∑

j

Hi
ljz

i
j(t)/cl


 ,

Path-rate update:
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j(t+1) = maximizezi

j
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∑

j
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j


−

∑

l

sl(t)
∑

j
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ljz

i
j

Figure 6: The TRUMP algorithm.

converges to the optimum of (4) for both topologies
and a range of w values. When we plot its achieved
aggregate utility at equilibrium versus w, we obtain a
plot identical to Figure 5. In Figure 7, we plot conver-
gence time versus step-size for TRUMP. When the net-
work is reacting quite strongly to delay price q (w = 1
and the traffic engineering part is dominating), the loss
price p is unnecessary as observed in Figure 7a. In
the region where the network is being less conservative
(w = 1/6), loss price p is a more definitive indicator of
performance than delay price q, and can be helpful for
guiding source reactions. Comparing Figure 7 to Fig-
ure 4, we see that TRUMP has nicer convergence prop-
erties than the partial-dual algorithm, while requiring
fewer parameters.

Unlike the algorithms from Section 3, TRUMP is a
heuristic and does not correspond to a known decom-
position. Consequently, the convergence and optimality
is not automatically guaranteed by optimization theory.
We were able to prove the convergence of TRUMP when
the network is lightly loaded, see Appendix A of [9]. We
consider the region where w is sufficiently large for p = 0
(as seen in Figure 7a), and find a contraction mapping
on z. Overall, TRUMP is simpler than any of the al-
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Figure 7: Plots of TRUMP algorithm showing dependence of convergence time on step-size. ’x’
represent the actual data points and ’o’ represent the average value. Access-core topology.

gorithms presented in Section 3, with only one tunable
parameter that only needs to be tuned for small w.

5.2 TRUMP: Transition to Network Protocol
The transition from a mathematical algorithm to a

network protocol requires relaxation of several simpli-
fying assumptions. First, the algorithm in Figure 6 ig-
nores feedback delay. Second, the algorithm assumes
traffic flows fluidly, while real traffic consists of packets.
Third, a specific U and f must be selected. We address
these differences in the TRUMP protocol.

Each iteration of the TRUMP algorithm is depen-
dent on RTTi

j , the time it takes for source i to receive
feedback along all the links of path j. To transition to
a packet-based protocol, the link prices are calculated
based on the estimated local link load: NT the num-
ber of bits which arrived in period (t, t + T ) divided
by length of the period. Choosing f as an exponential
function, each link updates its prices as:

pl(t + T ) = [pl(t)− βp(cl − NT

Tcl
)]+,

ql(t + T ) = w
cl
∗ exp

(
NT

Tcl

)
,

sl(t + T ) = pl(t + T ) + ql(t + T ).

Choosing a logarithmic function for U and solving
the local minimization, we obtain the following source
rate update:

zi
j(t + T i

j ) = zi
j(t)− γ

∑

j

zi
j(t) +

γ∑
l H

i
ljsl(t)

. (13)

At time 0, the prices are initialized to a constant be-
fore real prices are available after one RTT. New flows
after time 0 are set at the calculated path rates accord-
ing to the latest (delayed) price, collected by a probe be-
fore the flow starts. To control the rate of convergence
for flows with varying RTTs, as commonly done in con-
gestion control mechanisms, e.g. [2], we introduce a pa-
rameter 0 < γ < 1. In general, path rates are updated

every γRTTi
j , but the path rate is recalculated at most

once for any given price update. Thus the path rate
adaptation will happen every T i

j = max(T, γRTTi
j).

Note that the extra parameters γ and T are necessary
for any packet-level protocol.

6. TRUMP: PACKET-LEVEL EVALUATION
In our MATLAB simulations, we had implicitly as-

sumed flows are greedy and persistent. Moving to packet-
level simulations, we study how the TRUMP protocol
performs under feedback delay, link failures and traffic
shifts. In addition, we examine whether TRUMP shares
bottleneck links fairly.

6.1 Experimental Set-up
We implement the TRUMP protocol in NS-2 as de-

scribed in Section 5.2. In particular, the link prices
are updated every 5ms and feedback from the links to
the sources is piggy-backed on acknowledgment pack-
ets. The path rates are updated with γ = 0.1. Most
of the experiments are performed with w = 1, where
there is no packet loss. The calculated source rates are
compared to the ideal rates, which are determined using
MOSEK optimization software.

Our simulations use both synthetic and realistic topolo-
gies, which are summarized in Tables 2 and 3 respec-
tively. For the topologies used in our MATLAB exper-
iments (Figure 3), we use the same paths with link ca-
pacities of 100Mb/s. Link delays on the Abilene topol-
ogy were selected to approximate the realistic values.
Links in Access-Core topology have a one-way propa-
gation delay of 50 ms, a value chosen to test TRUMP
under long feedback delay. Specific paths and link de-
lays are selected in the Share topology (Figure 11a) to
test the fairness of TRUMP. Links have a capacity of
200Mb/s, except for the bottleneck link from node 7 to
node 8, which has a capacity of 100Mb/s.

Since TRUMP with explicit feedback is most eas-
ily deployed inside a single AS, we obtained intra-AS
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Figure 8: Ideal and actual aggregate throughput in the Sprint network with 50 greedy flows.

Topology Nodes Links Flows Paths
Abilene 11 28 4 4
Access Core 10 24 6 3
Share 9 16 3 1

Table 2: Summary of synthetic topologies.

topologies, along with link delays from the Rocketfuel
topology mapping engine [16, 17]. The link capacities
are 100Mb/s if neither endpoint has degree larger than
7, and 52Mb/s otherwise. As summarized in Table 3,
between 10 and 50 flows were randomly selected. For
each source-destination pair, multiple paths were com-
puted by first selecting a third transit node, then com-
puting the shortest path containing all the three nodes,
and finally removing cycles in the path. The RTTs on
the paths range from 1 to 400 ms.

ISP(AS Number) Cities Links Flows Paths
Genuity(1) 42 110 50 1-4
Telstra(1221) 44 88 20 1-4
Sprint(1239) 52 168 50 1-4
Tiscali(3257) 41 174 25 1-4
Abovenet(6461) 19 68 10 1-4
AT&T(7018) 115 296 50 1-4

Table 3: Summary of ISP topologies.

6.2 Effect of w

We confirm our MATLAB results from Section 5.1:
TRUMP’s converges quickly for w = 1, under hetero-
geneous feedback delay. In Figure 8, we plot the ideal
and actual aggregate throughput in the Sprint network
with 50 greedy flows. Ideal throughput is the sum of the
rates that optimizes (4), and actual throughput is the
sum of the rates that our implementation of TRUMP
achieved. The paths chosen had RTTs ranging from

3ms to 327ms, with an average of 127ms and a stan-
dard deviation of 76ms. Similar to the MATLAB ex-
periments, when w = 1/3, the actual throughput of
TRUMP and partial-dual oscillates. The reason the
ideal-valued throughput is not reachable is the same
thing we observed in DUMP. The theory says it works
with diminishing step-size, but there’s no guarantee for
constant step-size. When w = 1, the TRUMP aggre-
gate rates increase from 0 at time 0s (when the flows are
established), to close to the target value within 500ms –
about 4 times the average RTT. The partial-dual oscil-
lates slightly around the equilibrium point. The same
convergence properties are observed across both syn-
thetic and realistic topologies. Therefore, the TRUMP
protocol is stable under realistic feedback delay for suf-
ficiently large w.

6.3 Topology and Traffic Dynamics
First we consider the impact of a link failure in the

Sprint Network. Path failures and recoveries are de-
tected through active probing. All 50 greedy flows are
established at 0 sec. At 5 sec the link between Pennsauken,
NJ and Roachdale, IN fails, and it recovers at 10 sec.
Flows 20 and 39 contain the affected link in at least one
of their paths. In Figure 9, we plot the path rates of the
flow 20. We observe that immediately after the failure,
traffic is assigned to an alternate path unaffected by the
failure. After the link is repaired at time 10 sec, traffic
returns to the original path quickly. Similar behavior is
observed for flow 39.

We study the performance of TRUMP under realis-
tic traffic loads by using 10 stochastic ON-OFF flows in
the Abovenet network. As suggested by [18], the OFF
periods are Pareto with shape 2.0 and average of 0.2s.
We consider three file size distributions: exponential,
Pareto with shape 1.2 and Pareto with shape 1.8. In
Figure 10, we plot the average file size against the effi-
ciency : fraction of the actual throughput over the ideal
throughput for a 10s period. First, TRUMP’s behavior
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Figure 9: Plot of affected path rates for a link
failure in the Sprint network.

is independent of the variance of the file-size distribu-
tion, since all three curves overlap. For all three distri-
butions, TRUMP is more efficient for larger files as it
takes a few RTTs to converge to the ideal throughput.
On the surface, TRUMP performs poorly for small files,
only achieving 50% of the ideal rate. However, given
those files are transmitted within a single RTT, achiev-
ing 50% of the ideal rate is much better than TCP to-
day. In addition, TRUMP is optimized for logarithmic
utility, for example log(20, 000)/ log(40, 000) = 0.93.
This means TRUMP achieves close to ideal utility even
for small flows.
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6.4 Fairness of Bandwidth Sharing
As mentioned in Section 2.2, TRUMP is α-fair as

w → 0, but its fairness for general w values is un-
known. For w = 1, we construct a simple topology
(Figure 11a) to illustrate whether the bottleneck link
is shared fairly. In Figure 11b, we plot throughput of
two pairs of flows which differ in RTT or hop-count.
All flows have a shared destination (node 9), and the
sources are nodes 1, 2 and 3 respectively. We observe

that flows 1 and 2, which have very different RTT (30ms
and 100ms) but the same number of hops on their paths,
share bandwidth fairly. Unlike most congestion con-
trol proposals, TRUMP does not discriminate against
long RTTs since (4) has no dependency on RTT. While
RTTs does indeed affect the transient behavior as indi-
cated in the distributed algorithm of (13), fairness is an
equilibrium property. On the other hand, flow 3 with
twice as many hops receives roughly half the bandwidth
of flow 1. This is inline with network operators goals to
penalize against longer-hop paths since that would re-
quire more usage of network resources. If the unshared
links are lightly loaded, the bandwidth sharing would be
less unfair since the amount of penalty depends on link
load. It is also possible to change the source rate adap-
tation for TRUMP to react to path prices normalized
by hop length of that path, to ensure fair bandwidth
sharing for diverse hops.

7. PRACTICAL DEPLOYMENT ISSUES
The TRUMP protocol still leaves many questions unan-

swered such as: which network elements correspond to
the sources, and how the multiple paths are determined.
TRUMP being under-specified enables flexible integra-
tion with the network architecture. In this section, we
explore several deployment options.

Are the “sources” end hosts or edge routers?
The mathematics does not specify whether the sources
refer to the end hosts or the edge routers. The interpre-
tation of the sources depends on two factors: whether
the end host has control over and access to the multiple
paths and whether the network can trust the end hosts
to send at the prescribed rate. If end hosts are unaware
of the multiple paths, then edge routers rate limit the
end hosts, and split traffic amongst the multiple paths.
Even if the end hosts are aware of the multiple paths,
they might send too aggressively. In this case, edge
routers should perform the same calculations and per-
form policing or shaping to enforce the path rates by
dropping excess packets.

How is H determined? In the TRUMP protocol,
there is no hint as to how a source can access multi-
ple paths. Luckily, many options exist. Inside a single
AS, routers can compute K-shortest paths, or a man-
agement system can set-up multiple tunnels. Across
ASes, TRUMP is easily deployed at multihomed stub
networks which can already access multiple paths to
each destination. Another possibility is in the context of
Content Distribution Networks, where a customer can
download content from multiple servers. There are also
incrementally deployable ways of accessing end-to-end
multiple paths [19].

Is the feedback explicit or implicit? The TRUMP
protocol described in Section 5.2 uses explicit feedback.
There are several implementation options: the feedback
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Figure 11: Fairness of bandwidth sharing.

from links to sources could be piggy-backed on acknowl-
edgment packets. Regardless of the method, explicit
feedback requires cooperation between sources and in-
termediate nodes, knowledge of the end-to-end multiple
paths and imposes message-passing overhead. All these
disadvantages can be avoided by protocol based on im-
plicit feedback, i.e., locally observable qualities. Fortu-
nately, the link prices pl and ql correspond loosely to
packet loss and queuing delay, which a source can eas-
ily estimate1, though all edge routers (or sources) may
still need to agree on the same w. Combining implicit
feedback with flexible multipath routing for TRUMP is
an exciting avenue for future research.

8. RELATED WORK
Optimization theory is used in traffic management

research in areas such as reverse engineering of existing
protocols [4, 5], tuning configuration parameters of ex-
isting protocols [1], and guiding the design of new pro-
tocols [2] (for more references see [20]). In turn, such a
broad use has encouraged innovations in optimization
theory, for example, [3] introduced multiple decomposi-
tion methods. Our paper takes advantage of the recent
advancements and applies multiple decompositions to
design traffic management protocols.

Most of the proposed traffic management protocols
consider congestion control or traffic engineering alone.
Several proposed dynamic traffic engineering protocols
also load balance over multiple paths based on feed-
back from links [21, 22, 23], but they do not adapt the
source rates. From the methodology perspective, our
1pl is loosely related to packet loss on link l:
max(0,

P
i

P
j Hi

ljz
i
j(t) − cl) corresponds to packet loss on

link l, and βp moderates how much to react to packet loss.
Thus, the sum of pl along the path can be approximated as
end-to-end packet loss. If we interpret f ′ as approximating
M/M/1 queuing delay at a link, then ql can be interpreted
as being proportional to queuing delay. Thus, the sum of
ql along the path can be viewed as an approximation of the
end-to-end average queuing delay.

work bears the most resemblance to FAST TCP [2].
Other congestion control protocols that use control the-
ory to prove stability include [24, 25, 26].

According to recent research, congestion-control and
traffic-engineering practices may not interact well [27,
10, 28]. In response, many new designs are proposed.
Some of them start with a different objective, and find
poor convergence properties [7, 6]. Algorithms similar
to two of the decomposition solutions (Section 3) are
described briefly in [10] and Appendix of [29], though
neither consider possible design alternatives, nor bridge
the gap between a mathematical algorithm and a prac-
tical protocol. Others analyze stability of joint conges-
tion control and routing algorithms using theory, while
we use optimization decomposition to guide the design
of a practical protocol [11, 30, 31]. Some of our eval-
uation is inspired by [31, 11], which proves that multi-
path congestion control can be stable under heteroge-
neous feedback delay. In particular, [11] shares a similar
problem formulation and analyze an algorithm similar
to the primal-driven algorithm presented in Section 3.3,
TRUMP offers extra flexibility through the tuning pa-
rameter w and faster convergence through an additional
loss price. In [32], the value of coordinated path selec-
tion (over random path selection) in the context of mul-
tipath congestion control is studied, while in this paper
we consider the combination of traffic engineering and
congestion control.

9. CONCLUSIONS
In this paper, we searched for a traffic-management

protocol which is distributed, adaptive, robust, flexi-
ble and easy to manage. We followed a top-down de-
sign process starting with an objective which balances
the goals of users and operators. We generated four
provably optimal distributed solutions using known de-
composition techniques. Using insight from simulations
comparing the four algorithms, we combined the best
parts of each algorithm to construct TRUMP: a sim-



pler traffic management protocol. TRUMP is easy to
manage, with just one optional tunable parameter. Our
packet-level evaluations confirmed TRUMP is effective
in reacting to topology changes and traffic shifts on a
small timescale, even with realistic feedback delay. We
also found TRUMP’s performance is only weakly de-
pendent on the properties of file size distribution. In
addition, our preliminary experiments show TRUMP
can achieve fair bandwidth sharing for paths of diverse
RTTs, but not for diverse hop count.

This paper started from an abstract model, and ended
with a practical traffic management protocol based on
feedback from the links along each path. In our ongo-
ing work, we are exploring a version of TRUMP where
the sources adapt the path rates based on observations
of end-to-end delay and loss. We show that using op-
timization decompositions as a foundation, simulations
as a building block, and human intuition as a guide can
be a principled approach to protocol design.
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