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ABSTRACT
The separation of intradomain and interdomain routing has been
a key feature of the Internet’s routing architecture from the early
days of the ARPAnet. However, the appropriate “division of labor”
between the two protocols becomes unclear when an Autonomous
System (AS) has interdomain routes to a destination prefix through
multiple border routers—a situation that is extremely common to-
day because neighboring domains often connect in several loca-
tions. We believe that the current mechanism of early-exit or hot-
potato routing—where each router in an AS directs traffic to the
“closest” border router based on the intradomain path costs—is
convoluted, restrictive, and sometimes quite disruptive. In this pa-
per, we propose a flexible mechanism for routers to select the egress
point for each destination prefix, allowing network administrators
to satisfy diverse goals, such as traffic engineering and robustness
to equipment failures. We present one example optimization prob-
lem that uses integer-programming techniques to tune our mecha-
nism to improve network robustness. Experiments with topology
and routing data from two backbone networks demonstrate that our
solution is both simple (for the routers) and expressive (for the net-
work administrators).

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers; C.2.2 [Network Protocols]:
Routing Protocols; C.2.3 [Network Operations]: Network Man-
agement

General Terms
Algorithms, Management, Performance, Design, Measurement

Keywords
BGP, egress-point selection

1. INTRODUCTION
The Internet’s two-tiered routing architecture was designed to

have a clean separation between the intradomain and interdomain
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routing protocols. For example, the interdomain routing protocol
allows the border routers to learn how to reach external destina-
tions, whereas the intradomain protocol determines how to direct
traffic from one router in the AS to another. However, the appropri-
ate roles of the two protocols becomes unclear when the AS learns
routes to a destination at multiple border routers—a situation that
arises quite often today. Since service providers peer at multiple
locations, essentially all of the traffic from customers to the rest
of the Internet has multiple egress routers. In addition, many cus-
tomers connect to their provider in multiple locations for fault toler-
ance and more flexible load balancing, resulting in multiple egress
routers for these destinations as well. In this paper, we argue that
selecting among multiple egress points is now a fundamental part
of the Internet routing architecture, independent of the current set
of routing protocols.

In the Internet today, border routers learn routes to destination
prefixes via the Border Gateway Protocol (BGP). When multiple
border routers have routes that are “equally good” in the BGP sense
(e.g., local preference, AS path length, etc.), each router in the
AS directs traffic to its closest border router, in terms of the In-
terior Gateway Protocol (IGP) distances. This policy of early-exit
or hot-potato routing is hard-coded in the BGP decision process
implemented on each router [1]. Hot-potato routing is an appealing
mechanism for two main reasons. First, hot-potato routing tends
to limit the consumption of bandwidth resources in the network by
shuttling traffic to the next AS as early as possible. Second, under
hot-potato routing, a router’s choice of egress point is guaranteed
to be consistent with the other routers along the forwarding path,
because packets are forwarded to neighboring routers that have se-
lected a BGP route with the same (closest) egress point.

Although consistent forwarding is clearly an important property
for any routing system, routers now have other ways of achieving
this goal. In particular, the greater availability of tunneling tech-
nology allows for more sophisticated egress-selection rules, which
are not tied to the IGP metrics. Internet Service Providers (ISPs)
increasing use tunneling technologies—such as IP-in-IP encapsula-
tion or MultiProtocol Label Switching (MPLS)—to support Virtual
Private Networks (VPNs) or to avoid running BGP on their internal
routers. We capitalize on tunneling techniques to revisit the hard-
coded policy of selecting egress points based on IGP distances, be-
cause we believe that hot-potato routing is:

• Too restrictive: The underlying mechanism dictates a par-
ticular policy rather than supporting the diverse performance
objectives important to network administrators.

• Too disruptive: Small changes in IGP distances can some-
times lead to large shifts in traffic, long convergence delays,
and BGP updates to neighboring domains [2, 3].



• Too convoluted: Network administrators are forced to select
IGP metrics that make “BGP sense,” rather than viewing the
two parts of the routing system separately.

Selecting the egress point and computing the forwarding path to
the egress point are two very distinct functions, and we believe that
they should be decoupled. Paths inside the network should be se-
lected based on some meaningful performance objective, whereas
egress selection should be flexible to support a broader set of traffic-
engineering goals. These objectives vary by network and destina-
tion prefix; therefore a mechanism that imposes a single egress se-
lection policy cannot satisfy this diverse set of requirements.

In this paper, we propose a new mechanism for each router to
select an egress point for a destination, by comparing the candi-
date egress points based on a weighted sum of the IGP distance
and a constant term. The configurable weights provide flexibil-
ity in deciding whether (and how much) to base BGP decisions
on the IGP metrics. Network-management systems can apply op-
timization techniques to automatically set these weights to satisfy
network-level objectives, such as balancing load and minimizing
propagation delays. To ensure consistent forwarding through the
network, our mechanism relies on the use of tunnels to direct traffic
from the ingress router to the chosen egress point. Our new mecha-
nism, called TIE (Tunable Interdomain Egress) because it controls
how routers break ties between multiple equally-good BGP routes,
is both simple (for the routers) and expressive (for the network ad-
ministrators). Our solution does not introduce any new protocols or
any changes to today’s routing protocols, making it possible to de-
ploy our ideas at one AS at a time and with only minimal changes
to the BGP decision logic on IP routers. The paper makes the fol-
lowing research contributions:

• Flexible mechanism for egress-point selection: TIE is: (i)
flexible in balancing the trade-off between sensitivity to IGP
changes and adaptability to network events, (ii) computation-
ally easy for the routers to execute in real time, and (iii) easy
for a management system to optimize based on diverse net-
work objectives.

• Optimization of network-wide objectives: We present an
example problem that can be solved easily using TIE. We
show how to minimize sensitivity to internal topology changes,
subject to a bound on propagation delay, using integer pro-
gramming to set the weights in our mechanism.

• Evaluation on two backbone networks: We evaluate the
effectiveness of TIE for this optimization problem, using topol-
ogy and routing data from two backbone networks (i.e., Abi-
lene and a large ISP). Our experiments show that TIE re-
duces sensitivity to internal topology changes while satisfy-
ing network-wide objectives for delay.

In the next section, we discuss the problems caused by hot-potato
routing, and describe an alternative where each router has a fixed
ranking of the egress points. Then, Section 3 presents the TIE
mechanism for selecting egress points, along with several simple
examples. Section 4 presents the optimization problem and evalu-
ates our solution on topology and routing data from two backbone
networks. Section 5 briefly discusses how to use TIE to balance
load in the network. In Section 6, we discuss how to limit the
number of configurable parameters and how to deploy TIE with-
out changing the existing routing protocols. After a brief overview
of related work in Section 7, we conclude the paper in Section 8.
An Appendix describes how we determine the network topology
and egress sets from the measurement data collected from the two
backbone networks.

2. A CLOSE LOOK AT THE
IGP/BGP BOUNDARY

The Internet routing architecture has three main components:
(i) interdomain routing, which determines the set of border (or
egress) routers that direct traffic toward a destination, (ii) intrado-
main routing, which determines the path from an ingress router to
an egress router, and (iii) egress-point selection, which determines
which egress router is chosen by each ingress router for each desti-
nation. In this section, we first describe how tying egress selection
to IGP distances leads to harmful disruptions and over-constrained
traffic-engineering problems. Then we explain how the alternative
of allowing each ingress router to have a fixed ranking of egress
points is not flexible enough (for traffic engineering) or adaptive
enough (to large changes in the network topology).
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Figure 1: Link failure causes router C to switch egress points
from A to B for destination prefix p.

Our discussion of the two approaches draws on the example net-
work in Figure 1. AS 1 has five routers (A, B, C, D, and E) and
each internal link has an IGP metric. Routers A and B are both
egress points for destination prefix p, because they learn routes to
p via external BGP (eBGP). Each of them selects a best route1,
and propagates it via internal BGP (iBGP) to routers inside the AS.
Routers A and B propagate their best route to p to router C. Under
hot-potato routing, router C chooses the BGP route learned from
A because the IGP distance to A is 2, which is smaller than the dis-
tance of 9 to B. However, if the C–D link fails, all traffic from C

to p would shift to egress router B, with an IGP distance of 9 that
is smaller than the new IGP distance of 10 to A. In this section,
we argue that these kinds of routing changes are disruptive. Yet,
continuing to use egress-point A might not be the right thing to do,
either, depending on the propagation delay, traffic demands, and
link capacities. Instead, network administrators need a mechanism
that is flexible enough to support sound performance trade-offs.

2.1 Hot-Potato Routing
Hot-potato routing adapts automatically to topology changes that

affect the relative distances to the egress points. Although hot-
potato routing seems like a reasonable way to minimize resource
consumption, IGP link weights do not express resource usage di-
rectly. The IGP distances do not necessarily have any relationship
to hop count, propagation delay, or link capacity, and selecting the
closer egress point does not necessarily improve network perfor-

1A has the choice between the route through AS 2 and AS 3. In
this example, we assume that the two routes are equivalent when
comparing BGP attributes, so A decides which route to pick based
on a tie break such as the age of the route or the router ID.



mance. In addition, small topology changes can lead to perfor-
mance disruptions:

• Large shifts in traffic within and between ASes: A single
link failure can affect the egress-point selection for tens of
thousands of destinations at the same time, leading to large
shifts in traffic [2]. In fact, hot-potato routing changes are
responsible for many of the largest traffic variations in a large
backbone [3].

• Changes in the downstream path: When the egress point
changes, the traffic moves to a different downstream forward-
ing path that may have a different round-trip time or available
bandwidth, which may disrupt the communicating applica-
tions. In addition, the abrupt increase in traffic entering the
neighboring AS may cause congestion.

• BGP update messages for neighboring domains: A change
in egress point may also change the AS path. If A selects
the route via AS 2 in Figure 1, the failure of the C–D link
causes router C to switch from a path through AS 2 to one
through AS 3, forcing C to send a BGP update message
to AS 0. Global BGP convergence may take several min-
utes [4]. If AS 0 switches to a BGP route announced by
another provider, the traffic entering AS 1 at router C would
change.

Even if the hot-potato routing change does not lead to new BGP
update messages, long convergence delays can occur inside the AS
depending on how the router implements the BGP decision process.
An earlier measurement study [2] discovered long convergence de-
lays because the underlying routers in the network only revisited
the influence of IGP distances on BGP decisions once per minute;
during the convergence period, data packets may be lost, delayed,
or delivered out of order. This particular problem, while serious,
can be addressed by having routers use an event-driven implemen-
tation that immediately revisits the BGP routing decisions after a
change in the intradomain topology. In contrast, the three problems
listed above are fundamental.

In a large network, IGP changes that affect multiple destination
prefixes happen several times a day, sometimes leading to very
large shifts in traffic [3]. Not all of these events are caused by unex-
pected equipment failures—a large fraction of them are caused by
planned events, such as routine maintenance2 . A recent study of the
Sprint backbone showed that almost half of IGP events happened
during the maintenance window [5]. Often, shifts in egress points
are not necessary. The new intradomain path to the old egress point,
although a little longer IGP-wise, may offer comparable (or even
better) performance than the path to the new egress point. Follow-
ing the failure of the C–D link in Figure 1, the path C, E, D, A

might be less congested or have lower propagation delay than the
path C, E, B. Moreover, many internal network changes are short-
lived; a study of the Sprint backbone showed that 96% of failures
were repaired in less than 15 minutes [5]. Maintenance activities
are often done in periods of lower traffic demands. During these
periods the network would comfortably have extra capacity to tol-
erate the temporary use of non-closest egress points, which would
avoid disrupting the non-negligible number of connections that are
active during maintenance.

2Maintenance activities happen very frequently to upgrade the op-
erating system on the routers, replace line cards, or repair optical
amplifiers. In addition, construction activities may require moving
fibers or temporarily disabling certain links.

Besides being disruptive, the tight coupling between egress se-
lection and IGP metrics makes traffic engineering and maintenance
planning extremely difficult. Network administrators indirectly con-
trol the flow of traffic by tuning the IGP metrics [6, 7, 8, 9, 10, 11]
and BGP policies [12, 13]. Finding good settings that result in the
desired behavior is computationally challenging, due to the large
search space and the need to model the effects on egress-point se-
lection. Finding settings that are robust to a range of possible equip-
ment failures is even more difficult [14, 15, 16]. Imposing even
more constraints, such as minimizing egress-point changes across
all routers and destination prefixes, makes the problem increasingly
untenable. In addition, once the local search identifies a better set-
ting of the IGP metrics or BGP policies, changing these parameters
in the routers requires the network to go through routing-protocol
convergence, leading to transient performance disruptions.

2.2 Fixed Ranking of Egresses at Each Ingress
A natural alternative would be to configure each router with a

fixed ranking of the egress points, where the router would select
the highest-ranked element in the set of egress routers for each des-
tination. This solution can be realized using today’s technology by
establishing a tunnel from each ingress router to each egress router,
and assigning an IGP metric to the tunnel3. The data packets would
follow the shortest underlying IGP path from the ingress router to
the chosen egress router. The hot-potato mechanism would still
dictate the selection of egress points, but the metric associated with
each tunnel would be defined statically at configuration time rather
than automatically computed by the IGP. Thus, this technique al-
lows network administrators to rank the egress points from each
router’s perspective. Each ingress router selects the highest-ranked
egress point independent of internal network events, short of the
extreme case where the egress point becomes unreachable and the
router is forced to switch to the egress point with the next highest
rank.

For the example in Figure 1, router C could be configured to
prefer egress A over B. Then, when the C–D link fails, C would
continue to direct traffic toward router A, though now using the
path C, E, D, A. This would avoid triggering the traffic shift to
B, changes in the downstream forwarding path, and BGP updates
to neighboring domains. However, although the fixed ranking is
extremely robust to internal changes, sometimes switching to a dif-
ferent egress point is a good idea. For example, the path C, E,D, A

may have limited bandwidth or a long propagation delay, making
it more attractive to switch to egress-point B, even at the expense
of causing a transient disruption. In the long term, network admin-
istrators could conceivably change the configuration of the ranking
to force the traffic to move to a new egress point, but the reaction
would not be immediate. Similarly, the administrators could re-
configure the IGP metrics or BGP policies to redistribute the traffic
load, at the expense of searching for a suitable solution, reconfig-
uring the routers, and waiting for the routing protocol to converge.
All these approaches react too slowly to network changes.

The mechanisms available today for selecting egress points rep-
resent two extremes in the trade-off between robustness and auto-
matic adaptation. Hot-potato routing adapts immediately to inter-
nal routing changes (however small), leading to frequent disrup-
tions. Imposing a fixed ranking of egress points, while robust to

3For example, network administrators can use MPLS [17, 18] to
create label-switched paths (LSPs) between all ingress-egress pairs.
Configuring each LSP as an IGP virtual link ensures that each tun-
nel appears in the intradomain routing protocol. The metric as-
signed to the tunnel would then drive the hot-potato routing deci-
sion hard-coded in the routers.



topology changes, cannot adapt in real time to critical events. Nei-
ther mechanism offers sufficient control for network administrators
trying to engineer the flow of traffic and plan for maintenance. In
this paper, we ask a natural question: Is there a mechanism for
egress-point selection that is flexible enough to control the flow of
traffic in steady state, while responding automatically to network
events that would degrade performance?

3. TIE: TUNABLE INTERDOMAIN
EGRESS SELECTION

In this section, we propose a mechanism for selecting an egress
point for each ingress router and destination prefix in a network.
Ideally, an optimization routine could compute the egress points
directly based on the current topology, egress sets, and traffic, sub-
ject to a network-wide performance objective. However, the routers
must adapt in real time to events such as changes in the underlying
topology and egress sets, leading us to design a simple mechanism
that allows a separation of timescales—enabling both rapid adapta-
tion to unforeseen events and longer-term optimization of network-
wide objectives. In addition, the design of our mechanism places an
emphasis on generality to allow us to support a wide variety of net-
work objectives, rather than tailoring our solution to one particular
scenario. In this section, we first describe our simple mechanism
and then present several examples of how to set the configurable
parameters to manage a simple network.

3.1 TIE Ranking Metric
Our mechanism allows each router to have a ranking of the egress

points for each destination prefix. That is, router i has a metric
m(i, p, e), across all prefixes p and egress points e. For each pre-
fix, the router considers the set of possible egress points and selects
the one with the smallest rank, and then forwards packets over a
tunnel that follows the shortest path through the network to that
egress point. Although we propose using tunnels between every
pair of routers to guarantee consistent forwarding, our approach
differs from the scheme in Section 2.2 in several key ways. First,
our ranking metric has finer granularity, in that we allow an ingress
router to have a different ranking for different destination prefixes.
Second, our ranking metric is computed rather than statically con-
figured, allowing the ranking to adapt to changes in the network
topology and egress set. Third, our metric is not tied directly to
the underlying tunnel that directs traffic from an ingress point to
the chosen egress point, allowing us to achieve the finer granularity
of control without increasing the number of tunnels. Our approach
is also more flexible than tuning BGP routing policies, in that one
router can start using a new egress point while other routers con-
tinue to use the old one.

Undirected graph G = (N, L), nodes N and links L

Ingress and egress nodes i ∈ N and e ∈ N

IGP distance on graph d(G, i, e), i, e ∈ N

Destination prefix p ∈ P

Egress set E(p) ⊆ N

Ranking metric m(i, p, e), i, e ∈ N , p ∈ P

Tunable parameters α(i, p, e) and β(i, p, e)

Table 1: Summary of notation.

To support flexible policy while adapting automatically to net-
work changes, the metric m(i, p, e) must include both configurable
parameters and values computed directly from a real-time view

of the topology. We represent intradomain routing topology as
an undirected weighted graph G = (N, L), where N is the set
of nodes and L is the set of IP links, as summarized in Table 1.
Based on the link weights, each router i ∈ N can compute the
IGP distance d(G, i, e) to every other router e ∈ N . The egress
set E(p) ⊆ N consists of the edge nodes that have equally-good
BGP routes for prefix p. For prefix p, node i selects the egress
point argmine{m(i, p, e) | e ∈ E(p)}. The metric is computed as
a weighted sum of the IGP distance and a constant term:

m(i, p, e) = α(i, p, e) · d(G, i, e) + β(i, p, e),

where α and β are configurable values. The first component of
the equation supports automatic adaptation to topology changes,
whereas the second represents a static ranking of routes for that
prefix. Together, these two parameters can balance the trade-off
between adaptability and robustness. This simple metric satisfies
our three main goals:

• Flexible policies: By tuning the values of α and β, net-
work administrators can cover the entire spectrum of egress-
selection policies from hot-potato routing to static rankings
of egress points. Hot-potato routing can be implemented by
setting α = 1 and β = 0 for all nodes and prefixes. A
static ranking can be represented by setting α = 0 and, for
each node i, β(i, p, e) to a constant value for all values of p.
Our mechanism can also realize a diverse set of policies in
between.

• Simple computation: The metric is computationally simple—
one multiplication and one addition—based on information
readily available to the routers (i.e., the IGP distances and the
α and β values). This allows routers to compute the appro-
priate egress point for all destination prefixes immediately
after a change in the network topology or egress set.

• Ease of optimization: The mechanism offers two knobs (α
and β) that can be easily optimized by a management system
based on diverse network objectives. In Section 4, we ex-
plore the power of this mechanism to express one policy, and
we demonstrate that it is easy to optimize by showing that
the optimization problems we define are tractable. Section 5
presents another that policy that can be expressed using TIE.

In addition, when the network-management system changes the α

and β values, the affected routers can move traffic from one path to
another without incurring any convergence delays. This fast con-
vergence is possible because the network already has tunnels be-
tween each pair of routers. Changing the α and β values merely
changes which paths carry the traffic.

3.2 Example Configurations
For each router i and prefix p, network administrators need to

configure the values of α and β. By configuring the egress-selection
parameters on a per prefix basis, an AS can satisfy diverse policy
goals. We now explore a few examples:

Voice-over-IP: For instance, suppose that a prefix p is used for
VoIP and that network administrators set IGP link weights accord-
ing to propagation delay. Voice applications are sensitive to both
high delays and the transient disruptions that occur during egress-
point changes. Imagine that the network learns p at two egress
points e1 and e2, and that the IGP distance at design time from a
router i to each egress is d(G, i, e1) = 20 and d(G, i, e2) = 30. In
the designed topology, i should prefer e1 to forward packets to p to
minimize delay. If the cost to reach e1 increases a little, i should



still use e1 in order to avoid disruptions associated with the egress
change. However, when the IGP distance to e1 exceeds 50, the
network administrators want i to select the closest egress.

This application needs an egress-selection policy that is between
hot-potato routing and a fixed ranking. At design time, the value
of m(i, p, e1) = 20 · α(i, p, e1) + β(i, p, e1) and m(i, p, e2) =
30 · α(i, p, e2) + β(i, p, e2). Since i prefers e1, we need to have
m(i, p, e1) < m(i, p, e2); however, when d(G, i, e1) exceeds 50,
we need to have m(i, p, e1) > m(i, p, e2). We can express these
constraints with the following equations:

20 · α(i, p, e1) + β(i, p, e1) < 30 · α(i, p, e2) + β(i, p, e2)

50 · α(i, p, e1) + β(i, p, e1) < 30 · α(i, p, e2) + β(i, p, e2)

51 · α(i, p, e1) + β(i, p, e1) > 30 · α(i, p, e2) + β(i, p, e2)

We can now select the values of α and β that satisfy these con-
straints. For instance, if we set both β(i, p, e1) = β(i, p, e2) = 0
and α(i, p, e1) = 10, then we find that α(i, p, e2) = 17.

Large file transfer: Take now the example of two research labs
that continuously exchange large data files. Suppose that each re-
search lab has an ISP and that the two providers peer in two lo-
cations. Both the source and the destination ISPs need to pro-
vision enough bandwidth for these large transfers. To provision
for the file transfers, both ISPs need to know both the ingress and
egress points for the data. In this case, the egress selection needs
to be stable. Say that the source and destination ISPs agree that
e1 should be responsible for carrying this traffic. Then, for each
router i we set α(i, p, e1) = α(i, p, e2) = 0 and β(i, p, e1) = 1
and β(i, p, e2) = 2.

The setting of α and β can be done independently for each pair
(i, p), which leads to a large number of parameters that need to be
set at each router. We discuss our approach for configuring TIE
next.

3.3 Using TIE
We do not envision that network administrators will configure all

values of α and β by hand. Instead, we propose an architecture as
presented in Figure 2. The upper box represents the tasks of a man-
agement system that configures the routers, and the lower box cap-
tures the tasks running on each router in the network. Network ad-
ministrators define the high-level goal of the egress-selection policy
for the network or for a set of destination prefixes (such as mini-
mizing sensitivity to failures, minimizing delay, or balancing link
load). The management system takes as input the current network
design and the administrator’s specifications, runs an optimization
routine to find the appropriate values for the parameters α and β,
and configures the routers accordingly. Once the management sys-
tem configures the TIE parameters, the routers apply the BGP de-
cision process as usual, except for using the metric m to select
between multiple equally-good BGP routes.

With TIE the egress-point selection can change for two reasons:
high-level policy changes (expressed by changes in α and β) or
routing changes. Policy changes happen because of changes in net-
work objectives or the network design. Routing changes—changes
in the IGP distances or egress sets—happen in response to network
events such as link failures or BGP updates from neighboring do-
mains. Reaction to routing changes must be done in real time to
avoid bad network performance, whereas policy changes happen
less often and can be implemented slowly. Our architecture bene-
fits from this separation of timescales. Policy changes require run-
ning an optimization routine, which is executed completely off line
by the management system running on a separate machine. Under
routing or policy changes, routers only need to perform one addi-
tion and one multiplication to recompute m. This simple on-line
computation also happens under BGP updates. Routers can be pre-

configured with default values of α and β for newly announced
prefixes. The management system will revisit these values at the
time of the next optimization.

Runs optimization

α, β

Configures routers

Management

Network administrator defines policy

System

Path computation
using m

Forwarding table

Routers
routing change

Upon         change orα, β

Figure 2: A management system optimizes α and β for a high-
level policy and configure routers. Routing adapts the egress-
point selection at real time in reaction to network events.

In the next two sections we give examples of two useful pol-
cies for network administrators. For the first of them, we present a
management system that selects suitable values of α and β. Then,
Section 6 addresses implementation issues for deploying TIE. In
particular, we discuss techniques for reducing the number of pa-
rameters that need to be configured in practice and the use of tun-
nels to allow independent egress-point selection to be made at each
router.

4. MINIMIZING SENSITIVITY
In this section, we present a prototype of a management system

to select values of α and β to minimize the sensitivity of egress-
point selection to equipment failures, subject to restrictions on in-
creasing the propagation delay. After presenting a precise formu-
lation of the problem, we present a solution that has two phases—
simulating the effects of equipment failures to determine the con-
straints on the α and β values and applying integer-programming
techniques to identify optimal settings. Then, we evaluate the re-
sulting solution using topology and routing data from two backbone
networks.

4.1 Problem Definition
Consider a well-provisioned backbone network that supports in-

teractive applications, such as voice-over-IP and online gaming.
The network administrators want to avoid the transient disruptions
that would arise when an internal failure causes a change in the
egress point for reaching a destination, as long as continuing to
use the old egress point would not incur large delays. By setting
the IGP link weights according to geographic distance, the shortest
IGP path between two nodes would correspond to the smallest de-
lay and the closest egress point would be the best choice. Hence, for
this problem, the best egress point b(G, i, p) for node i and prefix
p is the node e ∈ E(p) with the smallest IGP distance d(G, i, e).
If an internal failure occurs, the administrators want node i to con-
tinue directing traffic to b(G, i, p) unless the delay to this egress
point exceeds T · d(G, i, b(G, i, p)) for some threshold T > 1. If
the delay to reach the egress point exceeds the threshold, the ad-
ministrators want node i to switch to using the (new) closest egress
point to minimize the propagation delay. Table 2 summarizes the
notation.



Threshold for tolerable delay ratio T

Set of topology changes ∆G

Topology change δ ∈ ∆G

Network topology after change δ(G)

Best egress point for (i, p) on G b(G, i, p)

Table 2: Notation for the problem of minimizing sensitivity to
topology changes with bounded delay.

In an ideal world, the routers could be programmed to implement
this policy directly. For example, upon each IGP topology change
δ, each node i could revisit its egress selection for each prefix by
performing a simple test for the new topology δ(G):

if (d(δ(G), i, b(G, i, p)) ≤ T · d(G, i, b(G, i, p))),
then b(δ(G), i, p) = b(G, i, p)
else b(δ(G), i, p) = argmine{d(δ(G), i, e) | e ∈ E(p)}.

Modifying every router in the network to implement this egress-
selection policy would guarantee that the network always behaves
according to the specified goal. However, supporting a wide va-
riety of decision rules directly in the routers would be extremely
complicated, and ultimately network administrators would want to
apply a policy that is not supported in the routers. In the next sub-
section, we show that TIE is expressive enough to implement this
policy. Instead of having the routers apply the test in real time, the
network-management system configures the TIE parameters at de-
sign time based on the policy, and the routers adapt automatically
when internal changes occur.

4.2 Solving the Sensitivity Problem with TIE
Solving the problem with our mechanism requires us to find val-

ues of α(i, p, e) and β(i, p, e), for each i, e ∈ N and p ∈ P ,
that lead to the desired egress-point selections over all topology
changes ∆G. Our solution has two main steps. First, a simula-
tion phase determines the desired egress selection both at design
time (under graph G) and after each topology change (under graph
δ(G)). The output of this phase is a set of constraints on the α and
β values for each (i, p) pair. Then, an optimization phase deter-
mines the values of α and β that satisfy these constraints. For this
problem, the egress-point selection for each (i, p) pair can be made
independently.

4.2.1 Simulation Phase
To illustrate how we construct the constraints on α and β for the

initial topology G and each topology change δ, consider the exam-
ple in Figure 3(a). In the initial topology, node A would select node
B as the egress point because B is closer than C. We can express
this by m(A, p,B) < m(A, p, C) for topology G, as shown by
the first constraint in Figure 3(b). Then, we consider each topol-
ogy change δ and determine the preferred egress selection with the
policy in mind, where T = 2 and δ1 is the failure of the link with
cost 4 and δ2 is the failure of the links with costs 4 and 6. In the
new graph δ1(G), A is closer to C (with a distance d(δ1(G), A, C)
of 5) than to B (with a distance d(δ1(G), A, B) of 6). However,
since d(δ1(G), A, B) < 2·d(G, A, B), A should continue to select
egress-point B. This decision is expressed by the second equation
in Figure 3(b). We use the same methodology to evaluate the best
egress selection after δ2. In this case, the distance from A to B is
above the threshold, so A should switch to using egress-point C, as
expressed by the third equation.

αB βB αC βC
 4 .     +      < 5 .     +
αB βB αC βC

 6 .     +      < 5 .     +
αB βB αC βC

 12 .     +      > 5 .     +

p

4
6

12

5

(b)(a)

Constraints for (A,p):
B

A

C

Figure 3: Example illustrating constraints on values of α and
β.

More generally, our algorithm consists of two main steps. First,
we compute the distances d(·, i, e) for the original graph G and all
topology changes δ ∈ ∆G using an all-pairs shortest path algo-
rithm. (For simple topology changes, such as all single-link fail-
ures, an incremental Dijkstra algorithm can reduce the overhead of
computing the |∆G| + 1 instances of the all-pairs shortest paths.)
Then, we generate the constraints for each (i, p) pair as presented
in Figure 4.

1. Identify the closest egress point in the original graph: b =
argmine{d(G, i, e) | e ∈ E(p)},

2. For each e ∈ E(p) \ {b}, generate the constraint “α(i, p, b) ·
d(G, i, b) + β(i, p, b) < α(i, p, e) · d(G, i, e) + β(i, p, e)”

3. For each δ ∈ ∆G

(a) Identify the preferred egress point b′: If d(δ(G), i, b) ≤
T · d(G, i, b), then b′ = b. Else, b′ =
argmine{d(δ(G), i, e) | e ∈ E(p)}.

(b) For each e ∈ E(p) \ {b′}, generate the constraint
“α(i, p, b′) · d(δ(G), i, b′) + β(i, p, b′) < α(i, p, e) ·
d(δ(G), i, e) + β(i, p, e)”

Figure 4: Algorithm of the simulation phase.

Step 2 runs once (on the original graph) and step 3(b) runs |∆G|
times (on each topology change), generating a constraint for each
alternative to the desired egress point for that configuration. As a
result, the algorithm produces (|∆G|+1) ·(|E(p)|−1) constraints
for each pair (i, p). The size of E(p) is limited by the number of
edge nodes that have best BGP routes for a prefix; in practice, the
size is usually one, two, or three, or at most ten. Fortunately, any
prefixes that have the same egress set produce the same constraints,
and the same values of α and β. The number of unique egress sets
is typically orders of magnitude less than the number of prefixes,
which substantially reduces the running time of the algorithm. In
order to reduce the complexity and number of configurable param-
eters, we group all routers in the same PoP into a single node; these
routers typically make the same BGP routing decisions anyway,
since they essentially act as one larger router. Ultimately, the run-
ning time of the algorithm is dominated by the number of topology
changes in ∆G.

4.2.2 Optimization Phase
In the optimization phase, we compute α and β values that sat-

isfy the constraints for each pair (i, p). In theory, any settings that
satisfy the constraints would achieve our optimization goal. How-
ever, several practical issues drive how we set up the optimization
problem:



• Finite-precision parameter values: The α and β values
should have finite precision to be configured and stored on
the routers. Since the parameter values only have meaning
relative to each other, we can limit ourselves to considering
integer solutions. This leads us to apply integer program-
ming to solve the problem.

• Robustness to unplanned events: Although we optimize
the parameters based on the topology changes in ∆G, the
real network might experience events outside of our model.
If optimizing based on ∆G results in solutions with α =
0 for an (i, p) pair, then router i would never adapt to a
change in IGP distance, however large. To increase the ro-
bustness to unplanned events, we add an extra constraint that
α(i, p, e) ≥ 1 for all i, p, and e.

• Limiting the number of unique parameter values: To re-
duce the overhead of configuring and storing the α and β

parameters, we prefer solutions that reduce the number of
unique values. As such, we attempt to minimize an objec-
tive function that is the sum across all of the α and β values,
which favors solutions with α = 1 and β = 0, selecting dif-
ferent values only when necessary to satisfy the constraints.

For each (i, p) pair, the simulation phase generates a set of lin-
ear inequalities and a linear objective function. Since we want
our variables (α and β) to have integer values, we need to solve
an integer-programming problem. We use the CPLEX [19] solver
with the AMPL interpreter to find the α and β values for each (i, p)
pair. Although integer-programming problems are sometimes dif-
ficult to solve, our constraints are typically easy to satisfy because
many constraints are identical or are subsumed by other constraints.
For instance, the second constraint in Figure 3(b) is stricter than
the first constraint (i.e., because 4αB < 6αB ). In fact, for most
of the (i, p) pairs, CPLEX computes the values of α and β dur-
ing a pre-processing phase that analyzes the constraints. Very few
(i, p) pairs required more than three simplex iterations in the root
node of the branch-and-bound tree to identify parameters that sat-
isfy the constraints and minimize the objective function. Still, for
arbitrary topologies and topology changes, we could conceivably
encounter a scenario where no parameter setting would satisfy ev-
ery constraint. A scenario like this, should it arise, could be handled
by an extension to the integer program to minimize the number of
constraints that are violated. This could be achieved by including
an extra error term in each constraint and selecting an objective
function that minimizes the total error.

4.3 Evaluation
We evaluate the effectiveness of TIE for achieving our goal of

minimizing sensitivity to equipment failures on the Abilene net-
work and a tier-1 ISP backbone. We obtain the network topology
G and the egress sets {E(p)} as described in the Appendix. For
this problem, we set the IGP link weights to the geographic dis-
tance between the PoPs to approximate the propagation delay. We
optimize TIE for two sets of topology changes ∆G (single link fail-
ures and single node failures) and three different delay thresholds
T (1.5, 2, and 3).

We ran the simulation and the optimization phases on different
machines because the raw measurement data could only be stored
on one machine, and the CPLEX license resides on another. The
simulation phase ran on a 900MHz Ultrasparc-III Copper proces-
sor of a Sun Fire 15000. This phase consumed 3.2 MB of RAM
and took 0.5 and 31.1 seconds to build the constraints for all pairs
(i, p) for the Abilene and ISP networks, respectively. The opti-
mization phase ran on a 196 MHz MIPS R10000 processor on an

SGI Challenge. This phase consumed just under 4 MB of RAM
and took 37 seconds and 12 minutes to run for the Abilene and ISP
networks, respectively. The management system selects new α and
β parameters very infrequently, and this selection does not delay
the routers from picking routes. Thus, 12 minutes of running time
is perfectly reasonable. In addition, we expect that the optimization
phase would complete much faster if we invoke the CPLEX library
directly from a C program rather than the AMPL interpreter.

In the resulting configuration for the Abilene network, α was
equal to 1 for 93% of the (i, p, e) tuples and had only four distinct
values (α ∈ [1, 4]); β was zero for 90% of the (i, p, e) tuples and
had only three distinct values (β ∈ {0, 1, 3251}). The ISP net-
work has a much larger number of destination prefixes and distinct
egress sets, which resulted in a broader range of values for the pa-
rameters (α ∈ [1, 19] and β ∈ {0, 1, 3411, 4960, 5185, 5009}).
However, the vast majority of α values (88%) were equal to one,
and 69% of β values were zero. The small number of distinct val-
ues for the parameters, and the large number of α(i, p, e) = 1 and
β(i, p, e) = 0, help reduce the overhead of configuring and storing
the parameters, as discussed in more detail in Section 6. The fact
that most (i, p) pairs have α(i, p, e) = 1 and β(i, p, e) = 0 reveals
that there are just a few points in the network that need some hys-
teresis to keep them from over-reacting to small IGP changes. TIE
provides enough flexibility for the management system to identify
the specific places where this hysteresis is needed to achieve the
network-wide goals.

After generating the values of α(i, p, e) and β(i, p, e) for each
one of these scenarios, we simulate the behavior of each network
with this configuration. For comparison, we also simulate the be-
havior of the network using hot-potato routing (by setting α(i, p, e) =
1 and β(i, p, e) = 0 for all (i, p, e)), and the fixed ranking egress
selection (by setting α(i, p, e) = 0 for all (i, p, e), and β(i, p, e) =
d(G, i, b(G, i, p))). We simulate the behavior of these egress-selection
policies under the set of all single-link failures and the set of all
single-node failures. For conciseness, we only present the results
for single-node failures, the results for the other instances lead to
the same conclusions. We compare the three mechanisms using
two metrics:

• Delay ratio: For each (i, p, δ) we compute the delay for i to
reach the best egress point for p after the topology change δ

(d(δ(G), i, b(δ(G), i, p))), and divide it by the delay to reach
the best egress in the original topology (d(G, i, b(G, i, p))).

• Routing sensitivity: For each (i, δ) the routing sensitivity
represents the fraction of prefixes at i that change egress
point after a topology change δ. This metric is the routing-
shift function (HRM ) defined in [20] and represents the frac-
tion of a router’s BGP table that changes egress points after
an intradomain routing change.

Figure 5(a) presents the complementary cumulative distribution
function (CCDF) of the delay ratio for the Abilene network. A
delay ratio equal to one means that the delay after the failure is
the same as the delay in the original network. Many of the node
failures do not affect the path between an ingress node and a best
egress node for a prefix. Therefore, we omit all values that had a
delay ratio of one. Given that the link weights are set according to
geographic distance, the delay ratio achieved by hot-potato routing
represents the smallest feasible delay ratio. Fixed ranking repre-
sents the delay to reach the old egress point after the failure. In
this plot, we present the results for TIE optimized for single-link
failures and T = 2, and evaluate the schemes against single-node
failures. The results of TIE optimized for single-node failures were
very similar (in fact most of the values of α and β were the same).
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Figure 5: Comparison of egress-selection schemes on the Abilene network under single-node failures with TIE optimized for single-
link failures and T = 2.

Despite being optimized for a different set of topology changes,
TIE still behaves according to the original goal. TIE exceeds the
delay threshold of 2 for only 20% of the (i, p, δ), and hot-potato
routing also exceeds the threshold in each of these cases. Fixing
the ranking of egress points leads to delays that are higher than the
delay achieved by TIE in the majority of instances. Whenever the
fixed-ranking scheme lies below the threshold of 2, TIE is below
it as well. When the fixed-ranking scheme exceeds the threshold,
TIE shifts to an egress point that is at or below the threshold. This
is the reason why the TIE curve lies below the fixed-ranking curve
for delay ratios under 2.

Below the threshold of 2, TIE has higher delay than hot-potato
routing in exchange for lower sensitivity values as shown in Fig-
ure 5(b). This graph plots the CCDF of routing sensitivity for all
(i, δ) pairs. Fixing the ranking of egress points has the lowest sen-
sitivity. In fact, the fixed-ranking scheme has a non-zero sensitivity
only when the best egress point fails, forcing even this scheme to
change to the second-ranked egress point (i.e., the one that was
second-closest in the initial topology). The TIE curve follows the
fixed ranking for most points. TIE only experiences egress changes
when they are unavoidable. The gap between the hot-potato and the
TIE curve—around 15% of the (i, δ) pairs—represents the scenar-
ios for which egress-selection disruptions could be avoided without
violating the delay threshold.

Although we observe similar behavior in the results for the large
ISP network (presented in Figures 6(a) and 6(b)), the gap between
the curves is not as large as for the Abilene network. In this case,
we optimize TIE for single-link failures with a delay threshold
T = 3. The ISP network has many more choices of egress points
per prefixes than the Abilene network. Therefore, the delay to reach
the closest egress point in the original topology is likely to be very
small, and setting the threshold to three times this delay still gives
reasonably short delays. This network also has more path diversity
than the Abilene network. In a more diverse graph, it is more likely
that there is still a low-delay path to the initial egress point, even af-
ter the failure. Contrasting the delay ratio and routing sensitivity of
the two networks illustrates that there is not a single policy that fits
all networks. Compared to the Abilene network, the ISP network
could safely put more emphasis on setting the β values, because its
rich connectivity makes it unlikely that equipment failures would
lead to significant changes in the IGP distance between a pair of

routers. The TIE mechanism is flexible enough to accommodate
both of these networks.

In this section, we assume that the egress set for each destination
prefix is stable when determining the values of α and β. Our eval-
uation shows that even when an egress node is removed from the
egress set (which can represent either a node failure or a BGP route
withdrawal), TIE behaves as expected. We can extend the formu-
lation of this problem to find solutions that are robust to egress-set
changes. For instance, we can configure TIE to react slowly to the
announcement of new routes (i.e., additions to the egress set) by
setting the values of α(·, p, e) and β(·, p, e) to be very high for all
e 6∈ E(p). We can also model BGP dynamics by extending our
notion of topology change δ to include changes to the egress sets.

5. ONGOING WORK:
TRAFFIC ENGINEERING

Traffic engineering—adapting the flow of traffic to the prevail-
ing network conditions—is a common task that can be performed
in several ways. The problem presented in the previous section
assumes that the network is over provisioned, which allows us to
optimize for each prefix in isolation. However, for traffic engineer-
ing the egress-point selection for one prefix impacts the decision
for another. For example, consider the egress-selection decision
for prefixes p1 and p2 at router C in Figure 7, p1 is a VoIP pre-
fix and p2 corresponds to Web servers. In this example, router C

has to choose between egresses A and B. Assume that the path
with IGP distance 9 has high capacity, whereas the paths with cost
10 and 11 have lower capacity. When all three paths are working,
the network administrators want C to use egress-point B for both
prefixes. However, if the path with cost 9 fails, they would like
to balance the load over the two lower-bandwidth links. Since the
voice traffic to p1 is sensitive to the routing change, the network
administrators would prefer to use B for p1 and A for p2. This
policy can be implemented by setting the parameters as presented
in Table 3. C’s egress selection to p1 behaves like a fixed ranking
of the egress points, whereas p2 behaves like hot-potato routing.

Despite the simplicity of this policy, current egress-selection mech-
anisms cannot express it. Hot-potato routing would cause both p1

and p2 to shift to egress A after the path with cost 9 fails, and rank-
ing egress B over A for all prefixes would force all traffic over the
low-capacity path with cost 11. Of course, after the failure, the net-
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Figure 6: Comparison of egress-selection schemes on the ISP network under single-node failures for TIE optimized for single-link
failures and T = 3.
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Figure 7: Example illustrating heterogeneous traffic types.

α β

A B A B

p1 0 0 2 1
p2 1 1 0 0

Table 3: Configuration of parameters for example in Figure 7.

work administrators could change the BGP import policy to p2 at
A to make it look better than B. However, there is a long delay
before they can detect the failure and identify the BGP policy that
should be applied in order to alleviate the problem. Our mecha-
nism allows this policy to be implemented at design time and the
network to adapt to failures automatically as they occur.

We propose an optimization problem that balances link utiliza-
tion on the network only by selecting the appropriate egress point
for each pair (i, p) (i.e., by setting the values of β(i, p, e)). This is
in contrast with the common practice of optimizing link utilization
by either tweaking IGP link weights or BGP policies. We formulate
the egress-selection problem as a path-based multicommodity-flow
problem that accounts for the constraints that the intradomain rout-
ing imposes on the flow of traffic. Our preliminary results [21]
show that TIE had lower overall link utilization than hot-potato
routing for both Abilene and the tier-1 ISP networks.

6. IMPLEMENTATION ISSUES
An AS can deploy the TIE mechanism without changing the in-

tradomain or interdomain routing protocols, and without the co-

operation of other domains. In this section, we first describe how
to ensure that each router can apply TIE independently of other
routers in the AS. Next we discuss how to configure the α and β

parameters and how a router applies the TIE mechanism to select a
BGP route for each destination prefix. Then, we discuss how mov-
ing the responsibility for BGP path selection from the routers to
separate servers [22, 23] would make it possible to implement our
TIE scheme without any modification to the decision logic running
on the routers.

6.1 Independent Decisions at Each Node
Throughout the paper, we have assumed that each node applies

the TIE mechanism to select a single best route from the set of
equally-good BGP routes chosen by the border routers. In a net-
work with a “full mesh” internal BGP (iBGP) configuration, each
router learns these routes directly from the border routers. How-
ever, large networks typically employ route reflectors to overcome
the scaling problems of having an iBGP session for each pair of
routers. A route reflector runs the BGP decision process and prop-
agates a single best route to its clients; as a result, the clients may
choose a different best route than they would with all of the op-
tions at their disposal4. Consider the common scenario with a full
mesh of top-level route reflectors, with one or more route reflec-
tors in each PoP. In this scenario, we recommend applying the TIE
mechanism only on the route reflectors to allow decisions based on
a complete view of the BGP routes. The client routers (i.e., other
routers in the same PoP) would inherit the choice made by their
common route reflector. This has the added advantage that only the
route reflectors would need to be upgraded to implement the TIE
mechanism.

The TIE mechanism also relies on the underlying network to
forward data packets from the ingress router to the chosen egress
point. However, the routers along the forwarding path do not nec-
essarily select the same egress point, depending on how their α and

4The way route reflectors affect the BGP decisions of their clients
leads to a variety of operational problems, such as protocol oscilla-
tion and forwarding loops [24, 25, 26]. An appealing way to avoid
these problems, while retaining most of the scalability advantages,
is to have the route reflectors forward all of the equally-good BGP
routes to their clients [25]. This enhancement to route reflectors
would allow each router in the AS to apply the TIE mechanism
based on a complete view of the egress set for each prefix.



β parameters are configured. This problem does not arise in hot-
potato routing because each router selects the closest egress point,
which ensures that the routers along the shortest path have cho-
sen the same egress point. Rather than constraining the way α and
β are set on different routers, we advocate that the network em-
ploy some form of lightweight tunneling to direct traffic over the
shortest IGP path(s) from the ingress point to the egress point. For
example, the ingress router could encapsulate each data packet in
an IP packet where the destination corresponds to the IP address of
the chosen egress router. Alternatively, the network may employ
MPLS [17, 18] to create label-switched paths (LSPs) between all
ingress-egress pairs, as discussed earlier in Section 2.2. Tunneling
IP packets over the underlying IGP paths is a common usage of
MPLS since it obviates the need for interior routers to speak BGP
or have a large forwarding table, while also allowing the network
to forward VPN and non-IP traffic.

6.2 Configuring and Applying TIE in Routers
Using the TIE mechanism requires configuring the routers with

the values of α and β selected by the optimization routine. As dis-
cussed in Section 3.3, rather than configuring these values by hand,
we envision that a network-management system would have an au-
tomated procedure to connect to each router to set or modify the
parameters. Still, configuring a large number of values may intro-
duce significant overhead and delay. In the worst case, each router
would need to be configured with two integer values for every des-
tination prefix and edge router. For a network with 500 edge routers
and 150,000 destination prefixes, this would require configuring 75
billion parameters (i.e., 500 · 500 · 2 · 150, 000), which is clearly
excessive. Fortunately, a router often has the same values of α and
β across many destination prefixes and egress points. To capitalize
on this observation, the TIE mechanism could have default values
of α = 1 and β = 0 (corresponding to hot-potato routing) for
each prefix, allowing the management system to specify only the
parameters that differ from these values. For example, in Section 4
only 10% of the β values were non-zero for the tier-1 ISP back-
bone, which would reduce the configuration overhead by an order
of magnitude.

Another way to reduce the overhead is to assign α and β at a
coarser granularity than individual routers and destination prefixes.
For example, the parameters could be defined for PoPs, rather than
routers, particularly if TIE is implemented only at the route reflec-
tor(s) in each PoP. If the 500-router network has (say) 25 PoPs,
the number of parameters would drop by a factor of 400 (i.e., 25
PoPs would be configured with two parameters per prefix for 25
egress PoPs). In addition, the parameters could be based on the
destination AS (i.e., the origin AS that initially announced the BGP
route), rather than the destination prefix. If the Internet has (say)
20,000 ASes and 150, 000 prefixes, this would reduce the number
of parameters by an additional factor of 7.5. Together, these two
optimizations would reduce the number of parameters by a factor
of 3000, from 75 billion down to 25 million across all the routers
in the network, which seems acceptable particularly if the manage-
ment system need only specify exceptions to the default α and β

values. Further reductions can be achieved by associating α and β

values with the next-hop AS or other route attributes.
When α and β are not associated directly with particular pre-

fixes and egress routers, the ingress router needs some way to know
which parameters to use in selecting a BGP route for a prefix. The
BGP community attribute [27] provides an effective way to commu-
nicate which parameters should be used. For example, the border
routers could be configured to tag each BGP advertisement with a
unique community value that identifies the PoP. Another commu-

nity could be used to identify the origin AS or next-hop AS asso-
ciated with the advertisement. Upon receiving these tagged routes
via internal BGP (iBGP), a router can use these community values
to index into a table that stores the α and β values5.

Once the router knows which α and β values to use, the router
can compute the metric m based on these parameters and the IGP
distance to the egress router. Rather than applying the traditional
IGP tie-breaking step, the router can implement a modified BGP
decision process that uses the m metric to select the route with
the most-preferred egress point. Ultimately, the TIE mechanism
requires only a change in one step of the BGP decision process im-
plemented on the routers, rather than any protocol modifications.
We note that router vendors already provide features that allow net-
work administrators to modify the operation of the BGP decision
process [29], which significantly reduces the barrier to deploying
TIE.

6.3 TIE in a Separate Path-Selection Platform
Rather than modifying the BGP decision process implemented

on the routers, an AS could move the entire responsibility for BGP
path selection to a separate software platform, as proposed in [22,
23]. In this setting, dedicated servers receive the eBGP advertise-
ments and run decision logic to select BGP routes on behalf of
the routers in the AS. The servers use iBGP sessions to send each
router a customized routing decision for each prefix, essentially
overriding the influence of the BGP decision process running on
the routers.

These servers could implement the TIE mechanism for select-
ing the routes in real time, and might also run the offline opti-
mization routines that set the α and β parameters; this would al-
low the parameters to exist only on the servers, rather than in the
routers or other management systems. Even though the servers
could conceivably implement any decision logic, in practice they
need some separation of functionality between the real-time adap-
tation to network events and the longer-term optimization of the
path-selection process based on network-wide goals. TIE provides
a way to achieve that separation.

7. RELATED WORK
Our work relates to several ongoing threads of research in Inter-

net routing:
Hot-potato disruptions: Measurement studies have shown that

hot-potato routing changes can lead to long convergence delays,
large shifts in traffic, and external BGP routing changes [2, 3]. Sub-
sequent work proposed metrics of network sensitivity to internal
changes to assist network administrators in minimizing hot-potato
disruptions [20]. Rather than trying control disruptions using rout-
ing protocols as they are defined today, we redesign the boundary
between the two tiers of the routing system to achieve a broader set
of traffic-engineering goals (including minimizing disruptions).

Traffic engineering: Controlling the flow of traffic with TIE
gives more flexibility for solving the traffic engineering problem.
TIE represents one more control knob beyond the conventional ap-
proach of tuning the IGP link weights [6, 7, 8, 9, 10, 11] and BGP
policies [12, 13]. Whereas TIE can set α and β independently
for each (i, p) pair, tuning an IGP weight can affect the IGP dis-
tances between multiple pairs of routers and affect the egress-point
selection for many prefixes. Similarly, tuning a BGP policy of-
ten impacts the route preferences for many routers at once. IGP
5Using BGP communities in this way is quite common. For ex-
ample, policy-based accounting uses community attributes to de-
termine which prefixes should have their traffic measured together
by a single counter [28].



and BGP changes also lead to routing-protocol messages and con-
vergence delays. TIE also provides an alternative to deploying a
load-sensitive routing protocol, such as the traffic-engineering ex-
tensions to OSPF and IS-IS [30, 31, 32]. Load-sensitive routing
leads to higher protocol overhead and can sometimes introduce
instability. More recent work [33] solves this instability problem
by balancing load over a set of pre-defined paths between ingress
and egress. However, none of these proposals explicitly addresses
the problem of egress-point selection, making it appealing to im-
plement TIE even in networks that already support load-sensitive
routing. In our future work, we plan to compare the benefits of TIE
with these alternative approaches [32].

Optimizing egress-point selection: Previous research consid-
ered an optimization problem similar to our ongoing work dis-
cussed in Section 5. The work in [34] focused on selecting egress
points such that traffic loads do not exceed the egress-point capac-
ities, with the secondary objective of minimizing the total distance
traveled by the traffic. In contrast, we formulate an optimization
problem that minimizes congestion over the links in the network,
using the objective function used in earlier traffic-engineering stud-
ies [9].

Multi-homing: In recent years, an increasing number of stub
ASes, such as large enterprise and campus networks, connect to
multiple upstream providers for improved reliability and flexibility.
In response, several research studies have considered how these
networks should balance load over the multiple access links [35,
36]. However, our problem is different because we focus on net-
works where each destination prefix has a (possibly different) set
of egress points, and the choice of egress point affects the load on
links inside the AS.

Inter-AS negotiation: Other research has considered how a pair
of neighboring ASes could coordinate to select egress points in a
mutually advantageous manner [37, 38]. Where these papers fo-
cus on the negotiation process, and on the important question of
what information the ASes should exchange, we propose a tunable
mechanism for selecting the egress points and a way for each AS
to determine its preferred egress points based on network-wide ob-
jectives.

8. CONCLUSION
IP networks are under increasing pressure to provide predictable

communication performance for applications such as voice over IP,
interactive gaming, and commercial transactions. These applica-
tions are sensitive to both transient disruptions (i.e., during routing
changes) and persistent congestion (i.e., when the routing does not
match the prevailing traffic). In this paper, we propose a new mech-
anism for selecting egress points that satisfies both requirements.
TIE avoids the disruptions caused by hot-potato routing changes
while supporting diverse network-wide objectives such as traffic
engineering and maintenance planning.

TIE is simple enough for routers to adapt in real time to network
events, and yet is much more amenable to optimization than today’s
routing protocols. In addition, TIE can be deployed in an AS with-
out changing the intradomain or interdomain routing protocols, and
without the cooperation of other domains. Our experiment for one
network-management problem, using data from two backbone net-
works, demonstrates the effectiveness of our new mechanism and
the ease of applying conventional optimization techniques to deter-
mine the best settings for the tunable parameters.

APPENDIX
In Section 4, we evaluate TIE on data from two operational net-
works. In this appendix, we present our methodology for obtain-
ing the input data—the internal topology and the egress sets—from
passive measurements. Since routers in the same Point-of-Presence
(PoP) essentially act as one larger node, we model the topology of
both networks at the PoP level.

Abilene Network. Abilene is the backbone for U.S. research
network [39]. The network has 11 PoPs with one router each. The
vast majority of the links are OC192, with only one OC48. For our
study, we used data from April 2003. We obtained the topology G

(both with designed weights and geographic distance) and link ca-
pacities c(l) from the publicly-available map of the network. This
map has the location of each router, as well as the link capacities
and IGP weights. Each BGP speaker has around 7, 500 prefixes in
its routing table. We obtained the egress set E(p) for each prefix
from a dump of the BGP table for a monitor that peers with every
router. The network had only 23 distinct egress sets.

Tier-1 ISP Network. We also used data collected from a tier-
1 service-provider backbone on January 10, 2005. We extracted
the router-level topology and IGP link weights from the link-state
advertisements logged by a routing monitor. We used router con-
figuration data to map each router to a PoP and determine the link
capacities. The resulting topology has a few dozen nodes. For sim-
plicity, we combine parallel links between a pair of PoPs into one
link with the aggregate capacity. We used the PoP locations to de-
termine the geographic distance traversed by each inter-PoP link.
The network learns BGP routes for approximately 150, 000 pre-
fixes. We build the egress set E(p) for each prefix from the BGP
table dumps from all top-level route reflectors in the network. The
network has a few hundred distinct egress sets.
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