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ABSTRACT
Contrary to the “classic” Internet architecture familiar to most peo-
ple, today’s Internet is a composition of a wide variety of networks.
The IP protocol suite offers a general-purpose network design with
a widely available implementation; as such, it is re-used to design
and implement networks with many different purposes. Compo-
sitional architecture explains how, despite the fact that IP has not
changed significantly since 1993, the Internet has evolved to meet
many new requirements and challenges since then. In this paper
we introduce a new and principled model for describing Internet
architecture, and give many examples of its validity. We also explain
how the model can help us facilitate innovation through re-use of
successful solution patterns, verification of trustworthy network
services, and research on the architecture of a better Internet.
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1 INTRODUCTION
In 1992, the explosive growth of the World Wide Web began. The
architecture of the Internet was commonly described as having four
layers above the physical media, each providing a distinct function:
a “link” layer providing local packet delivery over heterogeneous
physical networks, a “network” layer providing best-effort global
packet delivery across autonomous networks all using the Internet
Protocol (IP), a “transport” layer providing communication services
such as reliable byte streams (TCP) and datagram service (UDP),
and an “application” layer. In 1993 the last major change was made
to this “classic” Internet architecture [11]; since then the scale and
economics of the Internet have precluded further changes to IP
[12].

A lot has happened in the world since 1993. The overwhelming
success of the Internet has created many new uses and challenges
that were not anticipated by its original architecture:

• Today, most networked devices are mobile.
• There has been an explosion of security threats.
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Figure 1: Headers of a typical packet in the AT&T backbone
network. Headers lower in the diagram are outermost in the
actual packet.

• Most of the world’s telecommunication infrastructure and
entertainment distribution has moved to the Internet.

• Cloud computing was invented to help enterprises manage
the massive computing resources they now need.

• The IPv4 32-bit address space has been exhausted, but IPv6
has not yet taken over the bulk of Internet traffic.

• In a deregulated, competitive world, network providers con-
trol costs by allocating resources dynamically, rather than
provisioning networks with static resources for peak loads.

Here is a conundrum. The Internet is meeting these new challenges
fairly well, yet neither the IP protocol suite nor the way that experts
describe the Internet has changed significantly since 1993. Figure 1
shows the headers of a typical packet in the AT&T backbone [19],
giving us clear evidence that the challenges have been met by mech-
anisms well outside the limits of the classic Internet architecture.
In the classic description, the only headers between HTTP and
Ethernet would be one TCP header and one IP header.

In this paper wewill present a newway of describing the Internet,
better attuned to the realities of networking today, and to meeting
the challenges of the future. Its central idea is that the architecture
of the Internet is a flexible composition of many networks—not just
the networks acknowledged in the classic Internet architecture, but
many other networks both above and below the public Internet
in a hierarchy of abstraction. For example, the headers in Figure 1
indicate that the packet is being transmitted through six networks
below the application system. Our model emphasizes the interfaces
between composed networks, while offering an abstract view of
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network internals, so we are not reduced to grappling with masses
of unstructured detail. In addition, we will show that understanding
network composition is particularly important for three reasons:

Re-use of solution patterns: In the new model, each compos-
able network is a microcosm of networking, with the potential to
have all the basic mechanisms of networking such as a namespace,
routing, a forwarding protocol, session protocols, and directories.
Our experience with the model shows that this perspective illumi-
nates solution patterns for problems that occur in many different
contexts, so that the patterns (and their implementations!) can be
re-used. This is a key insight of Day’s seminal book Patterns in
Network Architecture [7]. By showing that interesting networking
mechanisms can be found at higher levels of abstraction, the new
model helps to bridge the artificial and unproductive divide between
networking and distributed systems [17].

Verification of trustworthy services: Practically every issue
of CACM contains a warning about the risks of rapidly increasing
automation, because software systems are too complex for people
to understand or control, and too complex to make reliable. Net-
works are a central part of the growth of automation, and there will
be increasing pressure to define requirements on communication
services and to verify that they are satisfied [14]. As we will show
in this paper, the properties of trustworthy services are defined
at the interfaces between networks, and are usually dependent on
the interaction of multiple networks. This means they cannot be
verified without a formal framework for network composition.

Evolution toward a better Internet: In response to the weak-
nesses of the current Internet, many researchers have investigated
“future Internet architectures” based on new technology and “clean
slate” approaches (e.g., [2, 20, 21, 25]). These architectures are not
compatible enough to merge into one network design. Even if they
were, it is debatable whether they could satisfy the demands for
specialized services and localized cost/performance trade-offs that
have already created so much complexity. A study of compositional
principles and compositional reasoning might be the key to finding
the simplest Internet architecture that can satisfy extremely diverse
requirements.

In the next two sections of the paper, we begin with principles
of the classic architecture, then discuss why they have become less
useful and how they can be replaced. This should help clarify that
we are proposing a really new and different way of talking about
networks, despite the familiarity of the terms and examples. In the
final section, we consider potential benefits of the new model.

2 THE USER INTERFACE TO A NETWORK
2.1 The end-to-end principle
The best-known principle of the classic Internet architecture is the
end-to-end principle [5, 18], which creates a sharp divide between
the network and the endpoint machines that it serves. The principle
says that the functions of the network should be minimized, so that
it serves everyone efficiently, and that whenever possible services
should be implemented in the endpoint machines. The endpoints
are easily programmable (so that anyone can add services), and the
end-to-end perspective is the best perspective for functions such
as reliability.

sender receiver

source destination

send (packet, sessIdent) deliver (packet, sessIdent)

NETWORK

session with identifier sessIdent

links

machinemachine

members

user interface

Figure 2: The main user interface to a network, with an ex-
ample session.

The end-to-end principle is also expressed by the slogan “smart
edge, dumb network.” Another implication of the end-to-end prin-
ciple is that the user interface to a network consists of the links
between endpoint machines and the rest of the network.

Despite its tremendous explanatory and engineering value, the
end-to-end principle does not describes the Internet as a whole. We
know there are services (such as protection from denial-of-service
attacks) that cannot be implemented in endpoints [4]. Today’s In-
ternet is full of middleboxes, which are functional elements located
inside the network and inserted into end-to-end paths. On the other
side of the divide, performance of the network depends to some
extent on congestion control in TCP endpoints. It is no longer true
that endpoint machines and networks are always owned by differ-
ent parties (in clouds they are not), and no longer true that network
elements such as routers are not programmable [10].

From a modeling perspective, the divide between network and
endpoints is harmful for a very simple reason: If we want to describe
and verify communication (network) services, then we must include
all the agents involved in providing those services.

2.2 User interfaces are inside machines
Figure 2 illustrates the new model’s approach to network services
and the user interface. Each machine participating in a network
must be running a member of that network. The network member
is a software or hardware module that implements some subset
of the network protocols. Members are connected by links, where
a link is a communication channel that accepts packets from one
member and delivers them to another member.1 Members of the
network forward packets that are not destined for them, so that a
packet can reach its destination through a path of members.

The users of networks are distributed application systems—computer
systems with operational modules spread across different physical
machines. The modules of a distributed system need a network to
communicate. The main user interface to a network consists of the
interfaces inside machines between user modules and members of
the network.

An instance or usage of network service is a session. A network
has packets, which are its transmissible units of data. A session
transmits a set of packets that are related from the perspective of

1Although the model allows one-to-many sessions and links for services such as
broadcast and multicast, they are omitted for simplicity.
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the user. In Figure 2, a one-way session transmits packets from
an application sender to an application receiver. The session has
identifier sessIdent. So the main user interface to the network is
that the sender has action send (packet, sessIdent) to send a packet
in the session, and the network has action deliver (packet, sessIdent)
to deliver a packet to the receiver.

Although the user interface between two networks is always
implemented inside machines, implementations vary. Many user
interfaces are implemented by software in operating systems. The
user interfaces to the MPLS networks in Figure 1, on the other hand,
are implemented deep inside the hardware of high-speed routers.

3 THE NATURE OF A LAYER
3.1 Fixed layers with distinct functions
The classic Internet architecture prescribes five layers (including
the physical media), as listed at the beginning of §1. The contempo-
raneous OSI reference model [13] has seven layers, with “session”
and “presentation” layers between the transport and application
layers. In both hierarchies each layer has a distinct function not
performed by any other layer.

Fixed layers with distinct functions are no longer a realistic
description of the Internet. For example, routing and forwarding are
extremely important network functions; in the classic architecture
the local version of these functions resides in the link layer, while
the global version resides in the network layer. Yet Figure 1 also
shows the presence of a GPRS (a standard for cellular data service)
network and twoMPLS networks, each of which has its own routing
and forwarding that aggregates packets and manages resources at
different levels of abstraction. Further up in Figure 1 we see three
IP headers, plus evidence that three separate IP session protocols
(TCP, IPsec, and UDP) apply to this packet.

Conceivably there is a model with fixed layers and distinct func-
tions that fits this packet, but the same HTTP message—if observed
at different places along its end-to-end path—will be encapsulated
in packets with different headers indicating different layers and dif-
ferent functions. So no variation on the classic Internet architecture
or OSI reference model can help us understand what is going on.

3.2 Self-contained networks
A major principle of the new model is that the layers in a com-
position hierarchy are self-contained networks. Each network is a
microcosm of networking, with all the basic mechanisms including
a namespace, routing, a forwarding protocol, session protocols, and
directories. However, because networks vary widely in their pur-
poses, geographical spans, memberships, and levels of abstraction,
these mechanisms also vary, and a mechanism may be vestigial in a
particular network design where it is not needed. According to this
principle the IP protocol suite is a general-purpose network design
that is implemented on most networked devices. As such, it can be
re-used for the design and implementation of many networks. Note
that an IP network encompasses both the network and transport
layers of the classic Internet architecture.

We will now give brief explanations of the major parts of a
network, followed by examples. Directories will be covered in §4.2.

A network’s namespace is the set of names that its members can
have. Most commonly each member of a network has a unique
name, although there are many exceptions.

Routing is the mechanism that determines paths and installs
entries in the forwarding tables of network members, while a net-
work’s forwarding protocol is the mechanism in which a member
uses its forwarding table and other computations to forward pack-
ets toward their destinations. It includes formats for packet headers
and forwarding tables. Most commonly, the table at each mem-
ber is a mapping from headerPattern and inLink to outLink, where
headerPattern matches some subset of packet headers, and inLink
and outLink are local identifiers for the links of that member. The
mapping tells the member that on receiving a packet on incoming
link inLink whose header matches headerPattern, it should forward
the packet onto outgoing link outLink. The mapping can also tell
the member, explicitly or implicitly, to drop the packet.

A session protocol is a set of conventions governing a specific kind
of session; it always includes the behavior of the session endpoint
members, and may include the behavior of other network members
on the session path. It covers packet headers, packet sequence,
member state, and member actions. The header format of a session
protocol is a specialization of its network’s forwarding format, so a
header must conform to both. The new model makes particular use
of the following header fields:

• the name of the destination endpoint;
• a session protocol identifier;
• a session identifier;
• a user network to identify the network being served by the
session (see §4.1).

These fields are always present in headers unless they are vestigial
(which means that they would be identifying elements in a set of
size zero or one) or unless the information they carry is already
stored in members along the path of the session.

3.3 Examples of new networks
Many campus architectures have networks called Virtual Local Area
Networks (VLANs) that are not found in the classic architecture
[22]. The purpose of VLANs is to maintain an important network
topology that is not present in either the IP network or Local Area
Networks (LANs) on campus, as shown in Figure 3. In the figure
each physical machine is assigned a color and final name digit for its
network members, so that it is easy to see which network members
are on the same machine.

At the bottom level we see that there are physical LANs cover-
ing different areas of campus, and some high-speed physical links
across campus.2 At the top level the campus has a private IP net-
work. User machines are divided into groups depending on whether
they belong to students, administrators, departments, etc. Members
of a group are identifiable by the prefixes of their IP addresses (ab-
breviated in the figure). Within each group each user machine is
connected by a virtual link to every other group member and to
one or more IP routers that serve as security gateways to the group.
Members of different groups can reach each other only through IP
routers, where filtering rules are installed to allow only approved
2The “campus IP network” at the bottom level is a tricky part of the architecture, and
will be explained in §6.
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Figure 3: The architecture of a campus network. In this pic-
ture, all lines between members are bidirectional pairs of
links.

communication among groups. Note that the machines with IP
addresses 2.7 and 2.8 are close together in the IP topology, but far
apart in the physical topology.

At the middle level of the figure there is an isolated VLAN for
each group. Like the LANs, a VLAN uses the Ethernet design in
which names are MAC addresses (abbreviated “M”). These VLANs
do their own routing, separate from the routing in the LANs. A
virtual link in the IP network must be implemented by a path in a
VLAN and a link in a VLAN must be implemented by a physical
path (see §4.1). As a result, a packet from 1.3 to 2.6 must go through
IP router 0.5 and be screened, even though the shortest physical
path between the red and green machines does not go through
an IP router. The VLAN architecture has been found to simplify
administration, enhance security, and improve the efficiency of
campus networks [22].

A completely different kind of virtual network is often found
in multi-tenant clouds, which may offer to their tenants various
services such as load-balancing, packet filtering by firewalls, and
application-specific performance enhancements. Such clouds have
virtual networks that implement these services by inserting mid-
dleboxes into the paths of sessions. In these virtual networks, the
major purpose of routing and forwarding is to direct the packets
of sessions through middleboxes according to the tenant’s service
specification [3, 16].

The most unusual networks in this paper are Named Data Net-
works (NDN) [25]. In NDN each piece of data has a unique name.
For purposes of the networking functions of routing and forward-
ing, a data server has the name of every piece of data available
from it; a server can have many names, and a name can be assigned
to many servers. The routing protocol uses advertising and other
conventional techniques so that a request for data is usually for-
warded to the nearest server with the requested data. In NDN, a
session consists of a single request and its response, and there is
no source name in the request packet. (A source name would be
useless for returning the response to the requestor, because users
don’t have names and server names are not unique.) Rather, the
session protocol leaves traces of the session in every member that
forwards the request, so that the response can follow the path in
reverse.

NDN is a “future Internet architecture” as mentioned in §1. In
current NDN deployments, wherever NDN links must traverse non-
NDN nodes, they are implemented by being layered on top of the
public Internet. NDN networks are particularly interesting because
their design shows how the session protocol, routing, and forward-
ing of a network can be highly specialized and tightly integrated.

4 COMPOSITION BY LAYERING
4.1 Layering of self-contained networks
The most important operator for composition of networks is lay-
ering, which is simply what happens when one network uses the
services of another network, in exactly the sense of §2.2. More
specifically, a link in a user network is implemented by a session in
a used network.

A usage hierarchy is a directed acyclic graph whose nodes are
networks and whose edges represent composition by link imple-
mentation. A level in this graph is a set of networks that all have
the same graph distance from some reference point. This definition
will be refined further in §5 and §6.

For example, Figure 3 is derived from a usage hierarchy, with the
levels of the graph being represented by vertical placement. The
bidirectional link between 2.7 and 2.8 in the campus IP network
is implemented by a bidirectional session in the administrators’
VLAN that follows the path shown between M7 and M8. The link
between M7 and M4 in the VLAN is implemented by a session in
the left physical LAN following the spanning-tree path between
M7 and M4. Note that machines have distinct members in VLANs
and LANs, even though those networks happen to use the same
Ethernet design and the same namespace.

Consider the right LAN in Figure 3. It links machines in both the
students’ and administrators’ groups, so it must implement links in
at least two VLANs. When the destination of a session in this LAN
receives a packet, which member of which VLAN should it deliver
the packet to? LAN packets in this architecture have a user-network
identifier called a “VLAN tag,” which tells the destination which
user network is being served by the session.

The shift from a principle of fixed layers to a principle of many
self-contained networks encourages a shift in thinking and terminology—
from different concepts and terminology for each layer to concepts
and terminology that emphasize the similarities among layered
networks. Most importantly of all, users of networks—distributed
application systems in §2.2—can be networks themselves, and the
distinction between the two concepts weakens.

If the service provided by a session protocol has a specification,
then the specified properties of a session are also the guaranteed
properties of a link that the session implements. For example, the
best-known service of IP networks is implemented by the session
protocol TCP. A user of TCP sends a stream of bytes, and this byte
stream must be received by the user at the other end of the session
with no bytes missing or duplicated, and all in the same order in
which they were sent.

In the case of TCP the work needed to satisfy this specification is
performed by the protocol implementation in the network members
at the endpoint machines. IP/TCP packet headers have a session
identifier (the four-tuple with both names and both ports) and a user
network (the destination port or “well-known port”). The network
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has a maximum transmission unit limiting the size of IP packets.
So the TCP implementation at the source accepts a byte substream,
disassembles it into IP packets, encapsulates each packet in the
TCP/IP header, and sends it through the network. When the TCP
implementation at the destination receives packets, it decapsulates
them by removing the TCP/IP header, requests retransmissions of
missing substreams, assembles a complete substream in byte order,
and delivers it to the receiver.

4.2 Names and directories
Classic descriptions of the Internet associate “domain names” with
the application layer, IP “addresses” with the network layer, and
MAC addresses with the link layer. In the newmodel every network
simply has a namespace, and network members have names in
the namespaces of their networks. In the literature of networking,
names in various networks are also referred to as “service names,”
“identifiers,” and “locations.”

In every instance of layering composition, a network A uses a
network B. Some members of Amust be running on the same ma-
chines as members of B, and interfacing with them to get network
services. If B must set up sessions dynamically to serve A, then
there must be a directory mapping names in A to the names of the
members of B on the same machines. For example, a Web request
is sent from a client to a server having a domain name in the Web
namespace. For an IP network to implement this communication, it
must discover the network name (IP address) of the server, which
will be the destination of the TCP session carrying the request. DNS
is the directory providing this information.3

The new model does not constrain internal implementation
details of networks. For example, although most networks store
member-specific forwarding tables in individual members, in SEAT-
TLE there is a single (although distributed) forwarding table used
by all members [15]. And although many networks have centralized
directories, in Ethernets the directory information obtained from
the Address Resolution Protocol is cached in individual members.
Thus forwarding state and directory state cannot always be distin-
guished by the way they are implemented. But they can always be
distinguished by what they are mapping: forwarding state maps
destination names to members/names in the same network, while
directory state maps names from one network to names in another
network.

4.3 Service properties and compositional
reasoning

A network offers to its users one or more communication services,
each specified as a set of properties, and some associated with the
use of specific session protocols. Some properties are defined on in-
dividual sessions, while others are defined on aggregates of sessions.
In general, the properties fall into four categories:

• Reachability properties specify which receivers a member
can send packets to.

• Performance properties specify quantities such as maximum
latency, minimum bandwidth, maximum packet loss rate,
and faults tolerated.

3In cases where DNS maps a domain name to the server nearest the client, the domain
name does not uniquely identify a server.

• Behavioral properties aremore service-specific. In addition to
TCP guarantees, they include synchronization, load-balancing
among user endpoints, and the requirement that a session
must persist despite physical mobility of one or both end-
point machines.

• Security properties are diverse. For example, access control
is the negation of reachability. Denial-of-service protection
supports availability. Security properties on individual ses-
sions include endpoint authentication, data confidentiality,
data integrity, and privacy.

In addition to providing specified services, network designers and
operators are also concerned with efficient resource allocation, so
that the services are provided at minimal cost.

Basic reasoning about composition by layering is easy to explain.
There should be a one-to-one mapping between implemented links
and implementing sessions. The packet load on the link, possibly
fragmented into smaller packets, becomes the packet load on the
implementing session. The guaranteed properties of the session
become the assumed properties of the implemented link.

Although such rigor is not always needed, it should be possible
to reason that a network satisfies its service specifications, and that
its use of resources is close to optimal. Network designers have
been very successful at this, at least with respect to performance
properties. They have learned to abstract the effects of used and us-
ing networks, and have developed effective optimization algorithms
and tools for self-contained networks.

Reachability, behavioral, and security properties are not so well
understood. In §5 and §6 we will discuss examples in which the
new model captures the structures and relationships needed for
reasoning compositionally about these properties.

5 BRIDGING AND SECURITY
5.1 Bridging
In our model a network has a single administrative authority, which
is responsible for providing the network’s services with their speci-
fied properties. Bridging is a composition operator in which sessions
or a service are implemented by a set of networks chained end-to-
end. With bridging, the two endpoints of a session can be members
of different networks. The public Internet consists of a large number
of autonomous IP networks, composed by bridging.

There are several variations on bridging, depending on how
much structure the bridged networks share. In the simplest case two
bridged networks have identical designs and protocols, names of all
network members are unique across both networks, and members
of both networks have access to the routing and directories of the
other. In this simple case, the networks can be bridged by shared
links, and little changes except that the reach of both networks is
extended. This is how public IP networks are bridged.

In other cases, bridged networks are less similar. They may have
different or overlapping name spaces. They may have unshared
routing, unshared directories, or other barriers. In these cases a
member of one network can still reach a member of a bridged net-
work, but only with the addition of compound sessions. A compound
session is simply a session in which there is at least one middle-
box acting as a joinbox. The joinbox serves as a destination for
one simple session and a source for another simple session, and
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maintains state that associates the two simple sessions so it can
forward packets from one to the other.4 If two bridged networks
have incompatible session protocols, then a joinbox, acting as a
protocol converter, must be the shared element between them.

We will now introduce a simple, familiar example which will
illustrate bridging, trust, and service verification. Figure 4 shows
two private networks communicating through the public Internet,
although their relationships to the public Internet are not sym-
metric. In this example an employee’s laptop using the private IP
network in a coffee shop is connected to the public Internet through
bridging. At a higher level, using Virtual Private Network (VPN)
technology layered on top of the previous networks, the laptop
joins the employer’s private enterprise network, and accesses a
compute server within it. We will look at the bridging first.

It has been a long time since there has been enough room in
the IPv4 32-bit name space to give every networked machine a
unique name. Outright exhaustion of the name space was delayed
by the fact that most private networks re-use the same set of private
IP addresses. The cost of this strategy is that private IP addresses
are ambiguous except in their local context, and a machine with a
private address cannot be reached from outside its local network
except with a compound session.

In Figure 4, the joinbox for the compound session is the coffee
shop’s IP router, which incorporates the functionality of Network
Address Translation (NAT). The bidirectional compound session
is initiated from the private address X , to public address S. Upon
receiving the session-initiating packet, the NAT/router alters it
before forwarding, thus making an outgoing session with its own
public address N as the source. When S accepts this session and
sends packets in the reverse direction, it uses reachable N as the
destination rather than unreachable X . In this figure the dark-gray
box represents the public Internet as one network, ignoring the fact
that it is really a bridging of many networks. Bridging is shown
explicitly by the link and session across a network boundary. In
the usage hierarchy, the enterprise network uses both lower-level
networks.

4A joinbox must change at least one of the source or destination in the session header;
it may or may not be a “proxy,” which is a session-protocol endpoint. For example, the
NAT in Figure 4 is a joinbox and not a proxy.

At the higher level of Figure 4, the enterprise network is also
a private IP network, with private addresses U andW, and public
address S. The laptop joins the enterprise network by creating
a dynamic link to the VPN server. The link is implemented by
the IPsec session, so that packets are transmitted in encrypted
and authenticated form. The VPN server authenticates the laptop,
which has secret credentials issued by the enterprise, and gives it
temporary address U within the enterprise network. At this point
the laptop can initiate a session with compute serverW, using TCP
as the session protocol in the higher-level IP network.

5.2 Verification of trustworthy services
To prove security properties, some entities must have responsibili-
ties and be trusted to fulfill them. Normally the entity that is trusted
is a machine because the whole machine has a single owner,5 but
trusted to do what, and by whom? A machine can have members
of multiple networks, and in each network its member can play a
different role.

In networks bridged together in and with the public Internet, as
on the lower level of Figure 4, a network’s administrative authority
owns routers (and other infrastructure machines) and trusts them
to behave as specified. Because the administrative authority does
not trust the user members (endpoints), the behavior of the routers
and other infrastructure machines should be sufficient to provide
the specified services in cooperation with well-behaved endpoints,
and to protect the network from ill-behaved endpoints. Beyond the
technical sources of trust, economic relationships provide incentives
for administrative authorities to ensure that networks satisfy their
service specifications [6].

In Figure 4 the employee’s laptop and enterprise gateway have
network members that are not trusted by their Internet providers,
but are trusted by the enterprise. The VPN server does not allow
the laptop’s memberU to join the enterprise network until it shows
that it is trustworthy by sending secret credentials.

This VPN architecture enforces two security properties:
• Only packets originating at members of the enterprise net-
work should be allowed to reachW .

• All enterprise data being transmitted outside the walls of the
enterprise should have confidentiality and integrity, meaning
that no external agent can read or alter the data.

The second property is guaranteed by the IPsec implementation of
dynamic links outside enterprise walls. To prove the first property,
it is necessary to establish that only packets transmitted on links in
the enterprise network (which is not bridged to other networks) are
forwarded toW . The easiest way to prove this is to rely on the fact
that dynamic links of the enterprise network are associated with
specific lower-level sessions. Then it is only necessary to check—
no matter what packets the public Internet delivers to its member
S—that the member drops all received packets unless they belong
to sessions implementing dynamic links.

The VPN example is especially simple because the security mech-
anisms at both levels are implemented on the same machine. The
same verification pattern works for more complex security mech-
anisms, however. The common structures are a secure network
5These terms must be refined slightly to apply to clouds, in which a machine hosts
virtual machines.
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Figure 5: The interoperation of LISP-MN with the public In-
ternet. Each link (solid line), session (dashed line), or path
of links and forwarders (solid line broken with dots) is la-
beled above with the source of the packets traveling on it,
and below with their destinations.

layered on top of the public Internet, and a packet-filtering mech-
anism that prevents harm (including denial-of-service attacks) at
the level of the public Internet [1]. The secure overlay carries only
approved packets, as enforced by its ingress members. The packet
filters are on different machines, and need only have enough knowl-
edge to reject packets not belonging to sessions implementing links
of the overlay.

These examples barely scratch the surface of network secu-
rity. Nevertheless, a broad survey of security mechanisms [24] has
shown that the compositional model is important for understanding
all aspects of security, and for working toward a comprehensive
proof framework. The model is especially valuable for discovering
how security interacts with other aspects of network architecture
such as session protocols, routing, virtualization, and middleboxes.

6 THE USAGE GRAPH
One of the most interesting aspects of composition is that some-
times the “usage hierarchy” is a convenient fiction, because com-
position creates a usage graph with cycles. It is still useful to think
in terms of usage hierarchies, provided that we remember they are
approximate abstractions with localized exceptions.

Mobility is a network service that preserves reachability to a
network member, and may even preserve the member’s ongoing
sessions, even though the member’s machine is moving. One kind
of mobility is provided by LISP Mobile Node [8, 9] (for a survey
of all kinds of mobility, see [23]). With LISP-MN, a machine has a
network member with a persistent IP address called an “identifier.”
In a lower-level IP network, the machine has a member with a
temporary, location-dependent IP address called a “location.” As
a new and lightweight way to provide mobility, LISP-MN must
interoperate with the public Internet. Figure 5 shows how. As in
Figure 4, the public Internet is depicted as if it were one network.

At the top level of this figure, the public Internet is bridged with a
LISP-MN network, which is a specialized IP network. The LISP-MN

network owns a range of IP addresses, from which identifiers are
drawn. Because of the bridging, a legacy host with IP address addr1
has been able to initiate a TCP session with a mobile node whose
identifier is ident2.

The shared elements for bridging are the unlabeled middleboxes.
In both networks these middleboxes resemble IP routers, in that
they forward packets and do not behave as session endpoints. The
middleboxes advertise the mobile range of IP addresses into the
public Internet, which means that each packet destined for an ad-
dress in this range will be forwarded to one of them. The LISP-MN
network has a directory mapping identifiers of mobile nodes to
their current locations. When such a middlebox receives its first
packet for ident2 (or first in a long time), it gets ident2’s location loc2
from the directory, creates a dynamic link to ident2, and forwards
the packet on it. Subsequent packets to ident2 use the same link.

The LISP-MN network is layered on top of the public Internet, so
that dynamic LISP links are implemented by public UDP sessions.
On the same machines as the three members of the LISP-MN net-
work there are members of the public Internet with IP addresses
addr3, addr4, and loc2, and these are the endpoints of the UDP ses-
sions. When a mobile node changes its location, it notifies all the
middleboxes with which it has dynamic links, and also updates the
directory. The UDP sessions will move to the new location, but the
LISP-MN links will remain.

Like Figures 3 and 4, Figure 5 uses vertical position to imply a
usage graph. In this usage graph, the LISP-MN network is both
bridged with the public Internet (at the same level) and layered on
it. To avoid drawing the cycle, we depict the public Internet in two
places. This graph shows a common pattern for interoperation of
special-purpose IP networks with the public Internet.

Figure 3 is another example of a usage graph with a cycle in it.
As in Figure 5, rather than drawing a cycle, we have put a network—
here the campus IP network—in the figure twice. At the bottom
level of the figure, the only physical connection between LANs is
the campus IP network. The link shown is exactly the same as the
link between 0.4 and 0.5 at the top level of the figure. When an IP
packet is sent from source 2.7 to destination 2.8, it is encapsulated
in a VLAN header with source M7 and destination M8. When that
packet is traversing the VLAN link between M4 and M5, it is further
encapsulated in an IP header with source 0.4 and destination 0.5.
This packet format is called the “VXLAN” format.

Special-purpose virtual links in IP networks are often called “tun-
nels.” Our model provides a structured view of tunnels, clarifying
the roles of network members at the upper and lower levels of
tunnel endpoints, the state that each network member requires,
and the fields that must be present in packet headers. This unifor-
mity across levels can explain confusing designs and make them
analyzable. For example, even though a network can use itself in a
usage graph, a network link must never use itself.

7 POTENTIAL BENEFITS OF THE
COMPOSITIONAL MODEL

Since 1993, the Internet has evolved by means of new networks and
new compositions. The Internet today is a vast collection of net-
works composed in a rich variety of ways by layering and bridging,
including being composed with themselves. Networks are easy to
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add locally (campus networks, cloud computing) or at high levels
of the approximate usage hierarchy (mobility, distributed systems).
They are slower to disseminate when both global and low in the
hierarchy (IPv6).

This evolution, while necessary to keep up with increased de-
mand, new technology, and many new requirements, has created
tremendous complexity. First and foremost, our compositional
model describes the current complex Internet as precisely as the
classic Internet architecture described the Internet of 1993. Because
it is inherently modular, it also has the potential to organize, explain,
and simplify as well as to describe.

Based on our experience applying the model to all kinds of
networks and aspects of networking, there are two primary reasons
for adding a new network to the global Internet architecture:

• The network provides a specialized service or unusual cost/performance
trade-off through mechanisms that are not compatible with
the general-purpose classic Internet design.

• There is a need for two different instances of a network struc-
ture with two different purposes. As in LISP-MN, member
names might be either permanent identifiers or temporary
locations. For another example, the topology of a network
might be dictated by security partitions (VLANs) or by paths
through required middleboxes, as well as by physical con-
nectivity.

Layered networks hide information, which can make problem diag-
nosis very difficult [19]. On the other hand, separation of concerns
into different networks is a way of taming complexity. This is es-
pecially obvious when networks are being added for the second
reason, and distinct topologies (for example) are maintained by
distinct networks. Also, very often, it is more efficient to compose
two networks than to intertwine distinct structures in the same
network. This is illustrated well by [16], which shows that the
conflation of a middlebox topology and a physical topology would
cause a combinatorial explosion of router state.

The most immediate potential benefits of the new model are
based on its capacity to explain the complexity that is already
present and must be dealt with. The model can be formalized
through analytic tools and reasoning technology, in support of
robustness and verification of trustworthy services. We also believe
that the model should be used in graduate-level teaching, to cover
a wider variety of networks in a shorter period of time, and to
encourage recognition of patterns and principles.

Next, the model has the potential to improve current design
and development of software-defined networks. Re-usable patterns
would both increase the availability of different points in a trade-off
space, and make each easier to deploy by means of re-usable or
generated software. Optimizations should become easier to apply,
because the model can help us reason that they are safe.

Finally, a compositional model may help us to find a simpler
future Internet architecture that truly meets forseeable require-
ments and might even adapt to unforseeable ones. Perhaps, with
study of compositional principles and compositional reasoning, we
can discover optimal uses of composition, in configurations that
exploit its benefits and ameliorate its disadvantages. This could be
the basis of network architectures that offer both flexibility and

manageability. Pushing Internet evolution in this direction would
be a truly worthy goal.
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