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Abstract—Despite the tremendous success of SDNs in datacen-
ters, their wide adoption still poses a key challenge: the packet-
forwarding rules in switches require fast and power-hungry
memories. Rule tables, which serve as caches, are of limited
size in cheap and energy-constrained devices, motivating novel
solutions to achieve high hit rates. In this paper, we leverage
device connectivity in the fast data plane, where delays are in the
order of few milliseconds, and propose multiple switches to work
together to avoid accessing the control plane, where delays are
orders of magnitude greater. As a low priority rule in a cache
entails caching higher priority rules, we pose the problem of
cooperative caching with dependencies. We provide models and
algorithms for cooperative rule caching with dependencies, ac-
counting for dependencies among rules implied by existing switch
memory types. We develop caching algorithms for several typical
use cases and study the difficulty to find an optimal cooperative
rule placement as a function of the matching pattern, which lay
the foundations of cooperative caching with dependencies.

I. INTRODUCTION

Software defined networks (SDNs) have been tremendously
successful in simplifying the management of data centers,
enabling dynamic and efficient network configuration and
fast failover. In an SDN, a controller enforces fine-grained
policies by installing rules in switches that dictate how each
switch handles incoming packets. Each rule consists of a
match and an action. The match portion typically matches
on multiple packet header fields, including wildcards, for
classification. The actions can modify header fields, forward
to a particular output port, or drop the packet. In addition,
each rule has a priority that disambiguates between rules with
overlapping match patterns (overlapping rules). Commodity
switches implement rule tables using special hardware like
Ternary Content Addressable Memory (TCAM) that checks a
packet against all installed rules in parallel.

Flexible match-action processing is desirable across a range
of settings, including IoT networks [1]–[6]. However, the
adoption of SDNs outside of data-centers networks still faces
a fundamental problem: rule tables require fast and power-
hungry memories [7]–[12], but TCAMs must be of limited
size in cheap and energy constrained devices [13]–[15]. To
guarantee classification correctness a switch cannot simply
“cache” the most popular rules due to rule dependencies [16].
For two rules with overlapping match patterns, caching the
lower-priority (dependent) one entails caching the other with

higher priority, even if caching the higher-priority rule does
not contribute much to the total hit rate [16], [17].

When a packet arrives at a switch and does not match any
of its cached rules, it is common practice to assume that the
default rule is to forward the packet to the control plane (or to
a slower data path, like in Open vSwitch [18], [19]). A major
challenge consists in coping with the control-plane delay, which
is typically an order of magnitude larger than forwarding in
the fast data plane. Hence, SDN faces a major performance
challenge of needing to achieve a high hit rate despite the small
rule tables. We believe this is possible, but only if multiple
switches can work together to achieve a high overall hit rate.

We pose the following question: how to leverage cooperation
among switches to improve caching performance? Conceptually,
the answer is simple: switches can forward unmatched packets
to other switches in the fast data plane, e.g., by configuring
default rules and a time-to-live (TTL) counter which is
decremented at every hop before relying on the control
plane when its value reaches zero. Under pairwise switch
cooperation, for instance, the TTL of unmatched packets is
set to one. Even though such a simple idea, which poses no
additional complexity regarding system design, may lead to
significant gains in terms of delay reduction, it also poses novel
challenges in the realm of cooperative placement of objects
with dependencies among them. One of our aims is to lay the
foundations of cooperative caching with dependencies.

Prior art. Cooperative caching [20] is a well-studied
approach comprising the coordination of a distributed caching
system to achieve a common goal, such as increasing the
total system hit rate. Cooperative caching networks have been
considered for a wide variety of applications, including cellu-
lar [21]–[24] and IoT networks [25], CDNs [26]–[28], social
networks [29], [30], and distributed operating systems [20].
In the realm of SDNs, it has already been noted that a slight
increase of load among switches may correspond to a significant
reduction in communication costs across the control plane [7],
[11], [12]. In this paper, we build on such previous works,
considering cooperative caching with dependencies.

Contributions. Our main contributions are twofold.
(1) Cooperative rule-caching model: We propose an analyt-

ical model to analyze cooperative caching solutions, accounting
for rule-dependencies (Section III).

(2) Caching solutions: Leveraging the proposed model, we
design algorithms for the cooperative caching problem under978-1-7281-9486-8/20/$31.00 ©2020 IEEE



different types of rule dependencies (Sections IV-VI).
We see the proposed caching algorithms as being run

periodically by the SDN controller.

II. SYSTEM DESCRIPTION AND RESULTS

Traditionally, rule caching is performed independently for
each switch, considering the implemented policy and the local
traffic distribution. Fig. 1(a) illustrates an example of two
switches implementing two different policies with six and
five rules in Switches 1 and 2, respectively. For simplicity,
the rules match disjoint traffic patterns and, as such, have no
dependencies. The limited capacity of each switch enables
caching three rules, as illustrated by the dashed lines. Each
rule is associated with a matching probability based on the
switch’s workloads. Fig. 1(a) shows traditional rule caching
where in each switch the three most popular rules are cached.

In this work, we focus on the advantages of cooperative
caching for rule caching in SDNs. The centralized control of
SDNs naturally motivates cooperative caching. By allowing
packets to be forwarded to other switches to complete the
classification process within the data plane, the load on the
control plane and the time to resolve requests are reduced.

Fig. 1(b) illustrates a cooperative-caching solution leveraging
rule similarity across two switches. In case of a miss in a switch,
there is an attempt to complete the classification by finding a
matching rule in an adjacent switch.
Definition 1. The origin switch of a given packet is the first
switch to handle that packet.

A packet is first handled by its origin switch. If it does not
match any of its rules, it is possibly forwarded to a neighbor
switch before reaching the control plane. Throughout this paper,
except otherwise noted, we consider switches that are matched
in pairs. Each switch relies exclusively on its designated
partner for cooperative caching purposes. We assume that the
pairwise matching of switches is provided as input such that
paired switches should be directly connected. In case a rule
is not matched for a packet in its origin switch, the packet
is forwarded to the paired switch. If a match is found in the
paired switch, the packet is forwarded back to its origin switch
with the information on the selected action, noting that some
particular rule actions, such as a packet drop, can be executed
directly by the paired switch. Only if the rule to handle the
packet cannot be resolved in the data plane by a switch or its
partner, the packet is directed to the control plane.

The simple setting considered in this paper, accounting for
pairwise switch cooperation, already allows us to appreciate
the benefits and challenges involved in the deployment of
cooperative caching with dependencies. In particular, the
functionalities required for its deployment are already supported
by current SDN architectures.

Each packet stores its corresponding origin switch, and
each switch maintains for each rule in its cache a set of
corresponding origin switches (one or more) to which it is
applicable. In Fig. 1(b), the applicable origin switches are
indicated between brackets: R1 and R3 refer to switch 1,
R7 and R9 refer to switch 2, and the other rules refer to

Table I
NEW CACHING POLICY RESULTS (IN BOXED BOLD).
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Prefix match Optimal [31] Optimal

Wildcard match Heuristics [16] Heuristics
(NP-hard)

both switches. The local caching in Fig. 1(a) enables local
classification of 0.79 and 0.75 of the traffic in the two switches,
respectively. 0.21 and 0.25 of the traffic is classified in the
slow path. With the same cache sizes, the cooperative caching
(Fig. 1(b)) enables classifying within the data plane (namely,
by one of the switches) 0.94 and 0.93 of the traffic, reducing
the traffic sent to the slow path to 0.06 and 0.07. Fig. 1(c)
shows the various classification times (see Section III).

Our approach determines the cached rules in each of the
switches as allowed by its memory capacity while also taking
into account the classifiers with rule dependencies and rule
popularities over other switches.

Summary of results. Our results are summarized in Table I,
where new results are described in boxed bold. We categorize
the problem based on two main properties: (i) rule matching
pattern (exact match, prefixes, wildcards) that affects possible
rule dependencies; (ii) number of switches involved in a caching
decision. We focus on the case of cooperation among pairs of
switches and in Section VII discuss other forms of cooperation
among switches. Our goal is to determine the caches content
to minimize the average classification time while preserving
caching correctness.

We first refer to exact match for which rules have no
dependencies.
Definition 2. An exact matching rule is a rule with specific
field values (no wildcards).

The optimal caching under exact matching rules for a
single switch encompasses caching the rules with the highest
popularity, noting that all rules are of the same memory size.
For cooperative switches, the optimal rule allocation is the
solution to a linear program (Section IV).
Definition 3. In a prefix matching rule a wildcard can appear
only as a suffix.

For prefix matching, we describe an optimal dynamic-
programming algorithm in Section V.
Definition 4. In a wildcard matching rule a wildcard can
appear at any arbitrary position.

For wildcard matching, the optimal rule caching problem
is NP-hard even for a single switch [16], motivating a greedy
heuristic for cooperative switches introduced in Section VI.

III. MODELING COOPERATIVE CACHING

We consider a network of k switches 1, . . . , k. Each switch i
has an ordered set of ri rules (Ri,1, · · · , Ri,ri). A rule has two
parts: a matching pattern and an action. A matching pattern
is composed of 0s and 1s or *s (don’t cares). For instance, a
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? Data plane S1 Rule Table: S2 Rule Table:
R1 : (000*) → a1 (0.18) R7 : (00**) → a7 (0.20)
R3 : (010*) → a3 (0.16) R5 : (10**) → a5 (0.32)
R6 : (11**) → a6 (0.45) R6 : (11**) → a6 (0.23)
R2 : (001*) → a2 (0.04) R8 : (010*) → a8 (0.07)
R4 : (011*) → a4 (0.02) R9 : (011*) → a9 (0.18)
R5 : (10**) → a5 (0.15)

S1 Rule Table: S2 Rule Table:
R1 : (000*) → a1 (0.18) [S1] R7 : (00**) → a7 (0.20) [S2]
R3 : (010*) → a3 (0.16) [S1] R9 : (011*) → a9 (0.18) [S2]
R6 : (11**) → a6 (0.45+0.23) [S1,S2] R5 : (10**) → a5 (0.32+0.15) [S1,S2]

(a) Traditional rule caching (b) Cooperative rule caching (c) Classification delays

Figure 1. (a) Traditional Rule Caching: Each switch maximizes its (local) cache hit rate while considering rule dependencies. Each rule is characterized by its
matching field DST IP and its popularity. Cached rules appear above the line. Unclassified traffic is served in the control plane. (b) Cooperative Rule Caching:
A switch can store rules of other switches and serve their traffic. (c) Classification delays: TL ≤ TD < TC for local classification, by another switch in the
data plain or in the controller.

rule of the form (DST IP = 100*) → a matches both DST IP
values 1000 and 1001 and applies an action a ∈ A where A is
the set of possible actions. A packet is handled by the first rule
it matches. Switch i serves traffic that follows a local traffic
distribution. The distribution determines each rule popularity in
a switch, i.e., its probability to be the first match of a packet.

Rules and popularities. Let S = {R1, . . . , Rr} be the
set of distinct rules that appear in one or more switches. We
denote by Sj the set of input rules applicable to origin switch
j ∈ [1, k] such that S =

⋃
j Sj . Let nj be the cache size of

switch j. The set of rules cached at switch j is denoted by
Cj , Cj ⊆ S, |Cj | ≤ nj . A cached rule is marked with an
indication to which origin switches it should be applied to.
Let M i

R ⊆ {j|R ∈ (Sj ∩Ci)} be the set of origin switches to
which rule R ∈ S stored at i ∈ [1, k] should be applied to.

Rule cooperation can take advantage of a partial (or com-
plete) similarity between the rules in the different switches [32],
[33]. Without loss of generality, we do not consider rules that
are never matched in any of the switches. For j ∈ [1, k], let
λj,i be the popularity of rule Ri in switch j, describing the
amount of traffic that matches the rule. In particular, if a rule
Ri appears only in switch 1, we have λj,i = 0 for j 6= 1.

Latencies and rule dependencies. We refer to the latency
of the classification as the cost of the operation and would like
to minimize the expected classification time. The latency is
highly influenced by the location of classification.

If a packet matches one of the switch cached rules, it is
classified accordingly within a very short time. If a packet does
not match any of the switch cached rules, then it experiences a
cache miss. In such a case, there are two alternatives where to
find a corresponding rule and determine the required action for
the packet. First, this can always be accomplished by sending
the packet to the controller. We assume that the controller
keeps an up-to-date version of the entire set of rules for all
switches. In such a case the packet observes a relatively large
delay. Alternatively, if the required classification information
can be found in one of the other switches, the classification
can be performed in such a switch within the data plane. For
simplicity, we assume that in a case of a miss in a cache i, the
classification time in any of the other k−1 switches is identical.
As illustrated in Fig. 1(c), we refer to these three classifications

as a Local, in the Control plane and by cooperation among
switches in the Data plane. We denote their costs by TL, TC
and TD, respectively, such that TL ≤ TD < TC . Our goal is
to determine the content of the nj cached rules in each switch
for minimizing the average classification time.

Let α = (TC −TL−TD)/(TC −TL) = 1−TD/(TC −TL).
The value of α represents the ratio of two time reductions.
The first reduction is that of a data plane classification and
the second reduction is that of a local classification, both in
comparison with the expensive classification in the control
plane. Note that α ∈ (0, 1). Intuitively, for larger values of α
the relative overhead due to a classification in another switch
is small when compared against a classification at the control
plane, and the potential gains due to cooperative rule caching
are more significant.

Latency parametrization. Consider for instance the follow-
ing values as an estimation for the different delays, which
we obtained in a mininet experiment with the Ryu [34]
controller as the slow path and Open vSwitch (OVS) as the
data plane: TL = 3 ms, TD = 4 ms, TC = 200 ms (see
Section VIII). Although classification in an adjacent switch is
slower than a local classification, it still avoids most of the
latency that occurs while using the controller. This results in a
value of α = (200− 3− 4)/(200− 3) ≈ 0.98, very close to 1.

Caching gain. Recall that Ci is the rule set cached at switch
i. Consider a scenario with two switches. In comparison with
a scheme without caching, cost reduction following caching
a rule Ri in both switch 1 and switch 2, Ri ∈ C1 ∩ C2, is
λ1,i+λ2,i, in units of TC−TL. We refer to such cost reduction
on top of a scheme with no caching as the caching gain.

A switch benefits from caching of one of its rules in another
switch. The value of caching a rule Ri only in switch 1,
Ri ∈ C1 \C2, is λ1,i +α · λ2,i, where α ∈ (0, 1], as above, is
determined by the delays of the various classification options.
Symmetrically, a rule Ri cached only in switch 2, Ri ∈ C2\C1,
contributes α · λ1,i + λ2,i. There is no contribution for rules
not cached in any switch.

Rule dependencies and correctness. To guarantee the
correctness of a rule caching strategy, we must ensure that if a
rule is the first to match a packet among the cached rules, the
same rule is the first to match that packet in the complete set of



rules. Consider a rule Rlow that intersects with a higher-priority
rule Rhigh. Caching Rlow entails caching Rhigh.

Consider rules that refer to traffic having switch 1 as its
origin switch (Definition 1). Rules are cached either at switch
1 or 2, or in both, with an indication they apply only to switch
1. Let Rlow ∈ S1 be one of such rules that intersects with
a higher-priority rule Rhigh ∈ S1. The requirement of cache
correctness within a single switch implies that if Rlow ∈ C1

then Rhigh ∈ C1. The requirement for two-switches is more
detailed. A packet origined at switch 1 accesses switch 2
only after a miss in C1. First, if Rlow ∈ C1 then Rhigh ∈ C1.
Otherwise, Rlow /∈ C1. If Rlow ∈ C2 then necessarily Rhigh ∈
C1 or Rhigh ∈ C2. Thus rule Rlow will be matched at C2 only
after Rhigh was checked, either at C1 or C2.

IV. EXACT RULE MATCHING

We consider the simplest setup wherein rules have no
dependencies (Definition 2). We show that for the case of
exact match rules an optimal caching of rules on multiple
switches can be found in polynomial time. The algorithm uses
a linear programming relaxation.

Let G(x) denote the average gain in cost reduction expe-
rienced by users when rule placement strategy x = [xj,i] is
deployed. For each rule i, if that rule is stored in at least one
cache, the gain is at least α

∑
j λj,i. In addition, each cache

storing rule i experiences an additional gain of (1 − α)λj,i.
Denote by xi an indicator variable, equal to 1 if rule i is stored
in at least one cache, and 0 otherwise. We pose the following
mixed integer linear program (MILP),

max G(x) =
∑
i∈S

xi·α k∑
j=1

λj,i+(1− α)
k∑

j=1

xj,i·λj,i

 (1)

where∑
i∈S

xj,i ≤ nj ∀j ∈ [1, k], xi ≤
∑

j∈[1,k]

xj,i ∀i ∈ S,

(2)
xi ∈ {0, 1} ∀i ∈ S, xj,i ∈ {0, 1} ∀j ∈ [1, k],∀i ∈ S.

(3)

When considering pairwise matchings of switches, we let
k = 2 in the above MILP and treat each pair of switches
independently. Constraints (2) correspond to cache capacities
and to the definition of xi. Next, we present the main result
of this section, whose proof relies on [26], [35], [36]. Proofs
are omitted for space constraints.

Theorem IV.1. An optimal cooperative caching with exact rule
matching can be found in polynomial time, as the problem (1)-
(2) without constraints (3) admits an integral solution.

The constraints of the relaxed problem can be written in
the form Az ≤ b where matrices A and b are all integers
and z is a vector of xi,j and xi. The proof of Theorem IV.1
follows from the fact that the standard form LP Az ≤ b,
z ≥ 0, with integral matrix A and integral vector b, has
an integral optimal solution z if its constraint matrix A is

totally unimodular [26], [35], [36]. According to the Hoffman
sufficient condition (HSC) [37], matrix A is totally unimodular
if it contains no more than one +1 and no more than one -1
in each column. It can be readily verified that the HSC holds
for the considered MILP, which completes the proof.

V. PREFIX RULE MATCHING

We study a common case of rule dependencies that appears
for the scenario of prefix matching, known as longest prefix
matching. Its simple dependencies allow us to derive an optimal
caching strategy. Let W be the length in bits of the matching
pattern of a rule. A prefix corresponds to a node in a binary
tree with 2W leaves. A rule is a pair of a prefix and an action
from A. The dependency among rules is illustrated in Fig. 2
where caching a prefix-action pair (P, a) entails caching all
existing rules in the colored subtree.

Challenges. To characterize dependencies due to prefix rules,
one alternative is to add constraints to the MILP of Section IV.
Indeed, prefix rules correspond to constraints of the type xi ≤
xj for every rule i which is a parent of j in the prefix tree.
Such additional constraints can result in non-integral solutions
to the relaxed LP. For a concrete example showing that the
relaxed LP accounting for prefix rules may admit non-integral
optimal solutions, it suffices to consider a single switch. The
switch resolves two rules, R1 and R2, matching prefixes 0*
and 00, respectively. Matches to R1 and R2 occur at rates
λ1 = 2 and λ2 = 1. If the switch capacity equals one, the only
feasible solution is storing rule R2. Consider now the MILP
with objective of maximizing the gain as defined in Section IV,
max(2x1 + x2), subject to x1 + x2 = 1 and x1 ≤ x2, where
x1, x2 ∈ {0, 1}. The relaxed version of this MILP has a single
fractional solution, x1 = x2 = 0.5, which does not correspond
to a rule placement.

Correctness of solution. A solution to the caching problem
consists of two components. First, it comprises an assignment
of rules to switches. Recall that C1 and C2 refer to the set
of rules stored at switches 1 and 2, respectively. Second, for
each prefix P ∈ Ci cached at switch i ∈ {1, 2} a solution
determines the set of origin switches (Definition 1) marked as
effectively applicable. Let M i

P be the set of marked switches
corresponding to prefix P at switch i. When a packet with
prefix P from origin switch j arrives at switch i, it is resolved
if its origin switch is marked, i.e., if j ∈ M i

P . Note that
M i

P ⊆ {j|P ∈ Sj ∩ Ci}, for i ∈ {1, 2}. A solution is correct
if it fulfills the caching correctness requirement (Section III).

A dynamic programming approach. We propose a dy-
namic programming algorithm, bearing some similarity to the
algorithm of [31], to overcome the aforementioned challenges.
We define a sub-problem for every combination of prefix P , two
cache sizes m1 ≤ n1 and m2 ≤ n2, and a set of compliance
requirements Q, which we later define and discuss. We refer to
each such sub-problem as (P,m1,m2,Q). An optimal solution
to (P,m1,m2,Q) is a correct caching of the rules in the sub-
tree of P (i.e., all the rules P ′ such that P is a prefix of P ′)
into switches with memory sizes m1 and m2, which adheres
to the compliance requirements in Q, and provides a maximal
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Figure 2. Prefix rule dependency. Caching a prefix P = 10** requires caching
all prefixes in the colored subtree such as 100*, 101* (if exists).

caching gain. The optimal cooperative caching is given by
(Pr, n1, n2, ∅), where Pr is the empty prefix that stands for
the root of the prefix tree. By definition, an empty requirement
set ∅ does not imply particular requirements.

For a prefix P , the sub-problems of P are all the sub-
problems of the form (P,m1,m2,Q) for some m1 ≤ n1,
m2 ≤ n2 and a set of compliance requirements Q. Then, the
key insight consists in observing that the optimal caching gain
(P,m1,m2,Q) can be expressed as a function of the optimal
caching gains of the sub-problems of P.0 and P.1, the two
descendants of P in the prefix tree. Leveraging this insight, the
solution to the problem is found through a bottom-up dynamic
programming approach over the prefix tree.

A solution for the sub-problem (P,m1,m2,Q) can
be derived from solutions to (P.0,m′

1,m
′
2,Q0) and

(P.1,m′′
1 ,m

′′
2 ,Q1) where, for i = 1, 2, either m′

i+m
′′
i = mi−1

or m′
i +m′′

i = mi, depending on whether prefix P is cached
in switch i or not. The compliance requirements Q0 and Q1

are used to determine whether P can be added to any of the
caches without violating the correctness requirement.

Consider a solution with caches C1, C2 for the sub-problem
(P,m1,m2,Q) satisfying |C1| ≤ m1, |C2| ≤ m2, wherein
C1 ∪ C2 is contained in the subtree rooted at P . An ordered
pair (i, j) can belong to the compliance requirements set Q
if in the solution all rules from Sj in the subtree rooted at P
are either in Cj or in Ci with the indication of applicability
to switch j. By the above arguments, the optimal gain under
(P,m1,m2,Q) can be expressed as a function of optimal gains
under sub-problems subsumed by P.0 and P.1, potentially with
the addition of a rule for P to C1 or C2 (or both). A central
observation is that P can be added to Ci and marked for j if
(i, j) ∈ Q0 and (i, j) ∈ Q1.

Theorem V.1. An optimal cooperative caching with prefix
matching rules under pairwise switch cooperation can be found
in polynomial time.

Note that the compliance requirements set Q satisfies |Q| ≤
4 and the number of sub-problems for which solutions have to
be considered is polynomial in the number of rules in S1 ∪S2.

VI. WILDCARD RULE MATCHING

We study the case of wildcard rules. Such rules can have
general rule dependencies. In the case of a single switch with
general rule dependencies, the dependencies can be described
in the form of a directed acyclic graph (DAG) [16]. Given such
a dependency DAG, for correctness, when a rule is cached

in the network switch, all its dependents (reachable via the
directed edges in the DAG) have to be cached along with it.
Consider two nodes u, v that refer to rules Ru, Rv . The graph
is acyclic since an edge from u to v exists only if besides
their intersection Rv precedes Ru in the classifier (i.e., it has
a higher priority).

In this setting, the problem of rule caching is known to be
NP-hard even for a single switch [16]. Naturally, the problem of
rule caching across two (or more) switches is NP-hard as well.
To see that note that for low enough values of the parameter
α, an optimal joint caching is given by local optimal caching
in each of the switches.

Corollary VI.1. Finding an optimal caching policy for two
or more switches with general rule dependencies is NP-hard.

Correctness follows maintaining the requirements from
Section III. Note that in the case of two switches, two
intersecting rules can appear in the two switches in two different
orders. Accordingly, for two switches the dependency graph
accounting for all dependencies is not necessarily a DAG.

Since finding the optimal caching solution is NP-hard, a
greedy heuristic can be used to pick the rules to be cached in a
switch. For instance, one such heuristic consists in storing rules
with the highest ratio of cost reduction achieved by caching
the rule in the switch divided by the space needed to store its
dependencies. Note that this heuristic is similar in spirit to an
approximate solution to a knapsack problem.

VII. BEYOND PAIRWISE COOPERATION

We discuss potential extensions beyond pairwise matching.
Extensions. The solution from Section IV for the case

of exact rule matching with no dependencies applies for an
arbitrary number of k switches and optimal cooperative caching
can be found in polynomial time in the same manner.

The design of optimal cooperative rule placement with depen-
dencies, beyond pairwise matching of switches, is challenging.
In particular, adapting the dynamic-programming approach that
accounts for pairwise switch cooperation with prefix rules from
Section V would imply running-time complexity which grows
exponentially with the number of switches. For wildcard rules,
the problem is NP-hard even for a single switch (Section VI).

Observation. As a potential building block in future exten-
sions of our results beyond pairwise cooperation, we describe a
simple approach of conditionally optimal caching. It selects the
caching for a second switch after the caching in a first (or more)
switches is determined. This can be done by solving the caching
problem in a single switch using modified rule popularities.
The approach, however, might not imply the optimal joint
caching in multiple switches.

Theorem VII.1. Consider two switches with sets of rules from
S. Assume a caching, represented by the set of cached rule
indices C1 ⊆ S, is given for switch 1. An optimal conditional
caching C2 for switch 2, i.e., switch 2 best response, can
be obtained as an optimal caching for a single switch with
popularities of λi = λ2,i ·(1−α·I(i ∈ C1))+α·λ1,i ·I(i /∈ C1)
for a rule Ri, where I(·) is the indicator function.



VIII. TOY PROTOTYPE TESTBED

We illustrate the benefits of cooperative rule caching in
a simple real-life use case. To this aim, we consider a
“Load Balancer and Access Gateway” prototype of an official
industrial data-plane benchmark suit. This use case models
a real pipeline that is actively being deployed as part of a
commercial 5G mobile packet core product marketed by one
of our industry partners.

Our prototype comprises a cluster of k switches, each facing
a different Autonomous System (AS), providing access for the
users in the AS to the web services hosted inside a data center.
In particular, the switches translate the public Internet address
of each service running inside the cloud to the internal private
address of the VMs that run the corresponding workload (see
Fig. 3). The access switches perceive different traffic intensities
to the individual services and therefore need to cache different
collections of translation rules; however, requests to certain
popular services show up in large numbers at each of the
access switches, allowing the cloud operator to take advantage
of cooperative caching for these popular services.

Our prototype is built as a Ryu application, using Open
vSwitch (OVS) as the switches and mininet as a network
emulation tool. The request distribution of each switch was
sampled according to the equinix-chicago packet trace from
the CAIDA Anonymized Internet Traces 2014 Dataset [38] at
different intervals of time (unfortunately, we cannot sample
across different routers due to anonymization); the first s =
2000 most popular (IP destination address, TCP destination
port) pairs were taken as the public service access points for
the cloud-hosted services; for each such pair, a rule was set
up to translate this public address to an internal address; and
finally rule popularity at each switch was chosen according
to the local popularity of the address-port pair as seen in
the packet trace for the switch. The resultant flow tables and
rule popularities were then implemented with local caching
and with the best-response-time cooperative caching algorithm
(Theorem VII.1); requests missing the cache are handled by
the Ryu controller. We measured the one-way delay between
two hosts directly attached to the switches using a home-grown
delay measurement kit, which attains nanosecond precision
leveraging the fact that clocks across mininet nodes are
synchronized to the same CPU clock.
Measuring classification delays. To illustrate the distinct
orders of magnitude of classification delays in SDNs, we carried
out controlled experiments to assess the delay incurred by
rule classification in a local switch, in the data plane (with
cooperative switches) and in the control plane. Our experiments
produced median delays in these three categories, respectively,
of 3 ms, 4 ms and 200 ms (99-th percentiles 5.5 ms, 6.5 ms,
and 370 ms, resp.). While the data plane measurements produce
robust results over a wide choice of parameters (test sequence
length, number of rules, etc.), the control plane measurements
produced substantial variance, stemming most probably from
the backlog that gradually builds up at the controller’s ingress
packet queue. Note that control plane delays can easily end up
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Figure 3. Cloud access gateway: k switches provide access for distinct ASes
to s data center services.
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Figure 4. Delay vs. cache size. The knee of the cooperative (resp., local) curve
occurs roughly at n = 200 (resp., n = 500), close to optimal offloading.

in the seconds range when the backlog grows large enough.
Latency vs. cache size. Fig. 4 shows the 99-th percentile
one-way delay in the access gateway use case with different
local cache sizes. We set k = 2 switches, both having 2000
rules, out of which 1096 are shared, accounting for 41% of
the total ingress traffic. While cooperative caching maintains a
comfortable two-times edge over local caching at basically all
reasonable cache sizes, thanks to its more efficient utilization
of data plane classification resources, we observe that the
delay reduction can be an order of magnitude in certain cases.
Strikingly, cooperative caching even when caching only 10%
of the rules (n = 200) already reaches close to full data-plane
classification (7 ms, 99-th percentile one way-delay).

IX. CONCLUSION

We presented models and algorithms for cooperative rule
caching. Existing caching schemes either assume that caching
is performed independently among caches, e.g., in SDNs, or
do not account for object dependencies, e.g., in CDNs. To fill
that gap, we propose novel rule caching solutions that take into
account several kinds of dependencies as implied by various
rule matching types. By leveraging spare resources at the fast
data plane, we envision cooperative rule caching as a simple
and effective approach to circumvent the limitations imposed
by memory constrained devices, e.g., of IoT networks [1], [15].
This work paves the way towards that vision. As future work,
we plan to evaluate the proposal beyond pairwise cooperation
and in additional settings, including IoT networks.
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