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ABSTRACT
Many promising networking research ideas in programmable net-
works never see the light of day. Yet, deploying research prototypes
in production networks can help validate research ideas, improve
them with faster feedback, uncover new research questions, and also
ease the subsequent transition to practice. In this paper, we show how
researchers can run and validate their research ideas in their own
backyards—on their production campus networks—and we have
seen that such a demonstrator can expedite the deployment of a re-
search idea in practice to solve real network operation problems. We
present Camp4, a proof-of-concept that encompasses tools, an infras-
tructure design, strategies, and best practices—–both technical and
non-technical–—that can help researchers run experiments against
their programmable network idea in their own network. We use
network tapping devices, packet brokers, and commodity programm-
able switches to enable running experiments against research ideas
on a production campus network. We present several compelling
data-plane applications as use cases that run on our campus and
solve production network problems. By sharing our experiences, we
hope to encourage similar efforts on other campuses.

1 INTRODUCTION
For the last few years we have witnessed the steady development and
maturation of programmable data planes. The Protocol Independent
Switch Architecture (PISA) [8] and P4 [28]—the lingua franca for
programming customizable pipelines—helps realize novel ideas and
run them at line rate. Together, they provide deeper programmability
than earlier technologies like OpenFlow [22], allowing researchers
to specify packet-processing functionality unencumbered by fixed
protocols or standards. More importantly, this technology has ma-
tured to the point where practitioners have confidence in commer-
cial products, and a variety of programmable data-plane compo-
nents [3, 4, 14, 24, 37] and tool chains [26] are available. With
these pieces in place, the research community is better positioned to
transfer research ideas into practice in production networks.

Yet, crossing the chasm from a high-level research idea to prac-
tical impact on production networks remains challenging, as illus-
trated in Figure 1. While research leveraging data-plane programma-
bility is fast becoming a “cottage industry,” many of today’s research
projects end with a software prototype (say, using the BMV2 behav-
ioral switch model [25]) evaluated by simulation using older public
packet traces. While an important step in the research pipeline, we
believe researchers can and should go further, to make the ideas
stronger and increase their chance of “escaping from the lab.” In-
spired by the success of experimental platforms like PlanetLab, we
advocate experience-driven research [30], where researchers could
build prototypes of their ideas and evaluate them in-the-wild. Re-
searchers can gain invaluable insights that help them refine their
ideas, challenge unspoken assumptions, improve their prototypes,
and uncover new and interesting research problems along the way.

Experience-driven research in programmable networking would
take a research idea beyond a P4 program that runs on software
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Figure 1: Conceptual research pipeline. Stages in red boxes are
hard to reach, resulting in missing feedback loops (red-dashed
lines) from them back to the research idea.

switches. Although P4 was envisioned as a target-independent lan-
guage [8], creating packet-processing applications that can “fit” in
line-rate hardware switches often requires designing new, hardware-
efficient algorithms. This leads to new research challenges that our
community can and should tackle (Section 2.1). A second challenge
is getting access to suitable traces for evaluation. Although clearly
valuable, today’s publicly available traces are sometimes too old [6]
to represent modern workloads. Other public data, such as CAIDA
backbone traces [11], sometimes do not meet the needs of specific
research questions, due to capturing only one direction of traffic or
missing important header fields. We need effective ways to tailor
trace collection to the research task at hand (Section 2.2). To go even
further, researchers rarely have a chance to run their experiments
against live traffic from production networks. The ability to feed
live traffic directly to programmable switches running experimental
P4 programs would allow running experiments over longer periods
of time without incurring too much overhead when compared to
capturing and storing traces beforehand (e.g., disk space overhead).
This also enables the long-running experiments to produce real-time
traffic analytics useful for network operators (Section 2.3).

To this end we present Camp4, an experiment infrastructure that
can help academic researchers run experiments in their own pro-
duction campus network. Camp4 encourages and helps researchers:
(i) migrate from software-based simulation to an implementation
on hardware switches, (ii) capture and replay packet traces from
their own campus network, and (iii) run experiments against live
production traffic. We use network tapping devices and network
packet brokers to mirror and deliver production traffic to target desti-
nations (e.g., experimental P4 program on hardware). Programmable
switches are primarily used for experimenting at line rate, but we
also use them as a tool for anonymizing personally identifiable in-
formation (PII) and efficiently collecting production packet traces
(Section 3). We showcase example P4 applications and our experi-
ences running them on our campus network; we also explain how
each experiment helped campus network operations (Section 4). We
share non-technical strategies and best practices, especially on ethi-
cal data use and stewardship for protecting user privacy (Section 5).

Informed by earlier success in deploying emerging technologies
on campus networks [22, 33], we built Camp4 around our produc-
tion campus network, though we believe our methodology can be
applied to any production network. Though initially a convenience,
we discovered our campus network to be a surprisingly rich source
of research challenges. First, a campus network offers diverse and



rich types of traffic. For instance, the dormitories and faculty/staff
housing generate traffic similar to other residential broadband traffic.
Academic departments generate “science” traffic, some characterized
by big data and large bulk data transfers. Many campuses operate a
local data center for high-performance computing and virtualized
campus services, generating traffic similar to commercial data cen-
ters. A campus also may permit visitor or public “bring your own
device” wireless network access. Secondly, campus networks can
be research-friendly. Educational institutions are inherently inclined
toward supporting experiments on or against its infrastructure. With
increasing support for “campus as lab” initiatives, schools have ex-
isting mechanisms and best practices for proper collection, access,
and management of campus data, which we leverage.

2 EXPERIENCE-DRIVEN RESEARCH
Experiments with commodity hardware switches in production net-
works inform and accelerate impactful research, but at the same
time introduce new practical challenges. In this section, we discuss
several important steps we are taking to build the Camp4 vision.

2.1 From Software to Hardware Data Planes
Figure 1 illustrates that software simulation is an important step in
networking research, but certainly not the end of it, especially for
research with programmable switches. The P4 behavioral model
(BMV2) simulates a programmable switch in software [25], sup-
porting arbitrarily complex P4 programs. Yet, running a P4 program
at line rate on hardware programmable switches (e.g., Barefoot
Tofino [3]) is much more challenging; it introduces strict constraints
like fixed processing pipeline length, limited memory space, a lim-
ited number of memory accesses per packet, and so on [5].

Thus, transforming a P4 application to “fit” into a hardware
switch often requires the creation of novel, hardware-efficient data
structures. Furthermore, by doing so, researchers can learn valuable
lessons for designing fast algorithms, a critical skill for applying
other technologies to fast networks and big data. Therefore, Camp4
is designed to primarily help run experiments against hardware
programmable switches with experimental P4 apps, not software
simulations with BMV2. This encourages researchers to work on
research ideas and corresponding P4 programs that actually fit and
run in hardware. We recognize that programmable switches and
NICs are not the only technologies available today to implement
experiments at high rates. However, we see considerable promise
in their role in many future applications that supports our focus on
advancing the research community understanding of these tools.

2.2 From Generic to Specialized Traces
Packet traces from real networks are useful for demonstrating how
well a solution would work against realistic traffic. As such, publicly
available packet traces, like the ones from CAIDA [11], are precious
resources for researchers. However, packet traces that are suitably
representative of modern traffic at differing levels of aggregation are
not always easily found or readily available. In some cases targeted
traces can be obtained by researchers working with large companies
(e.g., ISPs, cloud providers) that have the ability to capture large
amounts of packet traces. However, access to such datasets normally
requires a privileged relationship and data use agreement.

In contrast, a university researcher’s own institution is likely a
rich source of diverse set of traffic types with modern workloads.
Rather than “loving the data they have”, researchers would benefit
from having the ability to “capturing the data they need.” Such ability
would allow researchers to create and use packet traces that are more
tailored to their research. If the network is capable, a researcher can
capture traces at multiple vantage points for analyzing a packet’s
journey through the network. Researchers can also include header
fields of interest while removing unnecessary ones for their research.
Researchers would also be able to acquire real packet traces much
faster, more efficiently, and acquire more up-to-date data that better
represents modern workloads. Additionally, the researcher might be
able to provide interesting insights about the traffic characteristics,
to the benefit of the network operations team.

2.3 From Packet Traces to Live Traffic Feeds
Capturing and replaying packet traces is a powerful research tool,
but the technical problems associated with long duration, high-speed
network captures are well known (e.g., avoiding packet loss with
network and disk I/O optimization [17, 23, 31], improving replay
performance [15, 18, 32, 36], and maintaining large disk space).

To this end, there is value in the ability to run an evaluation against
live production traffic instead of captured packet traces. In addition
to avoiding the overhead of capturing, storing, maintaining, and
replaying packet traces, such an approach promises better protection
of data privacy. For instance, let’s assume we have a packet telemetry
P4 app that runs in a programmable switch, and it receives mirrored
traffic from the campus network. The processing and analysis of
traffic are done at line rate in the switch; it can keep limited state in
the switch or report aggregated analysis results only when needed.
Most importantly, working with live traffic permits deployment of
online telemetry solutions that can produce traffic-analysis results in
real time. It can also help open the door to running active experiments
(e.g., closed-loop autonomous network control).

Working with live traffic likely demands on-the-fly anonymization
of privacy-sensitive information embedded in packets arriving at
line-rate before they are consumed by the researcher’s apparatus.
Designing and demonstrating an infrastructure and pipeline for feed-
ing live but anonymized traffic to an analytics pipeline safely while
minimizing the risk to the production network has been an early yet
crucial enabling contribution of Camp4.

3 CAMP4: EVALUATE IDEAS ON CAMPUS
To overcome the challenges in the previous section and successfully
deploy research ideas, a campus network needs infrastructure in
place and also to follow a number of practices. In this section, we
present the core technical components for making Camp4 a reality.
In our initial work, we focus on extensive tapping of campus traffic
to collect traces and to enable live traffic-analysis experiments, while
also enabling active experiments on the campus.

3.1 Traffic Mirroring Infrastructure
There are two methods to create a mirror, or exact copy, of the traffic
that transits a link or a switch port: (i) Test Access Points (TAPs)
and (ii) port mirroring [20]. A TAP device is a physical optical split-
ter that is installed on a network link and taps traffic, creating an
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Figure 2: TAPs deployed in the campus core network.

exact copy of the traffic transiting the link. Port mirroring is done on
the switch, thus requiring switch configuration and resources. Fig-
ure 2 shows the network TAP installation in our simplified campus
network. Here, we share several best practices:

Invest in TAP devices for accurate measurements: Port mirror-
ing is supported by most, if not all, vendor switches. However, the
integrity of the mirrored traffic (e.g., packet arrival time, reordering,
or drops) from port mirroring is distorted even under low levels of
utilization in the switch [39]. Thus, it is recommended to use TAPs
to ensure delivery of the clean copy of the tapped link. TAPs also do
not require switch configuration or downtime; once installed, they
continue to produce the exact copy of traffic on the link.

Strategically select vantage points: It is important to select van-
tage points strategically to monitor the traffic that is most interesting
and useful. The tapping infrastructure should cover the campus net-
work both horizontally and vertically. For instance, the link-level
heavy hitter detection use case would analyze traffic on links 1, 2,
and 3 in Figure 2 while the queue-level monitoring application for
the ScienceDMZ router would require link 4 and 5 (Section 4.1).
The tapped link for the RTT application (Section 4.2) depends on
the vantage point and the target leg. For example, for measuring the
internal leg (i.e., between vantage point and campus hosts), tapping
link 6 gives RTT measurements with the firewall while using link
7 gives the measurements without the firewall. More interestingly,
tapping both links 6 and 7 and analyzing them together will uncover
the latency introduced by the firewall; such flexibility is important
for troubleshooting networks with middleboxes.

3.2 Delivery of Tapped Traffic
The next task is to deliver mirrored traffic to a desired destination.
One way is to utilize a Network Packet Broker (NPB) system. As
shown in Figure 3, a packet broker system can ingest network traffic
and forward it to one or more destinations based on a given for-
warding policy. Most packet broker systems also provide a list of
additional services, including packet filtering, packet deduplication,
header removal (e.g., VLAN tag), content masking or payload re-
moval, and so on. However, there is no packet broker system that
can perform custom and prefix-preserving anonymization of packet
header fields at line rate.
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Figure 3: A network packet broker selects target tapped live
traffic for injection into the experiment testbed.

There are many commercial network packet broker products in
the market. In our campus, we use Arista’s DANZ Monitoring Fabric
(DMF) solution [2]. Note that we do not advocate any particular
product, and each campus should select a network packet broker that
best meets its needs.

As previously discussed, personally identifiable information should
be anonymized before traffic is delivered to researchers, following
strict ethical standards. Technically, there are many available tools
for the community to use. For instance, CAIDA employs a rigorous
procedure for data anonymization [10], and publicly shares a tax-
onomy of anonymization tools [9]. In Camp4, the line-rate traffic
anonymizer is the anonymization tool (Section 3.3). We discuss
additional ethical issues and non-technical strategies in Section 5.

3.3 Production Packet Traces for Research
Access to traffic traces, recorded or live, is critical for running re-
alistic experiments. However, providing raw traffic to network re-
searchers without first anonymizing personally identifiable infor-
mation, such as MAC or IP addresses, undoubtedly violates the
rights and welfare of human research subjects—the users of the cam-
pus network. Thus, all privacy-sensitive information must be first
anonymized, and packet payload removed. In addition, a researcher
might want to do a longitudinal analysis with historical data; there-
fore, data must be collected and stored, potentially for long periods
of time. We present two P4 apps that address these issues.

Line-rate packet anonymizer: Anonymizing a captured packet
trace offline takes a significant amount of time and effort, and ex-
isting tools that run on x86 systems cannot keep up with the speed
of live traffic. Luckily, programmable data planes make it possible
to anonymize traffic at line rate [21]. The P4 app ingests mirrored
production traffic, hashes relevant header fields such as MAC and IP
addresses, and outputs traffic with those fields anonymized. It is pos-
sible to customize what fields and which IP prefixes to anonymize by
installing corresponding rules in the match-action tables via a control
plane, without recompiling and reloading the program. The app can
be easily extended to obfuscate other packet header fields if needed
(e.g., timestamp, TCP options). To prevent reverse engineering by
researchers, the operator should add a salt to the hashing algorithm
in this anonymizer and keep it secret and change it periodically. The
line-rate packet anonymizer was the first P4 app we deployed. It
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plays an important role in protecting user privacy as we run more
experiments on the campus network. We further discuss our efforts
to protect user privacy in Section 5.

Efficient packet trace collector: Research often requires replay-
ing recorded traffic or doing longitudinal analysis with historical
data. However, storing long periods of traffic with libpcap [35] is
prohibitively expensive even without the payload. It is also challeng-
ing to capture traces from high-speed links without any packet loss
(e.g., due to disk I/O). To this end, we deployed a P4 app that selects
features from incoming packets and groups them by flow for efficient
logging [34]. For example, if two packets with the same five-tuple ar-
rive, identical information can consolidate into a single “group field”
while header fields that differ are recorded separately. As a result, the
app outputs a stream of traces in a much more compact data format.
It also records the physical link ID and arrival timestamp, allowing
us to replay collected traces. The app also provides flexibility on
how to map packets to flows or groups. This allows us to collect
traffic traces that scale to terabit rate with a single commodity switch
and a server. We also integrated this application with the line-rate
packet anonymizer, merging them into a single P4 program that runs
in a programmable data plane. So far, we have collected months of
traces from a moderately loaded 10 Gbps link, without sampling or
losing the specified per-packet information.

3.4 Camp4 Testbed Architecture
Passive analytics testbed: As shown in Figure 3, our Camp4 testbed
has a stack of Barefoot Tofino switches, where the anonymized
mirrored traffic is delivered. This testbed is dedicated to running
passive analytics using incoming mirrored traffic. Experiments with
passive measurement and telemetry use cases are first run here. When
campus network operators want to use one of the traffic-analytics
applications in production, the P4 program is given to the operators
so they can run it on the live, unanonymized traffic using a switch
they control.

Efficient packet trace data store: For longitudinal analysis of
historical data or for replaying traffic that has been previously cap-
tured, we utilize the traffic trace collecting P4 application in Sec-
tion 3.3 and a long-term storage unit for collecting and storing
campus traffic traces efficiently.

Active experiment testbed: Although in its infancy, Camp4 has
a component for running active experiments. We run these exper-
iments with hosts controlled by researchers, utilizing a dedicated
globally-routable IP prefix allocated to us by the campus opera-
tors. Having a dedicated address space gives more freedom to the
researchers, while reducing risk to the campus; operators can sim-
ply create prefix-based policies for monitoring and controlling this
special “research subnet.”

4 CAMP4 APPLICATIONS
We now showcase a collection of P4 “apps” that run realistic experi-
ments, or are in the process of doing so, using the Camp4 platform
(Table 1); the apps in bold font run on hardware switches while
others are in transition from software prototype to the hardware

P4 Application Benefits to Campus Network Operators
Packet anonymizer Automated packet anonymization process
Packet trace collector Automated and improved packet capture process
Link heavy hitters Identified top talkers inside and outside of campus
Queue heavy hitters Identified perfSONAR as causing microbursts
Round-trip time Identified high intra-campus latency for WiFi users

OS fingerprinting
Identified OS types of internal and external hosts.
SYN with no TCP options are portscans or SYN flood

Traffic by domain Identified top domains visited by campus hosts
User anonymity Tested campus IPv6 connectivity to the Internet

Table 1: P4 apps run on Camp4 benefit network operators. The
P4 apps in bold font run on real hardware switches.

switches. The apps represent a progression of increasingly sophisti-
cated hardware-efficient algorithms, including scalable traffic count-
ing, efficient join operations, and cryptography on packet-header
fields. In this section, we summarize the applications and the lessons
learned from evaluating them on the campus network; the algorith-
mic advances necessary to fit the applications in the hardware data
plane are discussed in more details in separate papers. Running these
apps on production traffic gave our network operators new insights
into the campus network, helping us build additional momentum for
supporting our research on the campus network.

4.1 Scalable Traffic Counting
As our first two use cases, we run P4 applications that efficiently
identify the small number of heavy-hitter flows, on individual links
and within packet queues. These applications estimate the contri-
butions of heavy flows to the load on links and queues, without
requiring per-flow state.

Link-level monitoring: We run a P4-based heavy-hitter detec-
tion algorithm [5] to analyze our campus traffic to and from the
public Internet. The algorithm maintains the set of heavy-hitter flow
identifiers and their corresponding sizes in the data plane, using
the programmable switch’s register memory—evicting flows with
small counts to make space for new entries as needed. Our analysis
showed that a single wired campus host dominates the campus traffic
for periods of time, exchanging a lot of data with many different
hosts. We have notified campus network operators as we suspected
malware or a compromised host. Network operators later informed
us that further analysis revealed that the host is a publicly available
mirror site that hosts various Linux/UNIX distribution images (e.g.,
Ubuntu, FreeBSD, and CentOS).

Queue-level monitoring: Our campus network operators strug-
gled with troubleshooting a router experiencing intermittent packet
losses (despite low average link utilization) for transferring large
scientific datasets. We deployed a P4 application for fine-grained
monitoring of packet queues [12] to debug this problem, by ana-
lyzing a feed of the legacy router’s ingress and egress traffic. The
P4 program identifies and reports heavy-hitter flows in the queue,
by calculating the time differences between the ingress and egress
copies of each packet, and identifying flows with many packets
queued at the same time. We found that, ironically, the heavy flows
in the queue corresponded to perfSONAR, an active-monitoring
tool for diagnosing performance problems [19, 29]. The router’s
queuing buffer is likely exhausted when many perfSONAR tests
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run concurrently. Since this discovery, the network operators tuned
the perfSONAR configuration to decrease the number of concurrent
tests. In fact, our experience with this P4 app has directly triggered
interests from a large ISP, who actually deployed the same solution
to detect microbursts in their carrier network [1].

4.2 Efficient Join Operations
More sophisticated traffic analytics require computing a “join” of
packets based on header fields. For example, monitoring perfor-
mance often involves combining information across pairs of packets
in the same TCP connection (e.g., a packet and its acknowledgment,
or the sequence numbers of a pair of consecutive packets). Also,
analyzing traffic by higher-level attributes, such as the domain name
(rather than IP address) or end-point operating system (rather than
TCP five-tuple), relies on combining information from different
packets. Doing this “join” directly in the data plane avoids the over-
head of exporting the raw data and protects user privacy by hiding
privacy-sensitive “columns” like IP addresses. More generally, doing
multiple joins can enable P4 apps that answer questions like “what
is the average round-trip time to netflix.com?”

Round-trip time: TCP round trip time (RTT) directly relates to
the user’s experience of latency. Increased RTT indicates congestion
or other abnormal behavior such as routing changes. The P4 app an-
alyzes the continuous RTT experienced by TCP flows, by matching
a TCP data packet with its corresponding acknowledgment packet
using TCP SEQ and ACK numbers—taking care to minimize erro-
neous measurements due to delayed ACKs [13]. The time elapsed
between the data packet and its acknowledgment corresponds to
the RTT between our vantage point (a border router) and the host.
Our preliminary results show that wireless hosts experience longer
RTTs within the campus, compared to wired hosts. Wireless hosts
showed an average internal RTT of 6.7 ms (90th percentile of 8 ms),
compared to 1.5 ms (90th percentile of 2 ms) for wired hosts. The in-
creased latency appears to stem from the tunneling of the data traffic
through a centralized access point controller, which enables Wi-Fi
roaming. Such information helps assess the wireless performance
on campus and provides key insights to network operators who plan
to expand the wireless infrastructure.

OS fingerprinting: Host OS type is useful information when
troubleshooting various performance and security issues. Such in-
formation can also provide statistics about the prevalence of host
device types (e.g., Android, Apple iOS), particularly in a BYOD
setting. To this end, we created a P4 program that identifies host OS
types by passively examining TCP SYN packets, a technique used in
the popular p0f software tool [38]. We then joined this information
with packet counts per client IP address, which is done in the data
plane. As the result, we get packet counts per OS type, while also
removing client IP addresses, which are sensitive information. We
ran this P4 app on a campus traffic snapshot and found that 23% of
outgoing packets (from campus to Internet) are from Linux/Android
hosts while packets from Windows and Apple devices are 35% and
42%, respectively. For incoming packets (from Internet to campus),
52%, 41%, and 6% were from Linux/Android, Windows, and Ap-
ple devices, respectively, with the rest from others. We also found
that the majority of incoming SYN packets contain no TCP options
(77%) and, hence, do not map to a known OS; for outgoing traffic,
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Figure 4: Active experiment with a public DNS server.

the proportion was less than 1%. We also observe that among incom-
ing SYN packets that see a following SYN-ACK, the proportion of
packets with no TCP options is small (0.035%). This suggests that
most incoming SYN packets with no TCP options are the result of
adversarial behavior such as port scanning or SYN flooding. Thus,
while our app may not be able to fingerprint packets with no TCP op-
tions, the absence of TCP options can be an indication of unwanted
traffic—useful for defining access-control policies.

Traffic analysis by server domain name: We developed a P4
application that counts traffic by the server domain names, rather
than IP addresses. Inspired by earlier work [16], our P4 program
identifies and parses DNS response messages, which contain the
A record that has the IP address information for a queried domain
name. The program then joins this mapping with traffic counts per
client-server IP address pair. It is also possible to specify domain
names using wildcards (e.g., *.edu, *.google.com), enabling the
program to aggregate statistics accordingly. As the result, we can get
packet and bytes counts per domain name. We analyzed a campus
trace that captures traffic from wireless and wired campus hosts
that are on subnets provisioned for consumer traffic rather than
science traffic. We identified the top 20 domains (by byte count),
which contribute about 90% of all traffic on campus. The top 20
domains include major sites, including Instagram, Facebook, Google,
YouTube, Twitter, Twitch, Amazon, Bing, and Office365, as well as
content distribution networks (CDNs) such as Limelight Networks.

4.3 Cryptographic Operations
Active traffic experiments get involved in the live delivery of traffic
between a host and the Internet. Such experiments are much more
challenging to deploy and run on a production network, compared
to passive traffic analytics. Yet, it is important to support them. To
this end, we present an active traffic experiment that we first tested
with real-world traffic traces but eventually ran as a live experiment
from our campus to a public DNS service hosted on the Internet.

Encrypting IP addresses in live traffic to protect user privacy:
Campus users reasonably worry about their privacy when accessing
public DNS services offered by companies like Google or Cloud-
flare. We implemented a lightweight in-network anonymity solution
that encrypts the campus user’s IP address when communicating
with public UDP-based services. As a P4 application, the service
does not require any end-device software installation (e.g., Tor) or
coordination other than from the campus network (e.g., IPSec VPN).
Our current implementation encrypts the campus user’s IPv4 ad-
dress to one of the public IPv6 addresses the campus owns. Each
packet is encrypted independently, without keeping per-flow state
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in the switch. To run completely in the data plane, we use the Even-
Mansour encryption scheme [7], which can perform encryption and
decryption in a single pass through the packet-processing pipeline of
a hardware switch, using only table lookups, permutation, and XORs
of bits. As shown in Figure 4, we ran our P4 app to encrypt and
decrypt a test client’s IP address as it communicates with a public
DNS server. To test our prototype with a variety of real DNS queries,
we replayed more than 3000 DNS queries (from our traces) to more
than 300 public DNS servers; all DNS responses were successfully
decrypted and delivered to the synthetic client.

5 ETHICAL DATA USE AND STEWARDSHIP
Some of the key campus stakeholders for researchers to engage
are (i) research ethics oversight entities and (ii) administrative data
use authorities. Building a foundation of trust between these par-
ticipants is crucial over the lifecycle of securing necessary permis-
sions, advancing to getting buy-in, executing safe practices, and
ultimately sharing learnings and winnings. With data use authorities,
communicating that only those parties with existing data access au-
thority—namely network operations—interact with unanonymized
campus data. And, with research ethics authorities, establishing that
research teams receive only anonymized data or analytics against
data, avoiding contact with potentially sensitive end-user or admin-
istrative data. These principles are realized by effectively creating
an organizational firewall between our academic research team and
the experiment operators.

Our university performs separate reviews to obtain researcher
access to administrative data, and to review research ethics and the
protection of human subjects. Private and other Personally Identifi-
able Information (PII) is assumed present in production traffic, and
we tap at network locations with varying degrees of traffic aggre-
gation. Prior to data collection we are required to obtain approval
to access campus data through the campus Office of Institutional
Research, and Institutional Review Board (IRB) evaluation and ap-
proval of any activity determined human subjects research. Any
use of data is required to be in compliance with applicable laws,
regulations, and any restrictions imposed by the sources of the data,
including the General Data Protection Regulation (GDPR). The re-
view process is not on a one-off basis; all researchers and research
projects are repeatedly reviewed, every two to three years.

Though administrative approvals may differ between campuses,
we have found that all stakeholders are best fully informed of all
aspects of data handling to ensure best practice adoption and ensure
the integrity of the research activity. When initially approaching our
campus partners, we found that it is crucial to stress the following
aspects of our research:

Scrubbing private and sensitive data: Our research goals rarely
require examination of packet payload data; storing it is time con-
suming and costly, so this data is discarded. Packet headers contain-
ing PII such as a campus user’s source MAC and IP addresses are
anonymized. The adequacy of our approaches is supported by using
well-known tools and published best practices for anonymizing traf-
fic from recognized experts including CAIDA [9, 10]. Our packet tap-
ping architecture feeds a processing pipeline with a line-rate packet

anonymizer (see Section 3.3), ensuring sensitive, unanonymized
headers are not stored, even briefly.

Handling remote destination IP addresses: Our processing
pipeline anonymizes all local (campus prefix-based) IP addresses,
and remote (or off-campus) IP addresses where possible. However,
in some studies remote IP addresses are used for application or
service identification. This is a murky area, as an unhashed IP ad-
dress potentially can be used to pinpoint a remote recipient on an
off-campus network. A workable strategy in this case is to establish
explicitly that identifying the individual owner of a remote address:
(i) is orthogonal to the research goals, thus will not be attempted, and
(ii) is sufficiently challenging to do correctly in general. The reasons
for this are plentiful but include that most IP addresses on the Inter-
net belong to ISPs (e.g., Verizon) or large corporations or services
(e.g., Amazon, Google), and even non-phantom destinations require
considerable effort to confidently identify a particular recipient.

Securely managing data: Our experiment data is typically man-
aged by professional IT staff and kept in a secure location, and only
authorized personnel and researchers are allowed to access the data.
Data may not be copied or moved to other locations in general.

6 CONCLUSIONS AND FUTURE WORK
Camp4 demonstrates that academic researchers can “cross the chasm”
to evaluate their novel ideas on campus networks, in part by creating,
deploying, and running data-plane applications. Our work on Camp4
is just beginning. We plan to expand Camp4 in several directions.
First, we seek to support multiple experiments concurrently, by com-
posing multiple apps together into a single P4 program (e.g., [40]).
We also expect to diversify our infrastructure with heterogeneous
data-plane targets from multiple vendors, and support building a
testbed with different network topologies. We plan to improve and
expand our mechanism for running more active experiments. Finally,
we envision expanding our testbed by working with researchers at
other institutions to deploy Camp4 on their campuses and jointly
build a larger suite of open-source P4 apps. We have begun this
inter-campus tested at regional scale with a first direct fiber con-
nection to a collaborating university with the support of a major
regional Research & Education network. We will continue to share
our research infrastructure framework and project artifacts with the
research community [27].
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