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ABSTRACT
Software-Defined Networking (SDN) allows control appli-
cations to install fine-grained forwarding policies in the un-
derlying switches. While Ternary Content Addressable Mem-
ory (TCAM) enables fast lookups in hardware switches with
flexible wildcard rule patterns, the cost and power require-
ments limit the number of rules the switches can support. To
make matters worse, these hardware switches cannot sus-
tain a high rate of updates to the rule table. In this pa-
per, we show how to give applications the illusion of high-
speed forwarding, large rule tables, and fast updates by com-
bining the best of hardware and software processing. Our
CacheFlow system “caches” the most popular rules in the
small TCAM, while relying on software to handle the small
amount of “cache miss” traffic. However, we cannot blindly
apply existing cache-replacement algorithms, because of de-
pendencies between rules with overlapping patterns. Rather
than cache large chains of dependent rules, we “splice” long
dependency chains to cache smaller groups of rules while
preserving the semantics of the policy. Experiments with
our CacheFlow prototype—on both real and synthetic work-
loads and policies—demonstrate that rule splicing makes ef-
fective use of limited TCAM space, while adapting quickly
to changes in the policy and the traffic demands.

1. INTRODUCTION
In a Software-Defined Network (SDN), a logically cen-

tralized controller manages the flow of traffic by in-
stalling simple packet-processing rules in the underlying
switches. These rules can match on a wide variety of
packet-header fields, and perform simple actions such
as forwarding, flooding, modifying the headers, and di-
recting packets to the controller. This flexibility al-
lows SDN-enabled switches to behave as firewalls, server
load balancers, network address translators, Ethernet
switches, routers, or anything in between. However,
fine-grained forwarding policies lead to a large number
of rules in the underlying switches.

In modern hardware switches, these rules are stored
in Ternary Content Addressable Memory (TCAM) [1].
A TCAM can compare an incoming packet to the pat-

terns in all of the rules at the same time, at line rate.
However, commodity switches support relatively few
rules, in the small thousands or tens of thousands [2].
Undoubtedly, emerging switches will support larger rule
tables , but TCAMs still introduce a fundamental trade-
off between rule-table size and other concerns like cost
and power. TCAMs introduce around 100 times greater
cost [3] and 100 times greater power consumption [4],
compared to conventional RAM. Plus, updating the
rules in TCAM is a slow process—today’s hardware
switches only support around 40 to 50 rule-table up-
dates per second [5, 6], which could easily constrain a
large network with dynamic policies.

Software switches may seem like an attractive alter-
native. Running on commodity servers, software switches
can process packets at around 40 Gbps on a quad-
core machine [7–9] and can store large rule tables in
main memory and (to a lesser extent) in the L1 and L2
cache. In addition, software switches can update the
rule table more than ten times faster than hardware
switches [6]. But, supporting wildcard rules that match
on many header fields is taxing for software switches,
which must resort to slow processing (such as a linear
scan) in user space to handle the first packet of each
flow [10]. So, they cannot match the “horsepower” of
hardware switches that provide hundreds of Gbps of
packet processing (and high port density).

Fortunately, traffic tends to follow a Zipf distribu-
tion, where the vast majority of traffic matches a rela-
tively small fraction of the rules [11]. Hence, we could
leverage a small TCAM to forward the vast majority
of traffic, and rely on software switches for the remain-
ing traffic. For example, an 800 Gbps hardware switch,
together with a single 40 Gbps software packet proces-
sor could easily handle traffic with a 5% “miss rate” in
the TCAM. In addition, most rule-table updates could
go to the slow-path components, while promoting very
popular rules to hardware relatively infrequently. To-
gether, the hardware and software processing would give
controller applications the illusion of high-speed packet
forwarding, large rule tables, and fast rule updates.



Figure 1: CacheFlow architecture

Our CacheFlow architecture consists of a TCAM and
a sharded collection of software switches, as shown in
Figure 1. The software switches can run on CPUs in
the data plane (e.g., network processors), as part of the
software agent on the hardware switch, or on separate
servers. CacheFlow consists of a CacheMaster mod-
ule that receives OpenFlow commands from an unmod-
ified SDN controller. CacheMaster preserves the se-
mantics of the OpenFlow interface, including the abil-
ity to update rules, query counters etc. CacheMaster
uses the OpenFlow protocol to distribute rules to un-
modified commodity hardware and software switches.
CacheMaster is a purely control-plane component, with
control sessions shown as dashed lines and data-plane
forwarding shown by solid lines.

As the name suggests, CacheFlow treats the TCAM
as a cache that stores the most popular rules. However,
we cannot simply apply existing cache-replacement al-
gorithms, because the rules can match on overlapping
sets of packets, leading to dependencies between mul-
tiple rules. Indeed, the switch we used for our exper-
iments makes just this mistake (See §5) — a bug now
addressed by our new system! Moreover, while earlier
work on IP route caching [11–14] considered rule depen-
dencies, IP prefixes only have simple “containment” re-
lationships, rather than patterns that partially overlap.
The partial overlaps can also lead to long dependency
chains, and this problem is exacerbated by applications
that combine multiple functions (like server load bal-
ancing and routing, as can be done in Frenetic [15] and
CoVisor [16]) to generate many more rules.

To handle rule dependencies, we construct a compact
representation of the given prioritized list of rules as
an annotated directed acyclic graph (DAG), and de-
sign incremental algorithms for adding and removing
rules to this data structure. Our cache-replacement al-
gorithms use the DAG to decide which rules to place in
the TCAM. To preserve rule-table space for the rules
that match a large fraction of the traffic, we design a
novel “splicing” technique that breaks long dependency
chains. Splicing creates a few new rules that “cover” a
large number of unpopular rules, to avoid polluting the

cache. The technique extends to handle changes in the
rules, as well as changes in their popularity over time.

In summary, we make the following key technical con-
tributions:

• Incremental rule-dependency analysis: We
develop an algorithm for incrementally analyzing
and maintaining rule dependencies.

• Novel cache-replacement strategies: We de-
velop new algorithms that only cache heavy-hitting
rules along with a small set of dependencies.

• Implementation and evaluation: We discuss
how CacheFlow preserves the semantics of the Open-
Flow interface. Our experiments on both synthetic
and real workloads show a cache-hit rate of 90%
of the traffic by caching less than 5% of the rules.

A preliminary version of this work appeared in a work-
shop paper [17] which briefly discussed ideas about rule
dependencies and caching algorithms. In this paper,
we develop novel algorithms that help efficiently deal
with practical deployment constraints like incremental
updates to policies and high TCAM update times. We
also evaluate CacheFlow by implementing large policies
on actual hardware as opposed to simulations done us-
ing much smaller policies in the workshop version.

2. IDENTIFYING RULE DEPENDENCIES
In this section, we show how rule dependencies affect

the correctness of rule-caching techniques and where
such dependencies occur. We show how to represent
cross-rule dependencies as a graph, and present efficient
algorithms for incrementally computing the graph.

2.1 Rule Dependencies
The OpenFlow policy on a switch consists of a set of

packet-processing rules. Each rule has a pattern, a pri-
ority, a set of actions, and counters. When a packet ar-
rives, the switch identifies the highest-priority matching
rules, performs the associated actions and increments
the counters. CacheFlow implements these policies by
splitting the set of rules into two groups—one residing
in the TCAM and another in a software switch.

The semantics of CacheFlow is that (1) the highest-
priority matching rule in the TCAM is applied, if such
a rule exists, and (2) if no matching rule exists in the
TCAM, then the highest-priority rule in the software
switch is applied. As such, not all splits of the set of
rules lead to valid implementations. If we do not cache
rules in the TCAM correctly, packets that should hit
rules in the software switch may instead hit a cached
rule in the TCAM, leading to incorrect processing.

In particular, dependencies may exist between rules
with differing priorities, as shown in the example in Fig-
ure 2(a). If the TCAM can store four rules, we cannot
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(a) Example rule table (b) Incremental DAG insert (c) Incremental DAG delete

Figure 2: Constructing the rule dependency graph (edges annotated with reachable packets)

select the four rules with highest traffic volume (i.e., R2,
R3, R5, and R6), because packets that should match
R1 (with pattern 000) would match R2 (with pattern
00*); similarly, some packets (say with header 110) that
should match R4 would match R5 (with pattern 1*0).
That is, rules R2 and R5 depend on rules R1 and R4,
respectively. In other words, there is a dependency from
rule R1 to R2 and from rule R4 to R5. If R2 is cached
in the TCAM, R1 should also be cached to preserve the
semantics of the policy, similarly with R5 and R4.

A direct dependency exists between two rules if the
patterns in the rules intersect (e.g., R2 is dependent on
R1). When a rule is cached in the TCAM, the cor-
responding dependent rules should also move to the
TCAM. However, simply checking for intersecting pat-
terns does not capture all of the policy dependencies.
For example, going by this definition, the rule R6 only
depends on rule R5. However, if the TCAM stored
only R5 and R6, packets (with header 110) that should
match R4 would inadvertently match R5 and hence
would be incorrectly processed by the switch. In this
case, R6 also depends indirectly on R4 (even though
the matches of R4 and R6 do not intersect), because
the match for R4 overlaps with that of R5.

2.2 Where do complex dependencies arise?
Partial overlaps. Complex dependencies do not

arise in traditional destination prefix forwarding be-
cause a prefix is dependent only on prefixes that are
strict subsets of itself (nothing else). However, in an
OpenFlow rule table, where rules have priorities and can
match on multiple header fields, indirect dependencies
occur because of partial overlaps between rules—both
R4 and R6 only partially overlap with R5. Hence, even
though R4 and R6 do not have a direct dependency,
they have an indirect dependency due to R5’s own de-
pendence on R6. The second column of Figure 2(a)
illustrates such a situation. Here, one might interpret
the first two bits of R4, R5, and R6 as matching a des-
tination IP, and the last bit as matching a port.
Policy composition. Frenetic [15], Pyretic [18],

CoVisor [16] and other high-level SDN programming
platforms support abstractions for constructing com-
plex network policies from a collection of simpler com-

ponents. While the separate components may exhibit
few dependencies, when they are compiled together, the
composite rule tables may contain many complex de-
pendencies. For instance, Figure 3(c) presents an illus-
trative rule table drawn from the CoVisor project [16].
The corresponding dependency graph for the rules is
shown in Figure 3(d). Here, the dependency between
rules R3 and R4 was not seen in the two separate com-
ponents that defined the high-level policy, but does arise
when they are composed.
Dependencies in REANNZ policies. We also an-

alyzed a number of policies drawn from real networks
to determine the nature of the dependencies they ex-
hibit. As an example, Figure 3(a) shows part of an OF
policy in use at the REANNZ research network [19].
The corresponding dependency graph can be seen in
Figure 3(b). Now, one might conjecture that a network
operator could manually rewrite the policy to reduce the
number of dependencies and thereby facilitate caching.
However, doing so is bound to be extremely tedious and
highly error prone. Moreover, a good split may depend
on the dynamic properties of network traffic. We argue
that such tasks are much better left to algorithms, such
as the ones we propose in this paper. An expert can
develop a single caching algorithm, validate it and then
deploy it on any policy. Such a solution is bound to be
more reliable than asking operators to manually rewrite
policies.
Is this a temporary problem? Even if the TCAM

available on future switches grows, network operators
will only become greedier in utilizing these resources
— in the same way that with increasing amounts of
DRAM, user applications have begun to consume in-
creasing amounts of memory in conventional comput-
ers. Newer switches have multi-table pipelines [20] that
can help avoid rule blowup from policy composition
but the number of rules is still limited by the available
TCAM. Our algorithms can be used to cache rules inde-
pendently in each table (which maximizes the cache-hit
traffic across all tables). Further, even high-end soft-
ware switches like the OpenVSwitch (OVS) spend con-
siderable effort [10] to cache popular OF rules in the ker-
nel so that majority of the traffic does not get processed
by the user-level classifier which is very slow. Thus, the
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(a) Reanzz Rule Table (b) Reanzz Subgraph (c) CoVisor Example Table (d) CoVisor Example Graph

Figure 3: Dependent-set vs. cover-set algorithms (L0 cache rules in red)

rise of software switches may not completely avoid the
problem of correctly splicing policies to cache them in
the faster classifier process. Thus we believe our efforts
are widely applicable and are going to be relevant in the
long term despite the near term industry trends.

2.3 Constructing the Dependency DAG

Algorithm 1: Building the dependency graph
// Add dependency edges

1 func addParents(R:Rule, P:Parents) begin
2 deps = (∅);

// p.o : priority order
3 packets = R.match;
4 for each Rj in P in descending p.o: do
5 if (packets ∩ Rj .match) != ∅ then
6 deps = deps ∪ {(R,Rj)};
7 reaches(R,Rj) = packets ∩ Rj ;
8 packets = packets - Rj .match;

9 return deps;

10 for each R:Rule in Pol:Policy do
11 potentialParents = [Rj in Pol | Rj .p.o ≤ R.p.o];
12 addParentEdges(R, potentialParents);

A concise way to capture all the dependencies in a
rule table is to construct a directed graph where each
rule is a node, and each edge captures a direct depen-
dency between a pair of rules as shown in Figure 2(b).
A direct dependency exists between a child rule Ri and
a parent rule Rj under the following condition—if Ri is
removed from the rule table, packets that are supposed
to hit Ri will now hit rule Rj . The edge between the
rules in the graph is annotated by the set of packets that
reach the parent from the child. Then, the dependen-
cies of a rule consist of all descendants of that rule (e.g.,
R1 and R2 are the dependencies for R3). The rule R0

is the default match-all rule (matches all packets with
priority 0) added to maintain a connected rooted graph
without altering the overall policy.

To identify the edges in the graph, for any given child
rule R, we need to find out all the parent rules that the
packets matching R can reach. This can be done by
taking the symbolic set of packets matching R and iter-
ating them through all of the rules with lower priority
than R that the packets might hit.

To find the rules that depend directly on R, Algo-
rithm 1 scans the rules Ri with lower priority than R
(line 14) in order of decreasing priority. The algorithm

keeps track of the set of packets that can reach each
successive rule (the variable packets). For each such
new rule, it determines whether the predicate associ-
ated with that rule intersects1 the set of packets that
can reach that rule (line 5). If it does, there is a de-
pendency. The arrow in the dependency edge points
from the child R to the parent Ri. In line 7, the depen-
dency edge also stores the packet space that actually
reaches the parent Ri. In line 8, before searching for
the next parent, because the rule Ri will now occlude
some packets from the current reaches set, we subtract
Ri’s predicate from it.

This compact data structure captures all dependen-
cies because we track the flow of all the packets that
are processed by any rule in the rule table. The data
structure is a directed acyclic graph (DAG) because if
there is an edge from Ri to Rj then the priority of Ri

is always strictly greater than priority of Rj . Note that
the DAG described here is not a topological sort (we
are not imposing a total order on vertices of a graph
but are computing the edges themselves). Once such
a dependency graph is constructed, if a rule R is to
be cached in the TCAM, then all the descendants of
R in the dependency graph should also be cached for
correctness.

2.4 Incrementally Updating The DAG
Algorithm 1 runs in O(n2) time where n is the num-

ber of rules. As we show in Section 6, running the static
algorithm on a real policy with 180K rules takes around
15 minutes, which is unacceptable if the network needs
to push a rule into the switches as quickly as possible
(say, to mitigate a DDoS attack). Hence we describe
an incremental algorithm that has considerably smaller
running time in most practical scenarios—just a few
milliseconds for the policy with 180K rules.

Figure 2(b) shows the changes in the dependency
graph when the rule R5 is inserted. All the changes
occur only in the right half of the DAG because the
left half is not affected by the packets that hit the new
rule. A rule insertion results in three sets of updates
to the DAG: (i) existing dependencies (like (R4,R0))
change because packets defining an existing dependency
are impacted by the newly inserted rule, (ii) creation

1Symbolic intersection and subtraction of packets can be
done using existing techniques [21].

4



Algorithm 2: Incremental DAG insert
1 func FindAffectedEdges(rule, newRule) begin
2 for each C in Children(rule) do
3 if Priority(C) > priority(newRule) then
4 if reaches(C,rule) ∩ newRule.match != ∅ then
5 reaches(C, rule) -= newRule.match;
6 add (C, Node) to affEdges

7 else
8 if Pred(C) ∪ newRule.match != ∅ then
9 add C to potentialParents;

10 FindAffectedEdges(C, newRule);

11 func processAffectedEdges(affEdges) begin
12 for each childList in groupByChild(affEdges) do
13 deps = deps ∪ {(child, newRule)};
14 edgeList = sortByParent(childList);
15 reaches(child, newRule) = reaches(edgeList[0]);

16 func Insert(G=(V, E), newNode) begin
17 affEdges = { };
18 potentialParents = [R0];
19 FindAffectedEdges(R0, newNode);
20 ProcessAffectedEdges(affEdges);
21 addParents(newNode, potentialParents);

of dependencies with the new rule as the parent (like
(R4,R5)) because packets from old rules (R4) are now
hitting the new rule (R5), and (iii) creation of depen-
dencies (like (R5,R6)) because the packets from the new
rule (R5) are now hitting an old rule (R6). Algorithm 1
takes care of all three dependencies by it rebuilding all
dependencies from scratch. The challenge for the in-
cremental algorithm is to do the same set of updates
without touching the irrelevant parts of the DAG — In
the example, the left half of the DAG is not affected by
packets that hit the newly inserted rule.

2.4.1 Incremental Insert
In the incremental algorithm, the intuition is to use

the reaches variable (packets reaching the parent from
the child) cached for each existing edge to recursively
traverse only the necessary edges that need to be up-
dated. Algorithm 2 proceeds in three phases:
(i) Updating existing edges (lines 1–10): While

finding the affected edges, the algorithm recursively tra-
verses the dependency graph beginning with the default
rule R0. It checks if the newRule intersects any edge
between the current node and its children. It updates
the intersecting edge and adds it to the set of affected
edges (line 4). However, if newRule is higher in the pri-
ority chain, then the recursion proceeds exploring the
edges of the next level (line 9). It also collects the rules
that could potentially be the parents as it climbs up the
graph (line 8). This way, we end up only exploring the
relevant edges and rules in the graph.
(ii) Adding directly dependent children (lines

11-15): In the second phase, the set of affected edges
collected in the first phase are grouped by their children.
For each child, an edge is created from the child to the

Algorithm 3: Incremental DAG delete
1 func Delete(G=(V, E), oldRule) begin
2 for each c in Children(oldRule) do
3 potentialParents = Parents(c) - {oldRule};
4 for each p in Parents(oldRule) do
5 if reaches(c, oldRule) ∩ p.match != ∅ then
6 add p to potentialParents

7 addParents(C, potentialParents)

8 Remove all edges involving oldRule

newRule using the packets from the child that used to
reach its highest priority parent (line 14). Thus all the
edges from the new rule to its children are created.
(iii) Adding directly dependent parents (line

21): In the third phase, all the edges that have newRule
as the child are created using the addParents method
described in Algorithm 1 on all the potential parents
collected in the first phase.

In terms of the example, in phase 1, the edge (R4,
R0) is the affected edge and is updated with reaches
that is equal to 111 (11* - 1*0). The rules R0 and R6

are added to the new rule’s potential parents. In phase
2, the edge (R4,R5) is created. In phase 3, the function
addParents is executed on parents R6 and R0. This
results in the creation of edges (R5,R6) and (R5,R0).
Running Time: Algorithm 2 clearly avoids traversing

the left half of the graph which is not relevant to the new
rule. While in the worst case, the running time is linear
in the number of edges in the graph, for most practical
policies, the running time is linear in the number of
closely related dependency groups2.

2.4.2 Incremental Delete
The deletion of a rule leads to three sets of updates to

a dependency graph: (i) new edges are created between
other rules whose packets used to hit the removed rule,
(ii) existing edges are updated because more packets
are reaching this dependency because of the absence of
the removed rule, and (iii) finally, old edges having the
removed rule as a direct dependency are deleted.

For the example shown in Figure 2(c), where the
rule R5 is deleted from the DAG, existing edges (like
(R4,R0)) are updated and all three involving R5 are cre-
ated. In this example, however, no new edge is created.
But it is potentially possible in other cases (consider
the case where rule R2 is deleted which would result in
a new edge between R1 and R3).

An important observation is that unlike an incremen-
tal insertion (where we recursively traverse the DAG
beginning with R0), incremental deletion of a rule can
be done local to the rule being removed. This is be-
cause all three sets of updates involve only the children
2Since the dependency graph usually has a wide bush of iso-
lated prefix dependency chains—like the left half and right
half in the example DAG—which makes the insertion cost
equal to the number of such chains.

5



(a) Dependent Set Algo. (b) Cover Set Algo. (c) Mixed Set Algo

Figure 4: Dependent-set vs. cover-set algorithms (L0 cache rules in red)

or parents of the removed rule. For example, a new
edge can only be created between a child and a parent
of the removed rule3.

Algorithm 3 incrementally updates the graph when
a new rule is deleted. First, in lines 2-6, the algorithm
checks if there is a new edge possible between any child-
parent pair by checking whether the packets on the edge
(child, oldRule) reach any parent of oldRule (line 5).
Second, in lines 3 and 7, the algorithm also collects the
parents of all the existing edges that may have to be
updated (line 3). It finally constructs the new set of
edges by running the addParents method described in
Algorithm 1 to find the exact edges between the child
c and its parents (line 7). Third, in line 8, the rules
involving the removed rule as either a parent or a child
are removed from the DAG.
Running time: This algorithm is dominated by the

two for loops (in lines 2 and 4) and may also have a
worst case O(n2) running time (where n is the number
of rules) but in most practical policy scenarios, the run-
ning time is much smaller (owing to the small number
of children/parents for any given rule in the DAG).

3. CACHING ALGORITHMS
In this section, we present CacheFlow’s algorithm for

placing rules in a TCAMwith limited space. CacheFlow
selects a set of important rules from among the rules
given by the controller to be cached in the TCAM, while
redirecting the cache misses to the software switches.

We first present a simple strawman algorithm to build
intuition, and then present new algorithms that avoids
caching low-weight rules. Each rule is assigned a “cost”
corresponding to the number of rules that must be in-
stalled together and a “weight” corresponding to the
number of packets expected to hit that rule 4. Contin-
uing with the running example from the previous sec-
tion, R6 depends on R4 and R5, leading to a cost of

3A formal proof is omitted for lack of space and is left for
the reader to verify. In the example where R2 is deleted,
a new rule can only appear between R1 and R3. Similarly
when R5 is deleted, a new rule could have appeared between
R4 and R6 but does not because the rules do not overlap.
4In practice, weights for rules are updated in an online fash-
ion based on the packet count in a sliding window of time.

3, as shown in Figure 4(a). In this situation, R2 and
R6 hold the majority of the weight, but cannot be in-
stalled simultaneously on a TCAM with capacity 4, as
installing R6 has a cost of 3 and R2 bears a cost of 2.
Hence together they do not fit. The best we can do is to
install rules R1, R4, R5, and R6 which maximizes total
weight, subject to respecting all dependencies.

3.1 Optimization: NP Hardness
The input to the rule-caching problem is a depen-

dency graph of n rules R1, R2, . . . , Rn, where rule Ri

has higher priority than rule Rj for i < j. Each rule
has a match and action, and a weight wi that captures
the volume of traffic matching the rule. There are de-
pendency edges between pairs of rules as defined in the
previous section. The output is a prioritized list of C
rules to store in the TCAM5. The objective is to maxi-
mize the sum of the weights for traffic that “hits” in the
TCAM, while processing “hit” packets according to the
semantics of the original rule table.

Maximize

n∑
i=1

wici

subject to
n∑

i=1

ci ≤ C; ci ∈ {0, 1}

ci − cj ≥ 0 if Ri.is_descendant(Rj)

The above optimization problem is NP-hard in n and
k. It can be reduced from the densest k-subgraph prob-
lem which is known to be NP-hard. We outline a sketch
of the reduction here between the decision versions of
the two problems. Consider the decision problem for
the caching problem - Is there a subset of C rules from
the rule table which respect the directed dependencies
and have a combined weight of atleast W . The decision
problem for the densest k-subgraph problem is to ask
if there is a subgraph incident on k vertices that has
at least d edges in a given undirected graph G=(V,E)
(This generalizes the well known CLIQUE problem for
d=

(
k
2

)
, hence is hard).

5Note that CacheFlow does not simply install rules on a
cache miss. Instead, CacheFlow makes decisions based on
traffic measurements over the recent past. This is important
to defend against cache-thrashing attacks where an adver-
sary generates low-volume traffic spread across the rules.
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Figure 5: Reduction from densest k-subgraph

Consider the reduction shown in Figure 5. For a given
instance of the densest k-subgraph problem with param-
eters k and d, we construct an instance of the cache-
optimization problem in the following manner. Let the
vertices ofG′ be nodes indexed by the vertices and edges
of G. The edges of G′ are constructed as follows : for ev-
ery undirected edge e = (vi, vj) in G, there is a directed
edge from e to vi and vj . This way, if e is chosen to in-
clude in the cache, vi and vj should also be chosen. Now
we assign weights to nodes in V ′ as follows : w(v) = 1
for all v ∈ V and w(e) = n + 1 for all e ∈ E. Now let
C = k + d and W = d(n + 1). If you can solve this
instance of the cache optimization problem, then you
have to choose at least d of the edges e ∈ E because
you cannot reach the weight threshold with less than d
edge nodes (since their weight is much larger than nodes
indexed by V ). Since C cannot exceed d + k, because
of dependencies, one will also end up choosing less then
k vertices v ∈ V to include in the cache. Thus this will
solve the densest k-subgraph instance.

3.2 Dependent-Set: Caching Dependent Rules
No polynomial time approximation scheme (PTAS)

is known yet for the densest k-subgraph problem. It
is also not clear whether a PTAS for our optimization
problem can be derived directly from a PTAS for the
densest subgraph problem. Hence, we use a heuristic
that is modeled on a greedy PTAS for the Budgeted
Maximum Coverage problem [22] which is similar to
the formulation of our problem. In our greedy heuris-
tic, at each stage, the algorithm chooses a set of rules
that maximizes the ratio of combined rule weight to
combined rule cost (∆W

∆C ), until the total cost reaches
k. This algorithm runs in O(nk) time.

On the example rule table in Figure 4(a), the greedy
algorithm selectsR6 first (and its dependent set {R4, R5}),
and then R1 which brings the total cost to 4. Thus
the set of rules in the TCAM are R1, R4, R5, and R6

which is the optimal. We refer to this algorithm as the
dependent-set algorithm.

3.3 Cover-Set: Splicing Dependency Chains
Respecting rule dependencies can lead to high costs,

especially if a high-weight rule depends on many low-
weight rules. For example, consider a firewall that has a
single low-priority “accept” rule that depends on many
high-priority “deny” rules that match relatively little

(a) Dep. Set Cost (b) Cover Set Cost

Figure 6: Dependent-set vs. cover-set Cost

traffic. Caching the one “accept” rule would require
caching many “deny” rules. We can do better than past
algorithms by modifying the rules in various semantics-
preserving ways, instead of simply packing the existing
rules into the available space—this is the key observa-
tion that leads to our superior algorithm. In particular,
we “splice” the dependency chain by creating a small
number of new rules that cover many low-weight rules
and send the affected packets to the software switch.

For the example in Figure 4(a), instead of selecting
all dependent rules for R6, we calculate new rules that
cover the packets that would otherwise incorrectly hit
R6. The extra rules direct these packets to the soft-
ware switches, thereby breaking the dependency chain.
For example, we can install a high-priority rule R∗5 with
match 1*1* and action forward_to_Soft_switch,6 along
with the low-priority rule R6. Similarly, we can create
a new rule R∗1 to break dependencies on R2. We avoid
installing higher-priority, low-weight rules like R4, and
instead have the high-weight rules R2 and R6 inhabit
the cache simultaneously, as shown in Figure 4(b).

More generally, the algorithm must calculate the cover
set for each rule R. To do so, we find the immediate
ancestors of R in the dependency graph and replace the
actions in these rules with a forward_to_Soft_Switch
action. For example, the cover set for rule R6 is the
rule R∗5 in Figure 4(b); similarly, R∗1 is the cover set for
R2. The rules defining these forward_to_Soft_switch
actions may also be merged, if necessary.7 The cardi-
nality of the cover set defines the new cost value for
each chosen rule. This new cost is strictly less than or
equal to the cost in the dependent set algorithm. The
new cost value is much less for rules with long chains of
dependencies. For example, the old dependent set cost
for the rule R6 in Figure 4(a) is 3 as shown in the rule
cost table whereas the cost for the new cover set for R6

in Figure 4(b) is only 2 since we only need to cache R∗5
and R6. To take a more general case, the old cost for
the red rule in Figure 6(a) was the entire set of ances-
6This is just a standard forwarding action out some port
connected to a software switch.
7To preserve OpenFlow semantics pertaining to hardware
packet counters, policy rules cannot be compressed. How-
ever, we can compress the intermediary rules used for for-
warding cache misses, since the software switch can track
the per-rule traffic counters.
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tors (in light red), but the new cost (in Figure 6(b)) is
defined just by the immediate ancestors (in light red).

3.4 Mixed-Set: An Optimal Mixture
Despite decreasing the cost of caching a rule, the

cover-set algorithm may also decrease the weight by
redirecting the spliced traffic to the software switch.
For example, for caching the rule R2 in Figure 4(c),
the dependent-set algorithm is a better choice because
the traffic volume processed by the dependent set in the
TCAM is higher, while the cost is the same as a cover
set. In general, as shown in Figure 6(b), cover set seems
to be a better choice for caching a higher dependency
rule (like the red node) compared to a lower dependency
rule (like the blue node).

In order to deal with cases where one algorithm may
do better than the other, we designed a heuristic that
chooses the best of the two alternatives at each itera-
tion. As such, we consider a metric that chooses the best
of the two sets i.e., max(

∆Wdep

∆Cdep
, ∆Wcover

∆Ccover
). Then we can

apply the same greedy covering algorithm with this new
metric to choose the best set of candidate rules to cache.
We refer to this version as the mixed-set algorithm.

3.5 Updating the TCAM Incrementally
As the traffic distribution over the rules changes over

time, the set of cached rules chosen by our caching al-
gorithms also change. This would mean periodically
updating the TCAM with a new version of the policy
cache. Simply deleting the old cache and inserting the
new cache from scratch is not an option because of the
enormous TCAM rule insertion time. It is important to
minimize the churn in the TCAM when we periodically
update the cached rules.

Updating just the difference will not work.
Simply taking the difference between the two sets

of cached rules—and replacing the stale rules in the
TCAM with new rules (while retaining the common set
of rules)—can result in incorrect policy snapshots on
the TCAM during the transition. This is mainly be-
cause TCAM rule update takes time and hence packets
can be processed incorrectly by an incomplete policy
snapshot during transition. For example, consider the
case where the mixed-set algorithm decides to change
the cover-set of rule R6 to its dependent set. If we
simply remove the cover rule (R∗5) and then install the
dependent rules (R5,R4), there will be a time period
when only the rule R6 is in the TCAM without either
its cover rules or the dependent rules. This is a policy
snapshot that can incorrectly process packets while the
transition is going on.

Exploiting composition of mixed sets.
A key property of the algorithms discussed so far is

that each chosen rule along with its mixed (cover or

dependent) set can be added/removed from the TCAM
independently of the rest of the rules. In other words,
the mixed-sets for any two rules are easily composable
and decomposable. For example, in Figure 6(b), the
red rule and its cover set can be easily added/removed
without disturbing the blue rule and its dependent set.
In order to push the new cache in to the TCAM, we
first decompose/remove the old mixed-sets (that are not
cached anymore) from the TCAM and then compose
the TCAM with the new mixed sets. We also maintain
reference counts from various mixed sets to the rules
on TCAM so that we can track rules in overlapping
mixed sets. Composing two candidate rules to build a
cache would simply involve merging their correspond-
ing mixed-sets (and incrementing appropriate reference
counters for each rule) and decomposing would involve
checking the reference counters before removing a rule
from the TCAM 8. In the example discussed above, if
we want to change the cover-set of rule R6 to its de-
pendent set on the TCAM, we first delete the entire
cover-set rules (including rule R6) and then install the
entire dependent-set of R6, in priority order.

4. CACHEMASTER DESIGN
As shown in Figure 1, CacheFlow has a CacheMaster

module that implements its control-plane logic. In this
section, we describe how CacheMaster directs “cache-
miss” packets from the TCAM to the software switches,
using existing switch mechanisms and preserves the se-
mantics of OpenFlow.

4.1 Scalable Processing of Cache Misses
CacheMaster runs the algorithms in Section 3 to com-

pute the rules to cache in the TCAM. The cache misses
are sent to one of the software switches, which each store
a copy of the entire policy. CacheMaster can shard the
cache-miss load over the software switches.

Using the group tables in OpenFlow 1.1+, the hard-
ware switch can apply a simple load-balancing policy.
Thus the forward_to_SW_switch action (used in Fig-
ure 4) forwards the cache-miss traffic—say, matching
a low-priority “catch-all” rule—to this load-balancing
group table in the switch pipeline, whereupon the cache-
miss traffic can be distributed over the software switches.

4.2 Preserving OpenFlow Semantics
To work with unmodified controllers and switches,

CacheFlow preserves the semantics of the OpenFlow in-
terface, including rule priorities and counters, as well as
features like packet_ins, barriers, and rule timeouts.
Preserving inports and outports:

8The intuition is that if a rule has a positive reference count,
then either its dependent-set or the cover-set is also present
on the TCAM and hence is safe to leave behind during the
decomposition phase
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CacheMaster installs three kinds of rules in the hard-
ware switch: (i) fine-grained rules that apply the cached
part of the policy (cache-hit rules), (ii) coarse-grained
rules that forward packets to a software switch (cache-
miss rules), and (iii) coarse-grained rules that handle re-
turn traffic from the software switches, similar to mech-
anisms used in DIFANE [23]. In addition to matching
on packet-header fields, an OpenFlow policy may match
on the inport where the packet arrives. Therefore, the
hardware switch tags cache-miss packets with the in-
put port (e.g., using a VLAN tag) so that the software
switches can apply rules that depend on the inport9.
The rules in the software switches apply any “drop” or
“modify” actions, tag the packets for proper forwarding
at the hardware switch, and direct the packet back to
the hardware switch. Upon receiving the return packet,
the hardware switch simply matches on the tag, pops
the tag, and forwards to the designated output port(s).
Packet in messages: If a rule in the TCAM has an

action that sends the packet to the controller, CacheMas-
ter simply forwards the the packet_in message to the
controller. However, for rules on the software switch,
CacheMaster must transform the packet_in message
by (i) copying the inport from the packet tag into the
inport field of the packet_in message and (ii) stripping
the tag from the packet before sending to the controller.
Traffic counts, barrier messages, and rule time-

outs: CacheFlow preserves the semantics of OpenFlow
constructs like queries on traffic statistics, barrier mes-
sages, and rule timeouts by having CacheMaster emu-
late these features. For example, CacheMaster main-
tains packet and byte counts for each rule installed by
the controller, updating its local information each time
a rule moves to a different part of the “cache hierar-
chy.” Similarly, CacheMaster emulates rule timeouts
by installing rules without timeouts, and explicitly re-
moving the rules when the software timeout expires.
For barrier messages, CacheMaster first sends a bar-
rier request to all the switches, and waits for all of
them to respond before sending a barrier reply to the
controller. In the meantime, CacheMaster buffers all
messages from the controller before distributing them
among the switches.

5. COMMODITY SWITCH AS THE CACHE
The hardware switch used as a cache in our system

is a Pronto-Pica8 3290 switch running PicOS 2.1.3 sup-
9Tagging the cache-miss packets with the inport can lead
to extra rules in the hardware switch. In several practical
settings, the extra rules are not necessary. For example, in
a switch used only for layer-3 processing, the destination
MAC address uniquely identifies the input port, obviating
the need for a separate tag. Newer version of OpenFlow
support switches with multiple stages of tables, allowing us
to use one table to push the tag and another to apply the
(cached) policy.
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porting OpenFlow. We uncovered several limitations of
the switch that we had to address in our experiments:
Incorrect handling of large rule tables: The

switch has an ASIC that can hold 2000 OpenFlow rules.
If more than 2000 rules are sent to the switch, 2000 of
the rules are installed in the TCAM and the rest in the
software agent. However, the switch does not respect
the cross-rule dependencies when updating the TCAM,
leading to incorrect forwarding behavior! Since we can-
not modify the (proprietary) software agent, we simply
avoid triggering this bug by assuming the rule capacity
is limited to 2000 rules. Interestingly, the techniques
presented in this paper are exactly what the software
agent should use to fix this bug!
Slow processing of control commands: The switch

is slow at updating the TCAM and querying the traffic
counters. The time required to update the TCAM is a
non-linear function of the number of rules being added
or deleted, as shown in Figure 7. While the first 500
rules take 6 seconds to add, the next 1500 rules takes
almost 2 minutes to install. During this time, querying
the switch counters easily led to the switch CPU hitting
100% utilization and, subsequently, to the switch dis-
connecting from the controller. In order to get around
this, we wait till the set of installed rules is relatively
stable to start querying the counters at regular inter-
vals and rely on counters in the software switch in the
meantime.

6. PROTOTYPE AND EVALUATION
We implemented a prototype of CacheFlow in Python

using the Ryu controller library so that it speaks Open-
Flow to the switches. On the north side, CacheFlow
provides an interface which control applications can use
to send FlowMods to CacheFlow, which then distributes
them to the switches. At the moment, our prototype
supports the semantics of the OpenFlow 1.0 features
mentioned earlier (except for rule timeouts) transpar-
ently to both the control applications and the switches.

We use the Pica8 switch as the hardware cache, con-
nected to an Open vSwitch 2.1.2 multithread software
switch running on an AMD 8-core machine with 6GB
RAM. To generate data traffic, we connected two host
machines to the Pica8 switch and use tcpreplay to send
packets from one host to the other.
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Figure 8: Cache-hit rate vs. TCAM size for three algorithms and three policies (with x-axis on log scale)

6.1 Cache-hit Rate
We evaluate our prototype against three policies and

their corresponding packet traces: (i) A publicly avail-
able packet trace from a real data center and a synthetic
policy, (ii) An educational campus network routing pol-
icy and a synthetic packet trace, and (iii) a real Open-
Flow policy and the corresponding packet trace from an
Internet eXchange Point (IXP). We measure the cache-
hit rate achieved on these policies using three caching
algorithms (dependent-set, cover-set, and mixed-set).
The cache misses are measured by using ifconfig on
the software switch port and then the cache hits are cal-
culated by subtracting the cache misses from the total
packets sent as reported by tcpreplay. All the results
reported here are made by running the Python code
using PyPy to make the code run faster.
REANNZ. Figure 8(a) shows results for an SDN-

enabled IXP that supports the REANNZ research and
education network [19]. This real-world policy has 460
OpenFlow 1.0 rules matching on multiple packet head-
ers like inport, dst_ip, eth_type, src_mac, etc. Most
dependency chains have depth 1 (some light-hitting rules
have complex dependencies as shown in Figure 3(b)).
We replayed a two-day traffic trace from the IXP, and
updated the cache every two minutes and measured the
cache-hit rate over the two-day period. Because of the
many shallow dependencies, all three algorithms have
the same performance. The mixed-set algorithm sees a
cache hit rate of 84% with a hardware cache of just 2%
of the rules; with just 10% of the rules, the cache hit
rate increases to as much as 97%.
Stanford Backbone. Figure 8(b) shows results for

a real-world Cisco router configuration on a Stanford
backbone router [24]. which we transformed into an
OpenFlow policy. The policy has 180K OpenFlow 1.0
rules that match on the destination IP address, with
dependency chains varying in depth from 1 to 8. We
generated a packet trace matching the routing policy
by assigning traffic volume to each rule drawn from a
Zipf [11] distribution. The resulting packet trace had
around 30 million packets randomly shuffled over 15
minutes. The mixed-set algorithm does the best among
all three and dependent-set does the worst because there
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is a mixture of shallow and deep dependencies. While
there are differences in the cache-hit rate, all three algo-
rithms achieve at least 88% hit rate at the total capacity
of 2000 rules (which is just 1.1% of the total rule table).
Note that CacheFlow was able to react effectively to
changes in the traffic distribution for such a large num-
ber of rules (180K in total) and the software switch was
also able to process all the cache misses at line rate.
Note that installing the same number of rules in the
TCAM of a hardware switch, assuming that TCAMs
are 80 times more expensive than DRAMs, requires one
to spend 14 times more money on the memory unit.
CAIDA. The third experiment was done using the

publicly available CAIDA packet trace taken from the
Equinix datacenter in Chicago [25]. The packet trace
had a total of 610 million packets sent over 30 minutes.
Since CAIDA does not publish the policy used to pro-
cess these packets, we built a policy by extracting for-
warding rules based on the destination IP addresses of
the packets in the trace. We obtained around 14000 /20
IP destination based forwarding rules. This was then
sequentially composed [18] with an access-control policy
that matches on fields other than just the destination
IP address. The ACL was a chain of 5 rules that match
on the source IP, the destination TCP port and inport
of the packets which introduce a dependency chain of
depth 5 for each destination IP prefix. This composition
resulted in a total of 70K OpenFlow rules that match
on multiple header fields. This experiment is meant to
show the dependencies that arise from matching on var-
ious fields of a packet and also the explosion of depen-
dencies that may arise out of more sophisticated poli-
cies. Figure 8(c) shows the cache-hit percentage under
various TCAM rule capacity restrictions. The mixed-
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Figure 10: Performance of Incremental Algorithms for DAG and TCAM update

set and cover-set algorithms have similar cache-hit rates
and do much better than the dependent-set algorithm
consistently because they splice every single dependency
chain in the policy. For any given TCAM size, mixed-
set seems to have at least 9% lead on the cache-hit rate.
While mixed-set and cover-set have a hit rate of around
94% at the full capacity of 2000 rules (which is just 3%
of the total rule table), all three algorithms achieve at
least an 85% cache-hit rate.
Latency overhead. Figure 9 shows the latency in-

curred on a cache-hit versus a cache-miss. The latency
was measured by attaching two extra hosts to the switch
while the previously CAIDA packet trace was being run.
Extra rules initialized with heavy volume were added
to the policy to process the ping packets in the TCAM.
The average round-trip latency when the ping packets
were cache-hits in both directions was 0.71ms while the
latency for 1-way cache miss was 0.81ms. Thus, the
cost of a 1-way cache miss was 100µs; for comparison, a
hardware switch adds 25µs [26] to the 1-way latency of
the packets. If an application cannot accept the addi-
tional cost of going to the software switch, it can request
the CacheMaster to install its rules in the fast path. The
cacheMaster can do this by assigning “infinite" weight
to these rules.

6.2 Incremental Algorithms
In order to measure the effectiveness of the incremen-

tal update algorithms, we conducted two experiments
designed to evaluate (i) the algorithms to incrementally
update the dependency graph on insertion or deletion
of rules and (ii) algorithms to incrementally update the
TCAM when traffic distribution shifts over time.

Figure 10(a) shows the time taken to insert/delete
rules incrementally on top of the Stanford routing policy
of 180K rules. While an incremental insert takes about
15 milliseconds on average to update the dependency
graph, an incremental delete takes around 3.7 millisec-
onds on average. As the linear graphs show, at least for
about a few thousand inserts and deletes, the amount
of time taken is strictly proportional to the number of
flowmods. Also, an incremental delete is about 4 times
faster on average owing to the very local set of depen-

dency changes that occur on deletion of a rule while an
insert has to explore a lot more branches starting with
the root to find the correct position to insert the rule.
We also measured the time taken to statically build the
graph on a rule insertion which took around 16 minutes
for 180K rules. Thus, the incremental versions for up-
dating the dependency graph are ∼60000 times faster
than the static version.

In order to measure the advantage of using the in-
cremental TCAM update algorithms, we measured the
cache-hit rate for mixed-set algorithm using the two op-
tions for updating the TCAM. Figure 10(b) shows that
the cache-hit rate for the incremental algorithm is sub-
stantially higher as the TCAM size grows towards 2000
rules. For 2000 rules in the TCAM, while the incre-
mental update achieves 93% cache-hit rate, the nuclear
update achieves only 53% cache-hit rate. As expected,
the nuclear update mechanism sees diminishing returns
beyond 1000 rules because of the high rule installation
time required to install more than 1000 rules as shown
earlier in Figure 7.

Figure 10(c) shows how the cache-hit rate is affected
by the naive version of doing a nuclear update on the
TCAMwhenever CacheFlow decides to update the cache.
The figure shows the number of cache misses seen over
time when the CAIDA packet trace is replayed at 330k
packets per second. The incremental update algorithm
stabilizes quite quickly and achieves a cache-hit rate of
95% in about 3 minutes. However, the nuclear update
version that deletes all the old rules and inserts the new
cache periodically suffers a lot of cache-misses while it
is updating the TCAM. While the cache-hits go up to
90% once the new cache is fully installed, the hit rate
goes down to near 0% every time the rules are deleted
and it takes around 2 minutes to get back to the high
cache-hit rate. This instability in the cache-miss rate
makes the nuclear installation a bad option for updat-
ing the TCAM.

7. RELATED WORK
While route caching is discussed widely in the context

of IP destination prefix forwarding, SDN introduces new
constraints on rule caching. We divide the route caching
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literature into three wide areas: (i) IP route Caching (ii)
TCAM optimization, and (iii) SDN rule caching.
IP Route Caching. Earlier work on traditional

IP route caching [11–14, 27] talks about storing only a
small number of IP prefixes in the switch line cards and
storing the rest in inexpensive slow memory. Most of
them exploit the fact that IP traffic exhibits both tem-
poral and spatial locality to implement route caching.
For example, Sarrar et.al [11] show that packets hitting
IP routes collected at an ISP follow a Zipf distribu-
tion resulting in effective caching of small number of
heavy hitter routes. However, most of them do not deal
with cross-rule dependencies and none of them deal with
complex multidimensional packet-classification. For ex-
ample, Liu et.al [27] talk about efficient FIB caching
while handling the problem of cache-hiding for IP pre-
fixes. However, their solution cannot handle multiple
header fields or wildcards and does not have the notion
of packet counters associated with rules. Our paper, on
the other hand, deals with the analogue of the cache-
hiding problem for more general and complex packet-
classification patterns and also preserves packet coun-
ters associated with these rules.
TCAMRule Optimization. The TCAMRazor [28–

30] line of work compresses multi-dimensional packet-
classification rules to minimal TCAM rules using deci-
sion trees and multi-dimensional topological transfor-
mation. Dong et. al. [31] propose a caching technique
for ternary rules by constructing compressed rules for
evolving flows. Their solution requires special hardware
and does not preserve counters. In general, these tech-
niques that use compression to reduce TCAM space also
suffer from not being able to make incremental changes
quickly to their data-structures.
DAG for TCAM Rule Updates. The idea of us-

ing DAGs for representing TCAM rule dependencies is
discussed in the literature in the context of efficient
TCAM rule updates [32, 33]. In particular, their aim
was to optimize the time taken to install a TCAM rule
by minimizing the number of existing entries that need
to be reshuffled to make way for a new rule. They do so
by building a DAG that captures how different rules are
placed in different TCAM banks for reducing the update
churn. However, the resulting DAG is not suitable for
caching purposes as it is difficult to answer the ques-
tion we ask – if a rule is to be cached, which other rules
should go along with it? In addition, the DAG data
structure is either limited by supporting only wild-card
rules [33] or it is optimized for the physical layout of
the TCAM [32].
SDN Rule Caching. There is some recent work

on dealing with limited switch rule space in the SDN
community. DIFANE [23] advocates caching of ternary
rules, but uses more TCAM to handle cache misses—
leading to a TCAM-hungry solution. Other work [34–

36] shows how to distribute rules over multiple switches
along a path, but cannot handle rule sets larger than
the aggregate table size. Devoflow [37] introduces the
idea of rule “cloning” to reduce the volume of traffic
processed by the TCAM, by having each match in the
TCAM trigger the creation of an exact-match rules (in
SRAM) the handle the remaining packets of that mi-
croflow. However, Devoflow does not address the limi-
tations on the total size of the TCAM. Lu et.al. [38] use
the switch CPU as a traffic co-processing unit where
the ASIC is used as a cache but they only handle mi-
croflow rules and hence do not handle complex depen-
dencies. The Open vSwitch [10] caches “megaflows” (de-
rived from wildcard rules) to avoid the slow lookup time
in the user space classifier. However, their technique
does not assume high-throughput wildcard lookup in
the fast path and hence cannot be used directly for op-
timal caching in TCAMs.

8. CONCLUSION
In this paper, we define a hardware-software hybrid

switch design called CacheFlow that relies on rule caching
to provide large rule tables at low cost. Unlike tra-
ditional caching solutions, we neither cache individual
rules (to respect rule dependencies) nor compress rules
(to preserve the per-rule traffic counts). Instead we
“splice” long dependency chains to cache smaller groups
of rules while preserving the semantics of the network
policy. Our design satisfies four core criteria: (1) elas-
ticity (combining the best of hardware and software
switches), (2) transparency (faithfully supporting na-
tive OpenFlow semantics, including traffic counters),
(3) fine-grained rule caching (placing popular rules in
the TCAM, despite dependencies on less-popular rules),
and (4) adaptability (to enable incremental changes to
the rule caching as the policy changes).
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