
Rule-Caching Algorithms for Software-Defined Networks

Naga Katta1, Omid Alipourfard2, Jennifer Rexford1 and David Walker1

1Princeton University ({nkatta,jrex,dpw}@cs.princeton.edu)
2University of Southern California ({ecynics}@gmail.com)

ABSTRACT
Software-Defined Networking (SDN) allows control appli-
cations to install fine-grained forwarding policies in the un-
derlying switches, using a standard API like OpenFlow. High-
speed Ternary Content Addressable Memory (TCAM) al-
lows hardware switches to store these rules and perform a
parallel lookup to quickly identify the highest-priority match
for each packet. While TCAM enables fast lookups with
flexible wildcard rule patterns, the cost and power require-
ments limit the number of rules the switches can support. To
make matters worse, these hardware switches cannot sus-
tain a high rate of updates to the rule table. In this pa-
per, we show how to give applications the illusion of high-
speed forwarding, large rule tables, and fast updates by com-
bining the best of hardware and software processing. Our
CacheFlow system “caches” the most popular rules in the
small TCAM, while relying on software to handle the small
amount of “cache miss” traffic. However, we cannot blindly
apply existing cache-replacement algorithms, because of de-
pendencies between rules with overlapping patterns. Rather
than cache large chains of dependent rules, we “splice” long
dependency chains to cache smaller groups of rules while
preserving the semantics of the policy. Experiments with
our CacheFlow prototype—on both real and synthetic work-
loads and policies—demonstrate that rule splicing makes ef-
fective use of limited TCAM space, while adapting quickly
to changes in the policy and the traffic demands.

1. INTRODUCTION
In a Software-Defined Network (SDN), a logically cen-

tralized controller manages the flow of traffic by in-
stalling simple packet-processing rules in the underlying
switches [1]. These rules can match on a wide variety of
packet-header fields, and perform simple actions as for-
warding, flooding, modifying the headers, and directing
packets to the controller. This flexibility allows SDN-
enabled switches to behave as firewalls, server load bal-
ancers, network address translators, Ethernet switches,
routers, or anything in between. However, fine-grained
forwarding policies lead to a large number of rules in the
underlying switches. And, combining multiple policies
together—say, server load-balancing and routing—that

match on different header fields quickly leads to a com-
binatorial explosion in the number of rules per switch.

In modern hardware switches, these rules are stored
in Ternary Content Addressable Memory (TCAM) [2].
A TCAM can compare an incoming packet to the pat-
terns in all of the rules at the same time, at line rate.
However, commodity switches support relatively few
rules, in the small thousands or tens of thousands [3].
Undoubtedly, emerging switches will support larger rule
tables [4, 5], but TCAMs still introduce a fundamental
trade-off between rule-table size and other concerns like
cost and power. TCAMs introduce around 400 times
greater cost [6] and 100 times greater power consump-
tion [7], compared to conventional RAM. Plus, updating
the rules in TCAM is a slow process—today’s hardware
switches only support around 40 to 50 rule-table up-
dates per second [8, 9], which could easily constrain a
large network with dynamic policies.

Software switches may seem like an attractive alter-
native. Running on commodity servers, software switches
can process packets at around 40 Gbps on a quad-core
machine [10–12] and can store large rule tables in main
memory and (to a lesser extent) in the L1 and L2 cache.
In addition, software switches can update the rule ta-
ble around ten times faster than hardware switches [9].
But, supporting wildcard rules that match on many
header fields is taxing for software switches, which must
resort to slow processing (such as a linear scan) in user
space to handle the first packet of each microflow [13].
So, while software switches are clearly useful at the
network edge—particularly in data centers where these
switches can run on the end-host servers—they cannot
match the “horsepower” of hardware switches that pro-
vide hundreds of Gbps of packet processing (and high
port density) in the rest of the network.

Fortunately, traffic tends to follow a Zipf distribution,
where the vast majority of traffic matches a relatively
small fraction of the rules. Hence, we could leverage a
small TCAM to forward the vast majority of traffic, and
rely on software switches for the remaining traffic. For
example, an 800 Gbps hardware switch, together with a
single 40 Gbps processor could easily handle traffic with

Figure 1: CacheFlow architecture

a 5% “miss rate” in the TCAM. In addition, most rule-
table updates could go to the slow-path components,
while promoting very popular rules to hardware rela-
tively infrequently. Together, the hardware and soft-
ware processing would give controller applications the
illusion of high-speed packet forwarding, large rule ta-
bles, and fast rule updates.

Our CacheFlow architecture consists of a TCAM and
a sharded collection of software switches, as shown in
Figure 1. The software switches can run on CPUs in
the data plane (e.g., network processors), as part of the
software agent on the hardware switch, or on separate
servers. CacheFlow consists of a CacheMaster mod-
ule that receives OpenFlow commands from an unmod-
ified SDN controller. CacheMaster must preserve the
semantics of the OpenFlow interface, including the abil-
ity to update rules, query counters, and receive events.
CacheMaster also uses the OpenFlow protocol to dis-
tribute rules to unmodified commodity hardware and
software switches. CacheMaster is a purely control-
plane component, with control sessions shown as dashed
lines and data-plane forwarding shown by solid lines.

As the name suggests, CacheFlow treats the TCAM
as a cache that stores the most popular rules. However,
we cannot simply apply existing cache-replacement al-
gorithms, because the rules can match on overlapping
sets of packets, leading to dependencies between multi-
ple rules. While earlier work on IP route caching [14–17]
considered rule dependencies, IP prefixes only have sim-
ple “containment” relationships, rather than patterns
that partially overlap. The partial overlaps can also
lead to long dependency chains. and this problem is ex-
acerbated by applications that combine multiple func-
tions (like server load balancing and routing) to gener-
ate many more rules. Swapping entire groups of depen-
dent rules in and out of the TCAM would be inefficient,
especially if most rules match relatively few packets.

To handle rule dependencies, we construct a com-
pact representation of a prioritized list of rules as a
directed acyclic graph (DAG), and design incremental
algorithms for adding and removing rules. Our cache-
replacement algorithms use the DAG to decide which
rules to place in the TCAM. To preserve rule-table space

for the rules that match a large fraction of the traffic,
we design a novel “splicing” technique that breaks long
dependency chains. Splicing creates a few new rules
that “cover” a large number of unpopular rules, to avoid
polluting the cache. The technique extends to handle
changes in the list of rules, as well as changes in their
relative popularity, over time. Experiments with our
CacheFlow prototype demonstrate the effectiveness of
our algorithms under realistic workloads.

In this paper, we make the following key technical
contributions:

• Incremental rule-dependency analysis: We
develop an algorithm for incrementally analyzing
and maintaining rule dependencies—a necessary
component of any sound rule-caching scheme.

• Novel cache-replacement strategies: We de-
velop algorithms that (i) cache groups of depen-
dent rules, (ii) “splice” dependency chains to cache
smaller sets of popular rules, and (iii) a hybrid al-
gorithm combining the best of the two approaches.

• Implementation and evaluation: We discuss
how CacheFlow preserves the semantics of the Open-
Flow interface and shards cache-miss traffic over
multiple software switches. Our experiments using
Pica8 switches and both synthetic and real work-
loads show that rule-caching can help process 90%
of the total traffic by caching less than 5% of the
total rules.

A preliminary version of this work appeared in a work-
shop paper [18] which briefly discussed ideas about rule
dependencies and caching algorithms. In this paper, we
develop novel algorithms that help efficiently deal with
real deployment constraints like incremental updates to
policies and high TCAM update times. We also show
that our system can implement large policies on an ac-
tual hardware switch as opposed to simulated evalua-
tion done using much smaller policies in the workshop
version.

2. IDENTIFYING RULE DEPENDENCIES
In this section, we show how rule dependencies affect

the correctness of any rule-caching technique. We show
how to represent all cross-rule dependencies as a graph,
and present an efficient algorithm for computing the
graph. We also describe how to update the dependency
graph incrementally as rules change.

2.1 Rule Dependencies
The OpenFlow policy on a switch consists of a set

of packet-processing rules. Each rule has a pattern, a
priority, a set of actions, and counters. When a packet

2

(a) Example rule table (b) Incremental DAG insert (c) Incremental DAG delete

Figure 2: Constructing the rule dependency graph (edges annotated with reachable packets)

arrives, the switch identifies the highest-priority match-
ing rules and performs the associated actions and incre-
ments the counters. CacheFlow implements these poli-
cies by splitting the set of rules into two groups—one
residing in the TCAM and another in a software switch.

The semantics of CacheFlow is that (1) the highest-
priority matching rule in the TCAM is applied, if such
a rule exists, and (2) if no matching rule exists in the
TCAM, then the highest-priority rule in the software
switch is applied. As such, not all splits of the set of
rules lead to valid implementations. If we do not cache
rules in the TCAM correctly, packets that should hit
rules in the software switch may instead hit a cached
rule in the TCAM, leading to incorrect processing.

In particular, dependencies may exist between rules
with differing priorities, as shown in the example in Fig-
ure 2(a). If the TCAM can store four rules, we cannot
select the four rules with highest traffic volume (i.e., R2,
R3, R5, and R6), because packets that should match
R1 (with pattern 000) would match R2 (with pattern
00*); similarly, some packets (say with header 110) that
should match R4 would match R5 (with pattern 1*0).
That is, rules R2 and R5 depend on rules R1 and R4,
respectively. In other words, there is a dependency from
rule R1 to R2 and from rule R4 to R5. If R2 is cached
in the TCAM, R1 should also be cached to preserve the
semantics of the policy, similarly with R5 and R4.

A direct dependency exists between two rules if the
patterns in the rules intersect (e.g., R2 is dependent on
R1). When a rule is cached in the TCAM, the cor-
responding dependent rules should also move to the
TCAM. However, simply checking for intersecting pat-
terns does not capture all of the policy dependencies.
For example, going by this definition, the rule R6 only
depends on rule R5. However, if the TCAM stored
only R5 and R6, packets (with header 110) that should
match R4 would inadvertently match R5 and hence
would be incorrectly processed by the switch. In this
case, R6 also depends indirectly on R4 (even though
the matches of R4 and R6 do not intersect), because
the match for R4 overlaps with that of R5.

Such a peculiar case does not arise in traditional des-
tination prefix forwarding because a prefix is dependent
only on all the prefixes that are strict subsets of itself

and nothing else. However, in an OpenFlow rule table,
where rules have priorities and can match on multiple
header fields, indirect dependencies occur because of
partial overlaps between rules—both R4 and R6 only
partially overlap with R5. Hence, even though R4 and
R6 do not have a direct dependency, they have an in-
direct dependency due to R5’s own dependence on R6.
For a more concrete example for partial overlaps, one
can interpret the first two bits of rules R4, R5, and R6

to match the destination IP prefix, and the last bit to
match the destination port field.

2.2 Constructing the Dependency DAG

Algorithm 1: Building the dependency graph
// Add dependency edges

1 func addParents(R:Rule, P:Parents) begin
2 deps = (∅);

// p.o : priority order
3 packets = R.match;
4 for each Rj in P in descending p.o: do
5 if (packets ∩ Rj .match) != ∅ then
6 deps = deps ∪ {(R,Rj)};
7 reaches(R,Rj) = packets ∩ Rj ;
8 packets = packets - Rj .match;

9 return deps;

10 for each R:Rule in Pol:Policy do
11 potentialParents = [Rj in Pol | Rj .p.o ≤ R.p.o];
12 addParentEdges(R, potentialParents);

A concise way to capture all of the dependencies is
to construct a directed graph where each rule is a node,
and each edge captures a direct dependency between
a pair of rules as shown in Figure 2(b). A direct de-
pendency exists between a child rule Ri and a parent
rule Rj under the following condition—if Ri is removed
from the rule table, packets that are supposed to hit Ri

will now hit rule Rj . The edge between the rules in the
graph is annotated by the set of packets that reach the
parent from the child. Then, all of the dependencies
of a rule consist of all descendants of that rule (e.g.,
R1 and R2 are the dependencies for R3). The rule R0

is the default match-all rule (matches all packets with

3

priority 0) added to maintain a connected rooted graph
without altering the overall policy.

To identify the edges in the graph, for any given child
rule R, we need to find out all the parent rules that the
packets matching R can reach. This can be done by
taking the symbolic set of packets matching R and iter-
ating them through all of the rules with lower priority
than R that the packets might hit.

To find the rules that depend directly on R, Algo-
rithm 1, scans the rules Ri with lower priority than
R (line 14) in order of decreasing priority. The algo-
rithm keeps track of the set of packets that can reach
each successive rule (the variable packets). For each
such new rule, it determines whether the predicate as-
sociated with that rule intersects1 the set of packets
that can reach that rule (line 5). If it does, there is
a dependency. This dependency defines a parent-child
relationship where the rule R is the child and the rule
Ri is the parent in the dependency relationship. The
arrow in the dependency edge points from the child to
the parent. In line 7, the dependency edge also stores
the packet space that actually reaches the parent Ri.
In line 8, before moving to the next parent, because the
rule Ri will now occlude some packets from the current
reaches set, we subtract Ri’s predicate from it.

This compact data structure captures all dependen-
cies because we track the flow of all the packets that
are processed by any rule in the rule table. The data
structure is a directed acyclic graph because if there is
an edge from Ri to Rj then the priority of Ri is always
strictly greater than priority of Rj . Once such a depen-
dency graph is constructed, all the descendants of a rule
in the graph will together constitute the dependencies
that a rule carries with it. In other words, if a rule R
is to be cached in the TCAM, then all the descendants
of R in the dependency graph should also be cached in
order to maintain correct policy semantics.

2.3 Incrementally Updating The DAG
Algorithm 1 runs in O(n2) time where n is the num-

ber of rules. As we show in Section 6, running the static
algorithm on a real policy with 180K rules takes around
15 minutes, which is simply unacceptable if the network
needs to push a rule into the switches as quickly as pos-
sible (say, to mitigate a DDoS attack). Hence we de-
scribe an incremental algorithm that has considerably
smaller running time in most practical scenarios—just
a few milliseconds for the policy with 180K rules.

Figure 2(b) shows the changes in the dependency
graph when the rule R5 is inserted. All the changes
occur only in the right half of the DAG because the
left half is not affected by the packets that hit the new
rule. Before R5 is inserted, the rules R4 and R6 are

1symbolic intersection and subtraction of packets can be
done using existing techniques [19]

Algorithm 2: Incremental DAG insert
1 func FindAffectedEdges(rule, newRule) begin
2 for each C in Children(rule) do
3 if Priority(C) > priority(newRule) then
4 if reaches(C,rule) ∩ newRule.match !=

∅ then
5 reaches(C, rule) -= newRule.match;
6 add (C, Node) to affEdges

7 else
8 if Pred(C) ∪ newRule.match != ∅ then
9 add C to potentialParents;

10 FindAffectedEdges(C, newRule);

11 func processAffectedEdges(affEdges) begin
12 for each childList in groupByChild(affEdges)

do
13 deps = deps ∪ {(child, newRule)};
14 edgeList = sortByParent(childList);
15 reaches(child, newRule) =

reaches(edgeList[0]);

16 func Insert(G=(V, E), newNode) begin
17 affEdges = { };
18 potentialParents = [R0];
19 FindAffectedEdges(R0, newNode);
20 ProcessAffectedEdges(affEdges);
21 addParents(newNode, potentialParents);

independent; once R5 is inserted, R6 has an indirect
dependency on R4. This is because while packets from
R4 were not impacted by R6 earlier, now some of them
hit R5 which in turn has its own packets hitting R6.
Also, both R4 and R5 have some packets still reaching
R0 even after they hit their immediate parents (R5 and
R6 respectively). This means that an already-existing
edge between R4 and R0 has changed as well.

A rule insertion results in three sets of updates to the
DAG: (i) existing dependencies (like (R4,R0)) change
because packets defining an existing dependency are im-
pacted by the newly inserted rule, (ii) creation of depen-
dencies with the new rule as the parent (like (R4,R5))
because packets from old rules (R4) are now hitting the
new rule (R5), and (iii) creation of dependencies (like
(R5,R6)) because the packets from the new rule (R5) are
now hitting an old rule (R6). Algorithm 1 takes care of
all three dependencies by it rebuilding all dependencies
from scratch. The challenge for the incremental algo-
rithm is to do the same set of updates without touching
the irrelevant parts of the DAG.

2.3.1 Incremental Insert
In the incremental algorithm, the intuition is to use

the reaches variable (packets reaching the parent from
the child) cached for each existing edge to recursively

4

traverse only the necessary edges that need to be up-
dated. As we traverse the tree recursively, we update
existing edges whose packets intersect with the new rule.
We also collect the children and the parents of the new
rule (the test is to simply check non-empty intersection
of rule predicates along with priorities) that have a di-
rect dependency with the new rule.

Algorithm 2 proceeds in three phases:
(i) Updating existing edges (lines 1–10): While

finding the affected edges, the algorithm recursively tra-
verses the dependency graph beginning with the default
rule R0. It checks if the newRule intersects any edge
between the current node and its children. It updates
the intersecting edge and adds it to the set of affected
edges (line 4). However, if newRule is higher in the pri-
ority chain, then the recursion proceeds exploring the
edges of the next level (line 9). It also collects the rules
that could potentially be the parents as it climbs up the
graph (line 8). This way, we end up only exploring the
relevant edges and rules in the graph.
(ii) Adding directly dependent children (lines

11-15): In the second phase, the set of affected edges
collected in the first phase are grouped by their children.
For each child, an edge is created from the child to the
newRule using the packets from the child that used to
reach its highest priority parent (line 14). Thus all the
edges from the new rule to its children are created.
(iii) Adding directly dependent parents (line

21): In the third phase, all the edges that have newRule
as the child are created using the addParents method
described in Algorithm 1 on all the potential parents
collected in the first phase.

In terms of the example, in phase 1, the edge (R4,
R0) is the affected edge and is updated with reaches
that is equal to 111 (11* - 1*0). The rules R0 and R6

are added to the new rule’s potential parents. In phase
2, the edge (R4,R5) is created. In phase 3, the function
addParents is executed on parents R6 and R0. This
results in the creation of edges (R5,R6) and (R5,R0).
Running Time: Algorithm 2 clearly avoids traversing

the left half of the graph which is not relevant to the new
rule. While in the worst case, the running time is linear
in the number of edges in the graph, for most practical
policies, the running time is linear in the number of
closely related dependency groups2.

2.3.2 Incremental Delete
The deletion of a rule leads to three sets of updates to

a dependency graph: (i) new edges are created between
other rules whose packets used to hit the removed rule,
(ii) existing edges are updated because more packets

2Since the dependency graph usually has a wide bush of iso-
lated prefix dependency chains—like the left half and right
half in the example DAG—which makes the insertion cost
equal to the number of such chains.

Algorithm 3: Incremental DAG delete
1 func Delete(G=(V, E), oldRule) begin
2 for each c in Children(oldRule) do
3 potentialParents = Parents(c) - {oldRule};
4 for each p in Parents(oldRule) do

// Find if deletion adds an edge
E(c, p)

5 if reaches(c, oldRule) ∩ p.match != ∅
then

6 add p to potentialParents

7 addParents(C, potentialParents)

8 Remove all edges involving oldRule

are reaching this dependency because of the absence of
the removed rule, and (iii) finally, old edges having the
removed rule as a direct dependency are deleted.

For the example shown in Figure 2(c), where the
rule R5 is deleted from the DAG, existing edges (like
(R4,R0)) are updated and all three involving R5 are cre-
ated. In this example, however, no new edge is created.
But it is potentially possible in other cases (consider
the case where rule R2 is deleted which would result in
a new edge between R1 and R3).

An important observation is that opposed to incre-
mental insert (where we recursively traverse the DAG
beginning with R0), incremental deletion of a rule can
be done local to the rule being removed. This is be-
cause all three sets of updates involve only the children
or parents of the removed rule. For example, a new
edge can only be created between a child and a parent
of the removed rule3.

Algorithm 3 incrementally updates the graph when
a new rule is deleted. First, in lines 2-6, the algorithm
checks if there is a new edge possible between any child-
parent pair by checking whether the packets on the edge
(child, oldRule) reach any parent of oldRule (line 5).
Second, in lines 3 and 7, the algorithm also collects the
parents of all the existing edges that may have to be
updated (line 3). It finally constructs the new set of
edges by running the addParents method described in
Algorithm 1 to find the exact edges between the child
c and its parents (line 7). Third, in line 8, the rules
involving the removed rule as either a parent or a child
are removed from the DAG.

Figure 2(c) shows the result of deleting R5 from the
dependency graph. Algorithm 3 initializes the potential
parents of the child R4 to {R0}. Since line 5 evaluates
to False in this case (11* does not intersect with 10*),
R5 is not added to potential parents. Thus in line 7, we

3A formal proof is omitted for lack of space and is left for
the reader to verify. In the example where R2 is deleted,
a new rule can only appear between R1 and R3. Similarly
when R5 is deleted, a new rule could have appeared between
R4 and R6 but does not because the rules do not overlap.

5

(a) Dependent Set Algo. (b) Cover Set Algo. (c) Mixed Set Algo

Figure 3: Dependent-set vs. cover-set algorithms (L0 cache rules in red)

just add one edge (R4,R0) with a packet space equals
to packets (R4). Then the edges (R4,R5), (R5,R6) and
(R5,R0) are removed.
Running time: This algorithm is dominated by the

two for loops (in lines 2 and 4) and may also have a
worst case O(n2) running time (where n is the number
of rules) but in most practical policy scenarios, the run-
ning time is much smaller (owing to the small number
of children/parents for any given rule in the DAG).

3. CACHING ALGORITHMS
In this section, we present CacheFlow’s algorithm for

placing rules in a TCAMwith limited space. CacheFlow
selects a set of important rules from among the rules
given by the controller to be cached in the TCAM, while
redirecting the cache misses to the software switches.

The input to the rule-caching problem is a depen-
dency graph of n rules R1, R2, . . . , Rn, where rule Ri

has higher priority than rule Rj for i < j. Each rule
has a match and action, and a weight wi that captures
the volume of traffic matching the rule. There are de-
pendency edges between pairs of rules as defined in the
previous section. The output is a prioritized list of k
rules to store in the TCAM4. The objective is to maxi-
mize the sum of the weights for traffic that “hits” in the
TCAM, while processing “hit” packets according to the
semantics of the original prioritized list.

3.1 Dependent-Set: Caching Dependent Rules
We first present a simple strawman algorithm to build

intuition, and then present a new algorithm that avoids
caching low-weight rules. Each rule is assigned a “cost”
corresponding to the number of rules that must be in-
stalled together and a “weight” corresponding to the
number of packets expected to hit that rule. For ex-
ample, R6 depends on R4 and R5, leading to a cost of
3, as shown in Figure 3(a). In this situation, R2 and
4Note that CacheFlow does not simply install rules on a
cache miss. Instead, CacheFlow makes decisions based on
traffic measurements over the recent past. This is important
to defend against cache-thrashing attacks where an adver-
sary generates low-volume traffic spread across the rules.
In practice, CacheFlow should measure traffic over a time
window that is long enough to prevent thrashing, and short
enough to adapt to legitimate changes in the workload.

R6 hold the majority of the weight, but cannot be in-
stalled simultaneously on the switch, as installing R6

has a cost of 3 and R2 bears a cost of 2. Hence to-
gether they do not fit. The best we can do is to install
rules R1, R4, R5, and R6. This maximizes total weight,
subject to respecting all dependencies. In order to do
better, we must restructure the problem.

The current problem of maximizing the total weight
can be formulated as a linear integer programming prob-
lem, where each rule has a variable indicating whether
the rule is installed in the cache. The objective is to
maximize the sum of the weights of the installed rules,
while installing at most k rules; if rule Rj depends on
rule Ri, rule Rj cannot be installed unless Ri is also
installed. The problem can be solved with an O(nk)
brute-force algorithm that is expensive for large k. The
current problem, however, can also be reduced to an all-
neighbors knapsack problem [20], which is a constrained
version of the knapsack problem where a node is selected
only when all its neighbors are also selected. However,
no polynomial time approximation scheme (PTAS) is
known for this problem. Hence, we use a heuristic that
is modeled on a greedy PTAS for the Budgeted Maxi-
mum Coverage problem [21], which is a relaxed version
of the all-neighbors knapsack problem. In our greedy
heuristic, at each stage, the algorithm chooses a set of
rules that maximizes the ratio of combined rule weight
to combined rule cost (∆W

∆C), until the total cost reaches
k. This algorithm runs in O(nk) time.

Maximize

n∑
i=1

wici

subject to
n∑

i=1

ci ≤ k

ci − cj ≥ 0 if Ri.is_descendant(Rj)

∀i, j ∈ {1, . . . , n}
ci ∈ {0, 1} ∀i ∈ {1, . . . , n}

On the example rule table, this greedy algorithm se-
lects R6 first (and its dependent set {R4, R5}), and then
R1 which brings the total cost to 4. Thus the set of rules
in the TCAM are R1, R4, R5, and R6. We refer to this

6

(a) Dep. Set Cost (b) Cover Set Cost

Figure 4: Dependent-set vs. cover-set Cost

algorithm as the dependent-set algorithm.

3.2 Cover-Set: Splicing Dependency Chains
Respecting rule dependencies can lead to high costs,

especially if a high-weight rule depends on many low-
weight rules. For example, consider a firewall that has a
single low-priority “accept” rule that depends on many
high-priority “deny” rules that match relatively little
traffic. Caching the one “accept” rule would require
caching many “deny” rules. We can do better than past
algorithms by modifying the rules in various semantics-
preserving ways, instead of simply packing the existing
rules into the available space—this is the key observa-
tion that leads to our superior algorithm. In particular,
we “splice” the dependency chain by creating a small
number of new rules that cover many low-weight rules
and send the affected packets to the software switch.

For the example in Figure 3(a), instead of selecting
all dependent rules for R6, we calculate new rules that
cover the packets that would otherwise incorrectly hit
R6. The extra rules direct these packets to the soft-
ware switches, thereby breaking the dependency chain.
For example, we can install a high-priority rule R∗

5 with
match 1*1* and action forward_to_Soft_switch,5 along
with the low-priority rule R6. Similarly, we can create
a new rule R∗

1 to break dependencies on R2. We avoid
installing higher-priority, low-weight rules like R4, and
instead have the high-weight rules R2 and R6 inhabit
the cache simultaneously, as shown in Figure 3(b).

More generally, the algorithm must calculate the cover
set for each rule R. To do so, we find the immediate
ancestors of R in the dependency graph and replace the
actions in these rules with a forward_to_Soft_Switch
action. For example, the cover set for rule R6 is the
rule R∗

5 in Figure 3(b); similarly, R∗
1 is the cover set for

R2. The rules defining these forward_to_Soft_switch
actions may also be merged, if necessary.6 The cardi-
nality of the cover set defines the new cost value for
each chosen rule. This new cost is strictly less than or
5This is just a standard forwarding action out some port
connected to a software switch.
6To preserve OpenFlow semantics pertaining to hardware
packet counters, policy rules cannot be compressed. How-
ever, we can compress the intermediary rules used for for-
warding cache misses, since the software switch can track
the per-rule traffic counters.

equal to the cost in the dependent set algorithm. The
new cost value is much less for rules with long chains of
dependencies. For example, the old dependent set cost
for the rule R6 in Figure 3(a) is 3 as shown in the rule
cost table whereas the cost for the new cover set for R6

in Figure 3(b) is only 2 since we only need to cache R∗
5

and R6. To take a more general case, the old cost for
the red rule in Figure 4(a) was the entire set of descen-
dants (in light red), but the new cost (in Figure 4(b))
is defined just by the immediate descendants (in light
red).

Algorithm 4: Mixed-Set Computation
1 func Mixed_Set(rule_table) begin
2 create_heap();
3 for r ∈ rule_table do
4 heap.insert(r.dep_set);
5 heap.insert(r.cover_set);

6 total_cost = 0;
7 while total_cost < threshold do

// pick element with maximum ∆W
∆C

8 max_rule = heap.get_max();
// delete both dep-set and cover-set

9 heap.delete(max_rule);
10 if max_rule is dep_set then
11 for r1 ∈ dep_set(max_node) do
12 heap_delete(r1);
13 heap_update_ancestors(r1);

14 if max_rule is cover_set then
15 for r1 ∈ cover_set(max_rule) do
16 heap_update_ancestors(r1);

17 Add_Cache(max_rule.mixed_set);

3.3 Mixed-Set: An Optimal Mixture
Despite decreasing the cost of caching a rule, the

cover-set algorithm may also decrease the weight by
redirecting the spliced traffic to the software switch.
For example, for caching the rule R2 in Figure 3(c),
the dependent-set algorithm is a better choice because
the traffic volume processed by the dependent set in the
TCAM is higher, while the cost is the same as a cover
set. In general, as shown in Figure 4(b), cover set seems
to be a better choice for caching a higher dependency
rule (like the red node) compared to a lower dependency
rule (like the blue node).

In order to deal with cases where one algorithm may
do better than the other, we designed a heuristic that
chooses the best of the two alternatives at each iter-
ation. As such, we consider a metric that chooses the
best of the two sets i.e., max(

∆Wdep

∆Cdep
, ∆Wcover

∆Ccover
). Then we

can apply the same greedy covering algorithm with this

7

Algorithm 5: Incremental TCAM update
1 func TCAM_Update(old_cache, new_cache)
begin

2 for mixed_set ∈ (old_cache − new_cache) do
3 for each rule in mixed_set do
4 if rule is normal then
5 rule.normal_ref−−;
6 if rule.normal_ref==0 then
7 delete_normal(rule)

8 else
9 rule.star_ref−−;

10 if rule.star_ref==0 then
11 delete_star(rule)

12 for mixed_set ∈ (new_cache − old_cache) do
13 for each rule in mixed_set do
14 if rule is normal then
15 if rule.normal_ref==0 then
16 install_normal(rule)

17 rule.normal_ref++;
18 else
19 if rule.star_ref==0 then
20 install_star(rule)

21 rule.star_ref++;

// Simply retain in TCAM, mixed_set ∈
new_cache ∩ old_cache.

new metric to choose the best candidate rules to cache.
We refer to this version as the mixed-set algorithm.

Algorithm 4 describes the mixed-set algorithm in de-
tail. For each rule, both dependent-sets and cover-sets
are pushed onto a heap (lines 3-5). The heap elements
are ordered by the weight to cost ratio of the element’s
mixed set (The term mixed-set is used to refer to either
a dependent-set or a cover-set whichever is appropriate
in the context). Once a rule is chosen, both the heap
elements associated with the rule are deleted from the
heap (line 9). Subsequently, for each rule in the mixed-
set chosen, the costs and weights of the ancestors are
updated in time for the next iteration (lines 10-16). For
example, if rule R5 is chosen in this iteration, then the
entire dependent set (R4, R5) is deleted from the heap
and the dependent set cost for choosing rule R6 in the
next iteration is changed to just 1 (and not 3).

3.4 Updating the TCAM Incrementally
As the packet traffic distribution of rules change over

time, the set of cached rules chosen by our caching al-
gorithms also change over time. This would mean peri-
odically updating the TCAM with a new version of the
policy cache.

Updating just the difference will not work.
Simply taking the difference between the two set of

cached rules and thereby replacing the stale rules in the
TCAM with new rules (while retaining the common set
of rules) can result in incorrect policy snapshots on the
TCAM during the transition. This is mainly because
TCAM rule update takes time and hence packets can be
processed incorrectly by an incomplete policy snapshot
during transition. For example, consider the case where
the mixed-set algorithm decides to change the cover-set
of rule R6 to its dependent set. If we simply remove the
cover rule (R5∗) and then install the dependent rules
(R5,R4), there will be a time-period when only the rule
R6 is on the TCAM without either its cover rules or
the dependent rules. This is a policy snapshot that can
incorrectly process packets while the transition is going
on.

The nuclear option.
An alternative that would work is a nuclear update

– simply delete the entire old cache and insert the new
cache from scratch. But this is unacceptable because,
the rule update time on a TCAM is a non-linear func-
tion of the number of rules being inserted or deleted. On
a switch that has capacity for 2000 rules in the TCAM,
while the first 1000 rules take 5 seconds to be inserted,
it takes almost 2 minutes to install the next the 1000
rules. Thus, it is important to minimize the churn in the
TCAM when we update the cached rules periodically.

Exploiting composition of mixed sets.
A key property of all the algorithms discussed so far is

that each chosen rule along with its mixed(cover/dependent)
set can be added/removed from the TCAM indepen-
dently of the rest of the rules. In other words, the
mixed-sets for any two rules are easily composable and
decomposable. For example, in Figure ??(b), the red
rule and its cover set can be easily added/removed with-
out disturbing the blue rule and its dependent set. As
shown in Algorithm 5, in order to push the new cache
in to the TCAM, we first decompose/remove the old
mixed-sets (that are not cached anymore) from the TCAM
(lines 2-11) and then compose with the new mixed sets
(lines 12-21) while retaining the mixed-sets common to
both the versions of the cache. Composing two rules to
build a cache would simply involve merging their corre-
sponding mixed-sets (and incrementing appropriate ref-
erence counters for each rule) and decomposition would
involve checking the reference counters before removing
a rule from the TCAM. Reference counting is required
to take care of overlapping mixed sets. We leave it to
the reader to verify that it is indeed safe to leave behind
rules on the TCAM that have positive reference counts
during the deletion phase7. In the example discussed

7The intuition is that if a rule has a positive reference count,

8

above, if we want to change the cover-set of rule R6 to
its dependent set on the TCAM, we first delete the en-
tire cover-set rules (including rule R6) and then install
the entire dependent-set of R6.

4. CACHEMASTER DESIGN
As shown in Figure 1, CacheFlow has a CacheMaster

module that implements its control-plane logic. In this
section, we describe how CacheMaster directs “cache-
miss” packets from the TCAM to the software switches,
using existing switch mechanisms. Then, we explain
how CacheMaster preserves the semantics of the Open-
Flow interface to the controller.

4.1 Scalable Processing of Cache Misses
CacheMaster runs the algorithms in Section 3 to com-

pute the rules to cache in the TCAM. The cache misses
are sent to one of the software switches, which each store
a copy of the entire policy. CacheMaster can shard the
cache-miss load over the software switches.

Using the group tables in OpenFlow 1.1+, the hard-
ware switch can apply a simple load-balancing policy.
Thus the forward_to_SW_switch action (used in Fig-
ure 3) forwards the cache-miss traffic—say, matching
a low-priority “catch-all” rule—to this load-balancing
group table in the switch pipeline, whereupon the cache-
miss traffic can be distributed over the software switches.

If group tables are not available, CacheMaster can
modify the forwarding actions of the cover rules so that,
overall, each software switch receives a roughly equal
share of cache-miss traffic. It is worth noting that the
flexible switch control offered by SDN makes it partic-
ularly easy to manipulate the rules cached in the hard-
ware switch to shard the cache-miss traffic.

4.2 Preserving OpenFlow Semantics
To work with unmodified controllers and switches,

CacheFlow preserves the semantics of the OpenFlow in-
terface, including rule priorities and counters, as well as
features like packet_ins, barriers, and rule timeouts.
Preserving inports and outports: CacheMas-

ter installs three kinds of rules in the hardware switch:
(i) fine-grained rules that apply the cached part of the
policy (cache-hit rules), (ii) coarse-grained rules that
forward packets to a software switch (cache-miss rules),
and (iii) coarse-grained rules that handle return traffic
from the software switches, similar to mechanisms used
in DIFANE [22]. In addition to matching on packet-
header fields, an OpenFlow policy may match on the
inport where the packet arrives. Therefore, the hard-
ware switch tags cache-miss packets with the input port
(e.g., using a VLAN tag) so that the software switches

then either its dependent-set or the cover-set is also present
on the TCAM and hence is safe to leave behind during the
decomposition phase

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

A
vg

 r
un

ni
ng

 ti
m

e
(s

ec
)

Number of rules inserted

TCAM update time

Figure 5: TCAM Update Time

can apply rules that depend on the inport8. The rules in
the software switches apply any “drop” or “modify” ac-
tions, tag the packets for proper forwarding at the hard-
ware switch, and direct the packet back to the hardware
switch. Upon receiving the return packet, the hardware
switch simply matches on the tag, pops the tag, and for-
wards to the designated output port(s).
Packet in messages: If a rule in the TCAM has an

action that sends the packet to the controller, CacheMas-
ter simply forwards the the packet_in message to the
controller. However, for rules on the software switch,
CacheMaster must transform the packet_in message
by (i) copying the inport from the packet tag into the
inport field of the packet_in message and (ii) stripping
the tag from the packet before sending to the controller.
Traffic counts, barrier messages, and rule time-

outs: CacheFlow preserves the semantics of OpenFlow
constructs like queries on traffic statistics, barrier mes-
sages, and rule timeouts by having CacheMaster emu-
late these features. For example, CacheMaster main-
tains packet and byte counts for each rule installed by
the controller, updating its local information each time
a rule moves to a different part of the “cache hierar-
chy.” Similarly, CacheMaster emulates rule timeouts
by installing rules without timeouts, and explicitly re-
moving the rules when the software timeout expires,
similar to prior work on LIME [23]. For barrier mes-
sages, CacheMaster first sends a barrier request to all
the switches, and waits for all of them to respond before
sending a barrier reply to the controller. In the mean-
time, CacheMaster buffers all messages from the con-
troller before distributing them among the switches.

5. COMMODITY SWITCH AS THE CACHE
The hardware switch used as a cache in our system

is a Pronto-Pica8 3290 switch running PicOS 2.1.3 sup-
8Tagging the cache-miss packets with the inport can lead
to extra rules in the hardware switch. In several practical
settings, the extra rules are not necessary. For example, in
a switch used only for layer-3 processing, the destination
MAC address uniquely identifies the input port, obviating
the need for a separate tag. Also, CacheMaster does not
need to add a tag unless the affected portion of the policy
actually differentiates by input port. Finally, newer version
of OpenFlow support switches with multiple stages of tables,
allowing us to use one table to push the tag and another to
apply the (cached) policy.

9

porting OpenFlow. We uncovered several limitations of
the switch that we had to address in our experiments:
Incorrect handling of large rule tables: The

switch has an ASIC that can hold 2000 OpenFlow rules.
If more than 2000 rules are sent to the switch, 2000 of
the rules are installed in the TCAM and the rest in the
software agent. However, the switch does not respect
the cross-rule dependencies when updating the TCAM,
leading to incorrect forwarding behavior! Since we can-
not modify the (proprietary) software agent, we simply
avoid triggering this bug by assuming the rule capacity
is limited to 2000 rules. Interestingly, the techniques
presented in this paper are exactly what the software
agent should use to fix this bug!
Slow processing of control commands: The switch

is slow at updating the TCAM and querying the traffic
counters. The time required to update the TCAM is a
non-linear function of the number of rules being added
or deleted, as shown in Figure 5. While the first 500
rules take 6 seconds to add, the next 1500 rules takes
almost 2 minutes to install. During this time, querying
the switch counters easily led to the switch CPU hitting
100% utilization and, subsequently, to the switch dis-
connecting from the controller. In order to get around
this, we do not query the Pica8 switch during rule instal-
lation at the start of the experiment. Instead, we wait
till the set of installed rules is relatively stable to start
querying the counters at regular intervals and relying
on the counters in the software switch in the meantime.

6. PROTOTYPE AND EVALUATION
We implemented a prototype of CacheFlow in Python

using the Ryu controller library so that it speaks Open-
Flow to the switches. On the north side, CacheFlow
provides an interface which control applications can use
to send FlowMods to CacheFlow, which then distributes
them to the switches. At the moment, our prototype
supports the semantics of the OpenFlow 1.0 features
mentioned earlier (except for rule timeouts) transpar-
ently to both the control applications and the switches.

We use the Pica8 switch as the hardware cache, con-
nected to an Open vSwitch 2.1.2 multithread software
switch running on an AMD 8-core machine with 6GB
RAM. To generate data traffic, we connected two host
machines to the Pica8 switch and use tcpreplay to send
packets from one host to the other.

Cache-hit Rate.
We evaluate our prototype against three policies and

their corresponding packet traces: (i) A publicly avail-
able packet trace from a real data center and a synthetic
policy, (ii) An educational campus network routing pol-
icy and a synthetic packet trace, and (iii) a real Open-
Flow policy and the corresponding packet trace from an
Internet eXchange Point (IXP). We measure the cache-

hit rate achieved on these policies using three caching
algorithms (dependent-set, cover-set, and mixed-set).
The cache misses are measured by using ifconfig on
the software switch port and then the cache hits are cal-
culated by subtracting the cache misses from the total
packets sent as reported by tcpreplay. All the results
reported here are made by running the Python code
using PyPy to make the code run faster.

Figure 6(a) shows results for an SDN-enabled IXP
that supports the REANNZ research and education net-
work [24]. This real-world policy has 460 OpenFlow 1.0
rules matching on multiple packet headers like inport,
dst_ip, eth_type, src_mac, etc. Most dependency
chains have depth 1. We replayed a two-day traffic trace
from the IXP, and updated the cache every two minutes
and measured the cache-hit rate over the two-day pe-
riod. Because of the shallow dependencies, all three
algorithms have the same performance. The mixed-set
algorithm sees a cache hit rate of 84% with a hardware
cache of just 2% of the rules; with just 10% of the rules,
the cache hit rate increases to as much as 97%.

Figure 6(b) shows results for a real-world Cisco router
configuration on a Stanford backbone router [25]. which
we transformed into an OpenFlow policy. The policy
has 180K OpenFlow 1.0 rules that match on the desti-
nation IP address, with dependency chains varying in
depth from 1 to 8. We generated a packet trace match-
ing the routing policy by assigning traffic volume to each
rule drawn from a Zipf [14] distribution. The resulting
packet trace had around 30 million packets randomly
shuffled over 15 minutes. The mixed-set algorithm does
the best among all three and dependent-set does the
worst because there is a mixture of shallow and deep
dependencies. While there are differences in the cache-
hit rate, all three algorithms achieve at least 88% hit
rate at the total capacity of 2000 rules (which is just
1.1% of the total rule table). It is worth noting that
CacheFlow was able to react effectively to changes in
the traffic distribution for such a large number of rules
(180K in total) and the software switch was also able
to process all the cache misses at line rate.

The third experiment was done using the publicly
available CAIDA packet trace taken from the Equinix
datacenter in Chicago [26]. The packet trace had a to-
tal of 610 million packets sent over 30 minutes. Since
CAIDA does not publish the policy used to process
these packets, we built a policy by extracting forward-
ing rules based on the destination IP addresses of the
packets in the trace. We obtained around 14000 /20
IP destination based forwarding rules. This was then
sequentially composed [27] with an access-control policy
that matches on fields other than just the destination
IP address. The ACL was a chain of 5 rules that match
on the source IP, the destination TCP port and inport
of the packets which introduce a dependency chain of

10

 0

 20

 40

 60

 80

 100

 0.5 1 2 5 10 25 50

%
 C

ac
he

-h
it

tr
af

fic

% TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

(a) REANNZ IXP switch

 0

 20

 40

 60

 80

 100

 63 125 250 500 1000 2000

%
 C

ac
he

-h
it

tr
af

fic

TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

(b) Stanford backbone router

 0

 20

 40

 60

 80

 100

 63 125 250 500 1000 2000

%
 C

ac
he

-h
it

tr
af

fic

TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

(c) CAIDA packet trace

Figure 6: Cache-hit rate vs. TCAM size for three algorithms and three policies (with x-axis on log scale)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2-Way Hit 1-Way Hit 2-Way Miss

La
te

nc
y

in
 m

s

Cache Miss Latency Overhead

Figure 7: Cache-Miss Latency Measurement

depth 5 for each destination IP prefix. This composition
resulted in a total of 70K OpenFlow rules that match
on multiple header fields. This experiment is meant to
show the dependencies that arise from matching on var-
ious fields of a packet and also the explosion of depen-
dencies that may arise out of more sophisticated poli-
cies. Figure 6(c) shows the cache-hit percentage under
various TCAM rule capacity restrictions. The mixed-
set and cover-set algorithms have similar cache-hit rates
and do much better than the dependent-set algorithm
consistently because they splice every single dependency
chain in the policy. For any given TCAM size, mixed-
set seems to have at least 9% lead on the cache-hit rate.
While mixed-set and cover-set have a hit rate of around
94% at the full capacity of 2000 rules (which is just 3%
of the total rule table), all three algorithms achieve at
least an 85% cache-hit rate.

Figure 7 shows the latency incurred on a cache-hit
versus a cache-miss. The latency was measured by at-
taching two extra hosts to the switch while the previ-
ously CAIDA packet trace was being run. Extra rules
initialized with heavy volume were added to the policy
to process the ping packets in the TCAM. The average
round-trip latency when the ping packets were cache-
hits in both directions was 0.71ms while the latency
for 1-way cache miss was 0.81ms. Thus the one way
cache-miss latency overhead was only 0.10ms

Incremental Algorithms.
In order to measure the effectiveness of the incremen-

tal update algorithms, we conducted two experiments
designed to evaluate (i) the algorithms to incrementally
update the dependency graph on insertion or deletion
of rules and (ii) algorithms to incrementally update the

TCAM when traffic distribution shifts over time.
Figure 8(a) shows the time taken to insert/delete

rules incrementally on top of the Stanford routing policy
of 180K rules. While an incremental insert takes about
15 milliseconds on average to update the dependency
graph, an incremental delete takes around 3.7 millisec-
onds on average. As the linear graphs show, at least for
about a few thousand inserts and deletes, the amount
of time taken is strictly proportional to the number of
flowmods. Also, an incremental delete is about 4 times
faster on average owing to the very local set of depen-
dency changes that occur on deletion of a rule while an
insert has to explore a lot more branches starting with
the root to find the correct position to insert the rule.
We also measured the time taken to statically build the
graph on a rule insertion which took around 16 minutes
for 180K rules. Thus, the incremental versions for up-
dating the dependency graph are ∼60000 times faster
than the static version.

In order to measure the advantage of using the in-
cremental TCAM update algorithms, we measured the
cache-hit rate for mixed-set algorithm using the two op-
tions for updating the TCAM. Figure 8(b) shows that
the cache-hit rate for the incremental algorithm is sub-
stantially higher as the TCAM size grows towards 2000
rules. For 2000 rules in the TCAM, while the incre-
mental update achieves 93% cache-hit rate, the nuclear
update achieves only 53% cache-hit rate. As expected,
the nuclear update mechanism sees diminishing returns
beyond 1000 rules because of the high rule installation
time required to install more than 1000 rules as shown
earlier in Figure 5.

Figure 8(c) shows how the cache-hit rate is affected
by the naive version of doing a nuclear update on the
TCAMwhenever CacheFlow decides to update the cache.
The figure shows the number of cache misses seen over
time when the CAIDA packet trace is replayed at 330k
packets per second. The incremental update algorithm
stabilizes quite quickly and achieves a cache-hit rate of
95% in about 3 minutes. However, the nuclear update
version that deletes all the old rules and inserts the new
cache periodically suffers a lot of cache-misses while it
is updating the TCAM. While the cache-hits go up to
90% once the new cache is fully installed, the hit rate
goes down to near 0% every time the rules are deleted

11

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 10 100 200 500 1000

A
vg

. r
un

ni
ng

 ti
m

e(
se

c)

Number of rules inserted

Incremental Insert
Incremental Delete

(a) Incremental DAG update

 0

 20

 40

 60

 80

 100

 63 125 250 500 1000 2000

%
 C

ac
he

-h
it

tr
af

fic

TCAM Cache Size (Log scale)

Nuclear Update
Incremental Update

(b) Incremental/nuclear cache-hit rate

 0

 20

 40

 60

 80

 100

 0 500 1000 1500

%
 C

ac
he

-h
its

 p
er

 s
ec

on
d

Time in seconds

Nuclear Update
Incremental Update

(c) Incremental vs. nuclear stability

Figure 8: Performance of Incremental Algorithms for DAG and TCAM update

and it takes around 2 minutes to get back to the high
cache-hit rate. This instability in the cache-miss rate
makes the nuclear installation a bad option for updat-
ing the TCAM.

7. RELATED WORK
While route caching is discussed widely in the context

of IP destination prefix forwarding, SDN introduces new
constraints on rule caching. We divide the route caching
literature into three wide areas: (i) IP route Caching (ii)
TCAM optimization, and (iii) SDN rule caching.

IP Route Caching.
Earlier work on IP route caching [14–17, 28] talks

about storing only a small number of IP prefixes in
the switch line cards and storing the rest in inexpen-
sive slow memory. Most of them exploit the fact that
IP traffic exhibits both temporal and spatial locality to
implement route caching. For example, Sarrar et.al [14]
show that packets hitting IP routes collected at an ISP
follow a Zipf distribution resulting in effective caching of
small number of heavy hitter routes. However, most of
them do not deal with cross-rule dependencies and none
of them deal with complex multidimensional packet-
classification. For example, Liu et.al [28] talk about effi-
cient FIB caching while handling the problem of cache-
hiding for IP prefixes. However, their solution can-
not handle multiple header fields or wildcards and does
not have the notion of packet counters associated with
rules. Our paper, on the other hand, deals with the
analogue of the cache-hiding problem for more general
and complex packet-classification patterns and also pre-
serves packet counters associated with these rules.

TCAM Rule Optimization.
There is a long line of research that deals with opti-

mizing packet-classifier rule space in CAMs and TCAMs.
The TCAMRazor [29–31] line of work compresses multi-
dimensional packet-classification rules to minimal TCAM
rules using decision trees and multi-dimensional topo-
logical transformation. Dong et. al. [32] propose a
caching technique for ternary rules by constructing com-
pressed rules for evolving flows. Their solution requires
special hardware and does not preserve counters. In
general, all the above techniques that use compression

to reduce TCAM space also suffer from not being to
make incremental changes quickly to their data-structures.
On the other hand, we rely on splicing long dependen-
cies to reduce rule space using a data structure that
is more amenable to incremental changes owing to its
compositional nature.

SDN Rule Caching.
There is some recent work on dealing with limited

switch rule space for OpenFlow rules in the SDN com-
munity. DIFANE [22] advocates caching of ternary rules,
but uses more TCAM to handle cache misses—leading
to a TCAM-hungry solution. Other work [33–35] shows
how to distribute rules over multiple switches along a
path, but cannot handle rule sets larger than the ag-
gregate table size. Devoflow [36] introduces the idea of
rule “cloning” to reduce the volume of traffic processed
by the TCAM, by having each match in the TCAM trig-
ger the creation of an exact-match rules (in SRAM) the
handle the remaining packets of that microflow. How-
ever, Devoflow does not address the limitations on the
total size of the TCAM. Lu et.al. [37] use the switch
CPU as a traffic co-processing unit where the ASIC is
used as a cache but they only handle microflow rules
and hence do not preserve rule dependencies.

8. CONCLUSION
In this paper, we define a hardware-software hybrid

switch design called CacheFlow that relies on rule caching
to provide large rule tables at low cost. Unlike tra-
ditional caching solutions, we neither cache individual
rules (to respect rule dependencies) nor compress rules
(to preserve the per-rule traffic counts). Instead we
“splice” long dependency chains to cache smaller groups
of rules while preserving the semantics of the network
policy. Our design satisfies four core criteria: (1) elas-
ticity (combining the best of hardware and software
switches), (2) transparency (faithfully supporting na-
tive OpenFlow semantics, including traffic counters),
(3) fine-grained rule caching (placing popular rules in
the TCAM, despite dependencies on less-popular rules),
and (4) adaptability (to enable incremental changes to
the rule caching as the policy changes).

9. REFERENCES

12

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,”
SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[2] “TCAMs and OpenFlow: What every SDN practitioner
must know.” See http://tinyurl.com/kjy99uw, 2012.

[3] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
“PAST: Scalable Ethernet for data centers,” in ACM
SIGCOMM CoNext, 2012.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,
“Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in ACM
SIGCOMM, 2013.

[5] “Noviflow.” http://noviflow.com/.
[6] “SDN system performance.” See

http://pica8.org/blogs/?p=201, 2012.
[7] E. Spitznagel, D. Taylor, and J. Turner, “Packet

classification using extended TCAMs,” in ICNP 2003.
[8] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,

M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic
scheduling of network updates,” in ACM SIGCOMM, Aug.
2014.

[9] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity
switch models for software-defined network emulation,” in
HotSDN, Aug. 2013.

[10] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy,
“RouteBricks: Exploiting parallelism to scale software
routers,” in SOSP, 2009.

[11] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A
GPU-accelerated software router,” in SIGCOMM 2010.

[12] “Intel DPDK overview.” See http://tinyurl.com/cepawzo.
[13] “The rise of soft switching.” See

http://networkheresy.com/category/open-vswitch/.
[14] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and

X. Huang, “Leveraging Zipf’s law for traffic offloading,”
SIGCOMM Comput. Commun. Rev. 2012.

[15] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting
route caching: The world should be flat,” in Passive and
Active Measurement, 2009.

[16] D. Feldmeier, “Improving gateway performance with a
routing-table cache,” in INFOCOM, 1988.

[17] H. Liu, “Routing prefix caching in network processor
design,” in ICCN 2001.

[18] N. Katta, O. Alipourfard, J. Rexford, and D. Walker,
“Infinite cacheflow in software-defined networks,” in
Proceedings of the HotSDN Workshop, HotSDN ’14, 2014.

[19] P. Kazemian, G. Varghese, and N. McKeown, “Header
space analysis: Static checking for networks,” in
Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, (Berkeley,
CA, USA), USENIX Association, 2012.

[20] G. Borradaile, B. Heeringa, and G. Wilfong, “The knapsack
problem with neighbour constraints,” J. of Discrete
Algorithms, vol. 16, pp. 224–235.

[21] S. Khuller, A. Moss, and J. S. Naor, “The budgeted
maximum coverage problem,” Inf. Process. Lett., Apr. 1999.

[22] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with DIFANE,” in ACM
SIGCOMM, 2010.

[23] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live
migration of an entire network (and its hosts),” in HotNets,
Oct. 2012.

[24] “REANZZ.” http://reannz.co.nz/.
[25] “Stanford backbone router forwarding configuration.”

http://tinyurl.com/oaezlha.
[26] “The caida anonymized internet traces 2014 dataset.”

http://www.caida.org/data/passive/passive_2014_
dataset.xml.

[27] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker, “Composing software defined networks,” in
Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), USENIX, 2013.

[28] Y. Liu, S. O. Amin, and L. Wang, “Efficient FIB caching
using minimal non-overlapping prefixes,” SIGCOMM
Comput. Commun. Rev., Jan. 2013.

[29] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A
systematic approach towards minimizing packet classifiers
in TCAMs,” IEEE/ACM Trans. Netw, Apr. 2010.

[30] C. R. Meiners, A. X. Liu, and E. Torng, “Topological
transformation approaches to tcam-based packet
classification,” IEEE/ACM Trans. Netw., vol. 19, Feb.
2011.

[31] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A
non-prefix approach to compressing packet classifiers in
tcams,” IEEE/ACM Trans. Netw., vol. 20, Apr. 2012.

[32] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire
speed packet classification without TCAMs: A few more
registers (and a bit of logic) are enough,” in ACM
SIGMETRICS, 2007.

[33] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing
tables in software-defined networks,” in IEEE Infocom
Mini-conference, Apr. 2013.

[34] M. Moshref, M. Yu, A. Sharma, and R. Govindan,
“Scalable rule management for data centers,” in NSDI 2013.

[35] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing
the ’one big switch’ abstraction in Software Defined
Networks,” in ACM SIGCOMM CoNext, Dec. 2013.

[36] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, “Devoflow: Scaling flow
management for high-performance networks,” in ACM
SIGCOMM, 2011.

[37] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a
traffic co-processing unit in commodity switches,” in
HotSDN ’12.

13

http://tinyurl.com/kjy99uw
http://noviflow.com/
http://pica8.org/blogs/?p=201
http://tinyurl.com/cepawzo
http://networkheresy.com/category/open-vswitch/
http://reannz.co.nz/
http://tinyurl.com/oaezlha
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml

	Introduction
	Identifying Rule Dependencies
	Rule Dependencies
	Constructing the Dependency DAG
	Incrementally Updating The DAG
	Incremental Insert
	Incremental Delete

	Caching Algorithms
	Dependent-Set: Caching Dependent Rules
	Cover-Set: Splicing Dependency Chains
	Mixed-Set: An Optimal Mixture
	Updating the TCAM Incrementally

	CacheMaster Design
	Scalable Processing of Cache Misses
	Preserving OpenFlow Semantics

	Commodity Switch as the Cache
	Prototype and Evaluation
	Related Work
	Conclusion
	References

