
BGP Emulation for Domain-Wide Route Prediction
Nick Feamster Jared Winick Jennifer Rexford

Laboratory for Computer Science EECS Department Internet and Networking Systems
Massachusetts Institute of Technology University of Michigan AT&T Labs – Research

Cambridge, MA 02139 Ann Arbor, MI 48105 Florham Park, NJ 07932
feamster@lcs.mit.edu jwinick@eecs.umich.edu jrex@research.att.com

Abstract—Network operators modify the configuration of routing pro-
tocols to adapt to traffic shifts, equipment failures, and the outlay of new
capacity. Operators can reconfigure the Border Gateway Protocol (BGP)
to control how traffic flows to neighboring Autonomous Systems (ASes)
and how traffic traverses the domain to reach the egress points. Unfor-
tunately, predicting the impact of configuration changes is surprisingly
difficult because of the distributed nature of BGP and complex interac-
tions with other routing protocols. This paper presents a BGP emulator
that determines how traffic flows through an AS using only a static snap-
shot of the network configuration and the routes advertised by neighbor-
ing ASes. Rather than simulating the details of BGP message passing,
the emulator predicts the outcome of the BGP decision process on each
router using a centralized algorithm and representative abstractions of
the relevant inputs—advertised routes from neighboring ASes, local BGP
routing policies, internal BGP configuration, and intradomain routing
parameters. To handle the magnitude and diversity of these inputs, our
prototype implementation limits computational overhead by exploiting
the unique structure of the routing data. We validate and evaluate our
prototype using data from AT&T’s commercial IP backbone.

I. INTRODUCTION

Network operators modify routing protocol configurations
to adapt to the outlay of new capacity, large shifts in offered
traffic, or significant routing changes in neighboring domains.
To ensure reasonable performance during equipment failures
and maintenance activities, operators need to predict the link
loads under different variations in the topology and perhaps
modify the routing configuration accordingly. Predicting the
routes that each router in an Autonomous System (AS) selects
for each destination would allow an operator to debug perfor-
mance and reachability problems. Nevertheless, basic infor-
mation about Internet routing behavior is surprisingly elusive.
For example, because of the distributed nature of the Border
Gateway Protocol (BGP) [1] and complex interactions with
other routing protocols, a network operator cannot easily de-
termine how traffic would travel through the domain en route
to other destinations, even with full knowledge of an AS’s
topology and router configuration. To avoid costly debugging
time and catastrophic mistakes, network operators should be
able to make these types of predictions based on an accurate
model of the routing protocols.

To solve this problem, we present an emulator that predicts
how traffic would travel through an AS, given only a static
snapshot of the network configuration and the routes adver-
tised by neighboring domains. Existing emulation techniques
focus on Interior Gateway Protocols (IGPs), such as Open
Shortest Path First (OSPF), which select shortest paths within

an AS based on link weights set by network operators [2].
These emulation models are the foundation for traffic engi-
neering schemes that tune the link weights to the prevailing
traffic and topology [3]. However, these models do not cap-
ture the effects of BGP, which controls how traffic travels be-
tween ASes. In contrast to IGPs, which compute shortest paths
based on static link weights, BGP path selection depends on
routing policies (configured by network operators) and a com-
plex, asynchronous decision process (implemented by router
vendors). These factors introduce considerable challenges to
the emulation problem.

This paper presents an abstract model that describes how
each BGP-speaking router in an AS selects a best route to each
block of destination IP addresses. Previous research on inter-
domain routing has focused on understanding the structural
properties of the Internet topology [4, 5] and the dynamics of
the BGP protocol [6, 7], rather than rigorously modeling BGP
path selection at an AS-wide level. Formal models of BGP
have been used to analyze protocol convergence [8–11] but do
not capture the route selection process within an AS. In con-
trast, our work provides both a precise understanding of how
BGP route selection depends on the network state and an ef-
ficient way to predict the routing choices made at each router
in the domain. Efficiency is crucial, since we envision human
operators and automated tools using the emulator as an “inner
loop” to explore many possible routing configuration changes.

Emulating BGP at a domain-wide level presents the follow-
ing challenges:

� BGP policies have an indirect effect on route selection:
BGP route advertisements contain numerous attributes, and
operators have considerable flexibility to specify policies that
manipulate these attributes to affect route selection. However,
these policies have only an indirect influence on the complex
multi-stage path selection process at each router.
� Route selection depends on complex protocol interactions:
Internal BGP (iBGP) configuration affects route propagation
within an AS and affects the advertisements that a router re-
ceives. The intradomain routing configuration also affects
BGP’s best route selection, since IGP weights dictate the clos-
est network exit point. Finally, the best route at one router may
depend on the routes selected by other routers in the AS.
� Route emulation depends on a large volume of input data:
The emulator requires a domain-wide view of the network

2

state. Thus, it must efficiently process and combine the eBGP-
learned routes, the BGP import policies, the iBGP session
topology, and the IGP parameters.

To solve these problems, we develop the following set of
techniques and tools:
� Route prediction algorithm: We present an algorithm that
efficiently emulates the BGP decision process from a snap-
shot of the network state rather than simulating the details of
individual BGP messages.
� Vendor-independent abstractions: In practice, policy spec-
ification and router configuration are expressed in obscure,
vendor-specific languages. We provide abstractions for BGP
routing policies and iBGP configuration that represent this
state in a concise, vendor-independent fashion.
� Prototype emulation tool: We built a database-driven route
emulation tool based on our algorithms and abstractions. We
use routing and configuration data from AT&T’s commercial
backbone to verify the correctness and performance of the
tool. The emulator correctly predicts the outcome of the BGP
decision process more than 99% of the time and is efficient
enough to be used both by network operators and as an inner
loop for an automated optimization engine.

After a brief overview of interdomain routing, we present our
emulation algorithms and describe the implementation. We
then evaluate the prototype’s correctness and efficiency. We
conclude with a summary of our results and a discussion of
future research directions.

II. CHALLENGES FOR DOMAIN-WIDE BGP PREDICTION

In this section, we present an overview of BGP and describe
how routing policies affect the selection of the best route at
each router. We then discuss how a router combines infor-
mation from multiple routing protocols to construct the for-
warding table and highlight how the interaction between the
protocols complicates the route emulation problem.

A. BGP Decision Process and Policy Interaction

BGP is a path-vector protocol that constructs a route by
successively propagating reachability information. A BGP-
speaking router sends an advertisement to notify its neighbor1

of a new route to the destination prefix and sends a withdrawal
to revoke the route when it is no longer available. Each route
advertisement includes various attributes, such as the list of
the ASes in the path (the AS path) and the IP address of the
router responsible for the route (the next hop). If a router
learns routes for a prefix from multiple BGP neighbors, the
BGP decision process selects a single “best” route. In the sim-
plest case, a router selects the route with the shortest AS path
and advertises this path to each of its BGP neighbors. In prac-
tice, however, locally-configured import and export policies
typically affect the selection and propagation of routes.

�
Throughout the paper, “neighbor” refers to an eBGP or iBGP adjacency.

1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to next hop
7. Lowest router-id of BGP speaker

Table 1. The steps in the BGP decision process

The BGP decision process proceeds in several steps, as
summarized in Table 1. Setting the local preference attribute
influences the outcome most directly. An operator can config-
ure the import policy to assign local preference based on the
AS path or other route attributes. For example, suppose that
all of the routers have an import policy that assigns a local
preference of 100 to all routes. The operator could reduce the
load on a congested edge link by assigning a smaller local-
preference value for some of the routes associated with that
link. An operator could modify the import policy at this router
to assign a local preference of 80 for, say, AS paths ending in
65000, while continuing to assign 100 to all remaining routes.
This modification would make routes to AS 65000 via this
router less attractive to other routers in the AS, which would
instead choose another network exit point, thus reducing the
load on the congested link. The programmability of the import
policies gives operators considerable flexibility in controlling
the traffic flow at network exit points [12].

Several other attributes also affect the decision process. The
origin type identifies how the originating AS learned about
the route, where IGP is preferable to EGP (a now-defunct
distance-vector protocol), which is preferable to INCOM-
PLETE. The route advertisement may also include a multiple
exit discriminator (MED) to encourage the recipient to select
a particular egress point for sending traffic to the neighboring
AS; this is typically done by advertising different MED values
via different BGP sessions between the two ASes. As such, the
MED attribute only has meaning in comparing routes learned
from the same neighboring AS. However, a router’s import
policy can override the origin type and MED attributes, so
their use typically depends on a mutual understanding between
the two neighbors. If the first four steps in Table 1 do not re-
sult in a single best route, the router prefers a route learned di-
rectly via an eBGP session instead of any iBGP-learned route.
Then, the route with the smallest IGP cost is preferred (i.e.,
hot-potato routing). The final tie-break depends on the router-
ids of the BGP speakers who advertised the routes.2

B. Routing Protocol Interactions

Ultimately, each router synthesizes information from sev-
eral routing protocols to construct a forwarding table to map
destination prefixes to outgoing links. In large service provider

�
Some router vendors select the “oldest” advertisement, to favor more sta-

ble routes. However, “age-based” tie-breaking introduces non-determinism in
the BGP path selection process; as such, this step is often disabled.

3

eBGP session

IGP pathsession
iBGP

A

B

Fig. 1. Interaction between eBGP, iBGP, and IGP in an AS

networks, each routing protocol plays a specific role:
� eBGP: Information conveyed via eBGP allows a router

�

to learn which neighbor to use to direct traffic toward a partic-
ular destination prefix, as shown in Figure 1. The edge routers
have eBGP sessions to exchange reachability information with
neighboring domains. Each eBGP session has an import pol-
icy and a router-id and is associated with one or more outgoing
links to a next-hop AS. Applying the import policy is a local
operation that discards a route or changes its attributes as part
of constructing the BGP routing table.
� iBGP: Propagating routes via iBGP allows another router�

in the same domain to learn that
�

has a route for the pre-
fix. An iBGP session operates in the same fashion as an eBGP
session, with the exception that routes learned from one iBGP
neighbor are not advertised to another iBGP neighbor. In ad-
dition, iBGP sessions typically do not apply policies that ma-
nipulate the BGP attributes of the routes. Rather than having a
full mesh of iBGP sessions, a large AS may introduce hierar-
chy through the use of route reflectors. A route reflector (RR)
receives iBGP routes from various neighbors and propagates
its best route to its clients. The iBGP sessions form a signaling
graph [9] connecting the routers in the AS.
� IGP: The IGP allows the router

�
to determine whether�

is the closest exit point with a route for the prefix and to
identify which of

�
’s outgoing links lie on shortest paths to�

. The intradomain topology consists of the routers in the AS
and the links between them, where each unidirectional link has
an operator-configured weight and (optionally) an area. The
path cost for each router pair can be computed directly from a
snapshot of the IGP topology and configuration [2].

Despite the separation of roles between these three routing
protocols, various protocol interactions complicate modeling
the path selection process. First, the iBGP and IGP configu-
rations can interact in subtle ways. A route reflector may se-
lect and propagate a different best route than its clients would
have chosen with all of the options at their disposal; in ex-
treme cases, this can lead to route oscillation [9, 11]. In addi-
tion, a router may forward a packet to another router that has
selected a different exit point for the destination prefix; this
can lead to unexpected forwarding paths, including loops [9].
Second, the way the BGP decision process handles the MED
attribute (comparing routes only if they have the same next-
hop AS) makes it difficult to impose a ranking on the BGP
routes learned at a router. A route � may be “better” than � ,

which in turn is better than � , which in turn is “better” than
� .3 Under certain iBGP configurations, the MED attribute can
trigger route oscillation within an AS [13]. Ensuring that the
emulator captures the complex interaction between the routing
protocols is the subject of the next section.

III. ROUTE PREDICTION ALGORITHMS

In this section, we describe the algorithms that determine
the best route at each router in an AS. The algorithms perform
route prediction for an entire AS in a single pass by abstracting
individual routing protocol messages, routing policy specifica-
tion, and router configuration. To cope with the complexities
highlighted in Section II, our design decomposes the emulator
into three independent modules shown in Figure 2.

After describing this decomposition, we present algorithms
for computing the set of egress points for each prefix and se-
lecting a single egress point for each router for that prefix.
Although the first module in Figure 2 is not especially com-
plicated, the second and third modules require efficient algo-
rithms for computing the best eBGP-learned routes and deter-
mining the best route for each router in the domain, respec-
tively. Since the path selection process for each prefix is inde-
pendent, we focus the discussion on the problem for a single
destination prefix.

A. Decomposing the Route Prediction Problem

An instance of the route prediction problem consists of a
snapshot of the network configuration and the eBGP-learned
routes for a given AS. A solution identifies how traffic from
an ingress point to a destination prefix would travel through
the AS to a particular egress point to a neighboring domain.
To mitigate complexity, we decompose the problem into three
independent modules, as shown in Figure 2:
� Apply import policy on eBGP sessions: The first module
applies the import policy to the routes learned via each eBGP
session. These routes, with modified attributes, form the input
to the second module.
� Compute the set of best eBGP routes: The next module
identifies the eBGP-learned routes that could be chosen as the
best route by some router in the domain. For each destina-
tion prefix, the second module outputs a set of eBGP-learned
routes that are equally good up to the IGP tie-break in step 6
of the decision process.
� Compute the best BGP route at each router: The third
module captures how each router selects a best route for each

�
For example, suppose a router has two routes with the same next-hop AS—

a route 	 learned via iBGP from another router in the domain and an eBGP-
learned route
 with a larger MED. Suppose also that the router has a route �
learned via eBGP from a different neighboring AS, where this session has a
larger router-id than the session advertising
 . If all three routes have the same
local preference, AS path length, and origin type, the decision comes down to
steps � – in Table 1. The router prefers 	 over
 (due to MED),
 over � (due
to router-id), and � over 	 (due to eBGP vs. iBGP).

4

Compute
egress

and path

import policies
(per eBGP session)

router ID
(per session) (per core link)

IGP topology and weights

Apply
import
policy

(per prefix)

Compute

routes
(per prefix)

eBGP
routes routes

eBGP
modified

eBGP
routes

(per prefix)

best

link−level path(s)

(per prefix & ingress)
best eBGP

iBGP signalling graph

Fig. 2. Decomposing the BGP route emulator into three independent modules

destination prefix from the routes learned via eBGP and iBGP.
For each destination prefix and ingress point, this module out-
puts a network egress point. This module captures the role of
iBGP, IGP, and BGP router-id (steps 6 and 7 in Table 1).

The prediction algorithms assume that the eBGP-learned
routes are stable; that is, the emulator uses the assumption
that the routes seen at the time of a routing table dump are
an accurate indication of the routes that would be available in
the future. Although BGP updates may cause routes to ap-
pear and disappear over time, most routes are stable, and the
vast majority of traffic is destined to prefixes with stable eBGP
routes [14].

We envision that operators and network architects could
couple the modules shown in Figure 2 with additional func-
tionality. For example, a module that mapped the eBGP ses-
sions to the egress links that would carry the traffic could
combine the predicted paths with traffic measurement data to
predict the load on each link in the network. If a network
operator had measurements (or estimates) of the traffic arriv-
ing at each ingress point for each destination prefix [15], he
could combine this information with the paths predicted by
the third module and sum over all of the paths to predict the
load on each link in the network. Another module might eval-
uate the optimality of any particular path assignment from the
third module (e.g., in terms of propagation delay, link utiliza-
tion, etc.) and could search for good configuration and pol-
icy changes. As another possibility, import policies and other
router configuration inputs could be tested to ensure that suf-
ficient conditions for convergence are satisfied.

B. Computing the Set of Best eBGP Routes

The second module starts with the eBGP routes (after mod-
ification by the import policies) and produces the set of best
eBGP routes for each prefix. This set contains no more than
one route to a prefix for each eBGP-speaking router and indi-
cates which egress point that router would use to send packets
destined to that particular prefix. To compute the set of best
eBGP-learned routes, every router in the AS must learn one
or more of the routes in this set. Otherwise, an isolated router
might select a route that is less preferable to routes learned
at other routers in that AS. Thus, each eBGP-speaking router
must have a path in the iBGP signaling graph (perhaps through
one or more route reflectors) to every other router in the do-
main where we want to predict the BGP routing decision. The

recommended practice of connecting top-level route reflectors
in a “full mesh” of iBGP sessions [16] results in networks that
satisfy this constraint.

Given this constraint, the second module seems to have a
relatively simple solution: take the set of eBGP-learned routes
across all of the routers and identify the best routes by ap-
plying the BGP decision process. In the absence of MEDs,
this approach would work. However, the way the BGP deci-
sion process handles MEDs precludes this approach. Instead,
the second module gradually eliminates routes from the set of
modified eBGP routes, as follows:

1. Local-pref, AS path length, and origin type elimination:
Eliminate eBGP-learned routes that do not have the highest
local preference. From the remaining routes, eliminate those
that do not have the smallest AS path length. Finally, eliminate
remaining routes that do not have the smallest origin type.
2. Local MED elimination: From the remaining routes, for
each router, among routes with the same next-hop AS, elimi-
nate routes that do not have the minimum MED value. At the
end of this phase, a router may have two or more routes that
are equally good except for the router-id.
3. Global MED and router-id elimination: While there are
still routers with one or more candidate routes, select any
router and consider its locally-best route (the one with the
smallest router-id). If this route has a lower MED value and
the same next-hop AS as the locally-best route at any other
router eliminate this route. Otherwise, eliminate all other
routes at this router as well as all other routes with the same
next-hop AS and a larger MED value. The remaining routes
are the best eBGP routes.

The algorithm is linear in the number of eBGP-learned routes.
Previous work formally presents the algorithm and proves its
correctness [17].

C. Computing the Best Route at Each Router

The third module in Figure 2 determines the best route at
each router and computes the path from this router to the
egress point. On the surface, this problem has a relatively
simple solution: take the set of best eBGP-learned routes from
the second module and select the “closest” egress router (in
terms of IGP cost), breaking ties based on the BGP router-
ids. However, this approach requires that each router learns
the complete set of eBGP routes and that no other routers
along the path to the selected egress point choose a differ-

5

eBGP routes

peer−peer

C2

customer

C3 C4

RR2
provider−

RR1

C1

Fig. 3. Example iBGP signaling graph highlighting two-phase algorithm

ent egress point. The use of route reflectors (RRs) can result
in network configurations that violate both of these assump-
tions. However, previous work establishes sufficient condi-
tions to ensure that iBGP configuration is not susceptible to
these problems [9]. These conditions, which we discuss be-
low, should be checked before the third module attempts to
compute the best route.

Even when these conditions hold, one router’s routing deci-
sions can affect the routing options at other routers. To account
for these dependencies, our algorithm walks through the iBGP
signaling graph to make decisions at each router and propagate
the effects of these decisions to other routers. Following the
terminology from previous work [9], we refer to an iBGP ses-
sion from a router to its RR as “customer-provider” and a ses-
sion between two RRs at the same level in the iBGP hierarchy
as “peer-peer”. Figure 3 shows an example with a single peer-
peer session between two route reflectors and four customer-
provider sessions. The sufficient conditions for correct iBGP
configuration [9] state that a router must prefer routes learned
via iBGP “customers” over routes learned from iBGP “peers”
and “providers” (i.e., the router must have a lower IGP path
cost to its iBGP customers) and the customer-provider graph
must be acyclic (e.g., if � is a route reflector for � , and � is a
route reflector for � , then � is not a route reflector for �).

If these constraints are satisfied, the algorithm can emulate
the exchange of iBGP messages in two phases by considering
the routing decisions at the routers in the following order:

1. Customers first: Consider the routers in an order that con-
forms to the partial order in the customer-to-provider signaling
graph. In this phase, a router selects a customer route, if one
is available, only after its customer has selected a route. For
example, in Figure 3, C1 and C2 have a best eBGP-learned
route and route-reflector RR1 is considered; RR1 selects one
of these two routes, based on the IGP cost and the router-
ids. C3, C4, and RR2 cannot be considered since no customer
route is available.

2. Providers next: Consider the remaining routers in an order
that conforms to the partial order in the provider-to-customer
signaling graph. In this phase, routers that did not select a
customer route choose a peer or provider route as they become
available. For example, either RR2 or C3 can be considered
first, since all upstream iBGP neighbors have already selected

a route. Once RR2 has been considered, C4 can be considered.

The algorithm can consider the routers without backtrack-
ing as long as the network configuration obeys the sufficient
condition that guarantees convergence to a unique solution.
Since routes from customers are preferable to routes from
peers or providers, any router that selects a route in the first
phase would never select a different route based on any de-
cision made in the second phase. Within a phase, the activa-
tion order emulates the percolation of information up and then
down the iBGP hierarchy. The algorithm follows the same ap-
proach as the constructive proof of a theorem from previous
work that states sufficient conditions for stable interdomain
routing at the AS level (Theorem 5.1 from [10]); this theo-
rem also underlies the derivation of the sufficient conditions
for iBGP configuration [9]. Once each router has a best egress
point, the IGP configuration determines the forwarding path
from each router to its egress point; the sufficient conditions
for correct iBGP configuration ensures that no router along the
path “deflects” the traffic toward a different egress point [9].

D. Checking for Sufficient Conditions

Ultimately, certain network configurations thwart our emu-
lation algorithms. This is a fundamental problem underlying
BGP—some configurations do not converge, and determining
whether a system converges to a unique solution is computa-
tionally intractable [8]. Our emulator assumes that the con-
figuration obeys the sufficient conditions for convergence to a
unique solution free of IGP path deflections. A route emula-
tion tool should incorporate checks to ensure that these con-
ditions are satisfied to prevent to potential routing anomalies
and sources of nondeterminism.

The emulation tool could potentially invoke more complex
algorithms to analyze these network configurations (e.g., to
report all possible solutions to the routing problem). How-
ever, these algorithms would, necessarily, have a longer run-
ning time that would make them difficult to use as an “inner
loop” for exploring control options. Our implementation of
the emulator does not perform these tasks.

IV. PROTOTYPE IMPLEMENTATION

In this section, we describe the implementation of the BGP
emulator. First, we discuss the advantages of using a database
and present an overview of the data model. Next, we describe
the operation of each module, including how we populate the
tables from external measurement data. For each module, we
also discuss how the algorithm avoids duplicate computations
if multiple prefixes have the same characteristics or an opera-
tor experiments with minor changes to import policies.

A. Database-Driven Implementation

A database provides several advantages for implementing
the prototype. On a given day, a large backbone provider such

6

BGP tables

known routes

route maps

import

modified routes

BGP Neighbor Info

router ID

egress points

iBGP topology

RR clients

IGP configuration

IGP Path Costs

predicted routes

Apply import policy
Compute best
eBGP routes Compute best route

Fig. 4. Dependencies across raw and derived tables in the emulator. In prac-
tice, network operators might collect raw inputs on a daily basis.

Table Description
Module 1: Applying import policy

known routes router, neighbor, prefix, AS path, AS path length, MED, origin
import router, neighbor, AS regexp, localpref, MED, origin
modified routes router, neighbor, prefix, AS path length, localpref, MED, origin

Module 2: Computing the set of best eBGP routes
router ID router, neighbor, router-id
egress points prefix, egress router, neighbor

Module 3: Computing the best route at each router
RR clients client, route reflector, cluster-id
IGP path costs router1, router2, cost
predicted routes prefix, ingress router, egress router, neighbor

Table 2. Database tables (input data in italics and derived tables in bold)

as AT&T may have over one million distinct eBGP-learned
routes. Any proposed change to the import policies would
likely affect only a small subset of those routes; the database
interface provides a mechanism for quickly locating the af-
fected routes. Second, the various modules in the emulator
must access the data by prefix, BGP session, import policy,
router, or some other property, which a database makes par-
ticularly easy. Third, the emulation tool should support exper-
imentation with different policies, which means that the tool
should be able to quickly restore the default configuration; a
database also makes this particularly easy. Finally, database
tables provide a clean abstraction between the different mod-
ules of the prototype: modules only interact with one another
via intermediate results as expressed in the database tables.

Table 2 shows the tables that are used in the tool. Figure 4
summarizes the input data used to construct the abstractions,
as well as the intermediate tables generated by each module.
Each module computes a single table that is used by the sub-
sequent module. The first module loads the eBGP-learned
routes from BGP routing tables and the import policies from
the route maps configured on the routers. The module applies
the import policies to manipulate the attributes of the routes
and generates a new table that serves as an input to the second
module. The second module loads a table with the router-id
for each session and applies the algorithm from Section III-B
to generate the set of best eBGP learned routes, which serves
as an input to the third module. The third module loads the
iBGP signaling graph and IGP path costs from the configura-
tion data and uses the algorithm from Section III-C to deter-
mine the best BGP route for each prefix at each router.

B. Applying Import Policy

The first module applies the import policies to modify the
attributes of the eBGP-learned routes.

B.1 Inputs: BGP routing tables and router configuration files

The first module loads the eBGP-learned routes from the
BGP routing tables, ignoring any attributes such as local pref-
erence that would be assigned by the import policy. Each row
in the known routes table contains one route, consisting of the
prefix, the router at which that eBGP route was learned, the
eBGP neighbor, and a column for each route attribute. For a
network with a large number of eBGP-learned routes, loading
the known routes table is very time-consuming. To expedite
the process, we load the tables from different routers in paral-
lel. Because many routes have the same AS path, the AS path
in the known routes table is actually represented as a pointer
into a table of unique AS paths. This technique speeds queries
for routes based on certain AS path regular expressions, since
the table of distinct AS paths is much smaller than the known
routes table.

The import policy module parses the router configuration
files into its corresponding abstract format. The import table
contains an abstract import policy representation. An eBGP
session is uniquely identified by the router name and the next-
hop IP address (the remote end-point of the eBGP session).
The import policy for each session consists of one or more
clauses, represented in the Cisco router configuration files as
route-maps. Each clause includes a match expression to target
a specific subset of the routes and an action to set or manip-
ulate certain attributes of these routes. In the prototype, we
model the common practice of applying a regular expression
to the AS path attribute to match particular routes, followed by
an action such as setting the local preference, MED, or origin
type attributes. The ordering of the clauses is implicit in the
order of the rows in the import table.

B.2 Algorithm: Applying import policy to known routes

Import policy application applies the rules specified in the
import table to the known routes table. For each row in the
import table, the algorithm finds all routes in known routes
that match the BGP session (i.e., router and neighbor) and the
AS-path regular expression or prefix to match and alters the
route attributes accordingly, unless the route matched an ear-
lier clause from the same import policy. The results are stored
in a separate modified routes table, rather than overwriting
the known routes table. This enables an operator to revert back
to the initial known routes in order to experiment with various
changes to the import policies. In contrast to the known routes
table, the modified routes table includes the local preference
attribute (set by the import policy) and excludes the AS path
attribute (since only the length of the AS path affects the BGP
decision process).

7

C. Computing the Set of Best eBGP Routes

The second module determines set the of best eBGP routes
(the egress points table) from the attributes of the modified
routes and the router-id associated with each eBGP session.

C.1 Inputs: Obtaining per-session router-id

The last stage of the BGP decision process depends on
the router-id associated with the BGP session announcing the
route. On a Cisco router, the show bgp neighbor com-
mand provides the router-id (and various other information)
for each BGP session at the router. The emulator parses the
output of this command to load a router ID table that contains
the router name, neighbor IP address, and router-id for each
session. The second module uses only the router-ids of the
eBGP sessions; the third module uses the router-ids for the
iBGP sessions.

C.2 Algorithm: Computing best routes at exit points

To capitalize on the database, we implement the algorithm
from Section III-B through successive restrictions on an SQL
query, as shown in Figure 5. For example, the module first
determines the maximum local preference across all eBGP-
learned routes and adds a restriction to the “select” statement
to select only the routes with this local-preference value; this
process repeats for the AS path length and origin type. In the
absence of MEDs, this form of successive refinement would be
sufficient to compute the egress points table. The remainder
of the algorithm handles the second and third steps outlined in
Section III-B. The second step is implemented by selectively
refining the SQL query based on the MED attribute, albeit lo-
cally at each router based on the next-hop AS. The output of
this step is a table of candidates for the best eBGP routes. The
third step removes entries from this table by considering a best
route at each edge router and eliminating routes with the same
next-hop AS that have a higher MED value, as well as all re-
maining eBGP-learned routes at this router.

Because of the large number of prefixes and eBGP ses-
sions, determining the set of best routes is a computationally
intensive task. To reduce the overhead, we exploit the fact
that many prefixes are advertised in exactly the same fashion
across all eBGP sessions with neighboring ASes [12, 18]. This
typically happens when a single institution announces several
prefixes from a single location, or a single peer advertises var-
ious prefixes with the same AS path length. Because of this
commonality across prefixes, the emulator can compute the
egress points once for each group of prefixes with a common
set of modified routes, rather than separately per prefix. To
further reduce the overhead, the emulator can avoid recompu-
tation when an operator explores the effects of a small change
in import policy. In particular, the emulator can determine
which routes are affected by the policy change and recompute
the best routes only for these prefixes.

PROCEDURE PREDICT-EGRESS-POINTS(PFX, MASK)
// Initialize restrictions on query.
RESTRICTIONS = prefix=PFX and masklength=MASK

// Get the maximum local-pref value among these routes and add it to the set of restrictions.
MAX LP � select max(localpref) from modified routes

where RESTRICTIONS
RESTRICTIONS += and localpref=MAX LP

// Get the minimum path length from this set of routes.
MIN PL � min(pathlength) from modified routes

where RESTRICTIONS
RESTRICTIONS += and pathlength=MIN PL

// Get the minimum origin type from this set of routes.
MIN ORIG � min(origin) from modified routes

where RESTRICTIONS
RESTRICTIONS += and origin=MIN ORIG

ROUTERS � select distinct router from modified routes
where RESTRICTIONS

RESTRICTIONS += and (

// Per router, per next-hop AS, figure out the minimum MED values.
foreach ROUTER in ROUTERS

NEXTHOP-ASES � select distinct nexthop-as from modified routes
where router=ROUTER
foreach NEXTHOP in NEXTHOP-ASES

MIN MED � ����� ����� ��������������� select min(med) from modified routes
where router=ROUTER and nexthop-as=NEXTHOP

RESTRICTIONS += (router=ROUTER and nexthop-as=NEXTHOP
and med=MIN MED � � ��� ����� ���!�"����� �) or

RESTRICTIONS +=)

// Get the set of candidate best eBGP routes.
EGRESS CANDIDATES � select route, attributes where RESTRICTIONS
foreach ROUTER in ROUTERS

// Delete the locally-best routes not better than locally-best routes at other routers.
do

NEXTHOP-AS � select nexthop-as from EGRESS CANDIDATES
where RESTRICTIONS and router=ROUTER

(MIN MED) � select min(med) from EGRESS CANDIDATES
where RESTRICTIONS and nexthop-as=NEXTHOP-AS
and router!=ROUTER

NUM DELETED � delete from EGRESS CANDIDATES
where router=ROUTER and
nexthop-AS=NEXTHOP-AS and med # MIN MED

while NUM DELETED # 0

// Eliminate globally based on MED.
(MAX LP � � ��� ��� , $%$&$) � BEST-PATH-ATTRS(PREFIX,MASK, ROUTER)
delete from EGRESS CANDIDATES

where (nexthop-as=NEXTHOP-BEST and MIN MED � ����� ���(' med) or
(MIN ROUTER-ID � ����� ���)' routerid and router=ROUTER)

egress points � EGRESS CANDIDATES

Fig. 5. Emulating the BGP decision process at network exit points.

D. Computing the Best Route at Each Router

The third module of the emulator captures the effects of
the IGP and iBGP configuration on the selection of a specific
egress point for each router.

D.1 Inputs: IGP and iBGP Configuration

Two tables capture the IGP and iBGP configuration details
that affect the BGP decision process. The RR clients table

8

represents the iBGP topology, listing all “customer-provider”
relationships between routers. This information defines the
signaling graph for a network and allows the emulator to pro-
ceed through the two-phase algorithm in Section III-C. The
iBGP topology is derived from router configuration data. Each
end of a session consists of a router configured to establish an
iBGP session to a remote IP address on another router. By
combining this information across configuration files, we can
identify each pair of routers that has an iBGP session.

The IGP parameters are also derived from the configuration
data. From each configuration file, we can identify which in-
terfaces at the router participate in the IGP and the setting of
the IGP weight and (optionally) area. Combining information
across the configuration files allows the emulator to identify
the links between routers [19]. As discussed in Section III-C,
the third module in Figure 2 should use these parameters to
compute the (shortest-path) cost between each pair of routers,
as well as the sequence of links along this path. In the interest
of simplicity, the prototype implementation reads an IGP path
costs table that lists the cost of the shortest path between each
pair of routers, as computed by a separate IGP route emulation
tool [2]. As such, the prototype currently computes only the
chosen egress point, leaving the computation of the IGP path
to the existing IGP tool.

D.2 Algorithm: Determining the best route

The third module computes the final solution to route pre-
diction problem. That is, for each destination prefix, the mod-
ule determines how each ingress router would select a single
element of the egress points table. The selection of a partic-
ular egress point depends on the iBGP configuration and the
IGP cost to reach the egress routers, rather than the details
of the specific eBGP sessions in the egress set. As such, the
module first queries to egress points to determine the set of
egress routers associated with each prefix. Then, the module
reads the RR clients, IGP path costs tables, and the router-ids
of the iBGP sessions in the router ID table and apply the al-
gorithm from Section III-C. Due to the complex interaction
between the iBGP and IGP configuration, we do not imple-
ment the algorithm as a sequence of SQL queries.

For a particular ingress router, the result of the algorithm de-
pends only on the set of routers in the egress set. In theory, the
number of distinct sets of egress routers could be quite large
(*)+ possibilities for a network with , egress routers). How-
ever, in practice many prefixes have the same set of egress
routers. This typically happens because a single neighbor
AS may advertise many prefixes via all of its peering ses-
sions. Our prototype exploits this observation by caching the
best egress router for a given ingress router and set of egress
routers. This allows the emulator to avoid reapplying the algo-
rithm from Section III-C repeatedly across all prefixes with the
same set of egress routers. As discussed later in Section VI,
we achieve significant performance gains from this optimiza-

tion due to a very large cache hit rate.

V. VALIDATION

In this section, we describe how we validated the route pre-
diction algorithms and prototype implementation using data
from AT&T’s commercial IP backbone. After an overview of
our validation techniques, we present the results for each of
the three modules of the prototype implementation.

A. Validation Techniques

Ensuring that the emulator produces correct answers is ex-
tremely important, since we envision operators using the tool
to guide the changes to the configuration of the operational
network. Validation is challenging due to the difficulty of
creating a diverse set of network configurations using com-
plete routing protocol implementations on production routers.
Network simulators do not capture the full details of the stan-
dard routing protocols. In addition, we may be unaware of
vendor-specific variations that could affect the accuracy of our
results. As such, we test our prototype on a large operational
network—AT&T’s commercial IP backbone. Since we can-
not make arbitrary changes to the network topology or routing
configuration, we instead focus on individual snapshots de-
rived from daily dumps of the router configuration files, BGP
routing tables, and BGP neighbor information.

To isolate the sources of inaccuracy, we focus on each mod-
ule independently. The validation of the module in question
assumes perfect inputs from all previous modules. At the end
of the section, we present statistics from an end-to-end valida-
tion of the emulator, where we allow the errors to propagate.
For each module, we compare our results to BGP tables from
the operational network and present a breakdown of any mis-
matches we encounter. Where possible, we trace these mis-
matches to inconsistencies in the data sets, due to differences
in the times when the data were collected. This problem is
unavoidable since process of “dumping” the network state oc-
curs over a period of several hours, as polling engines contact
each router and download large quantities of data. Inevitably,
the network state will change during this period. Fortunately,
we find that these inconsistencies are infrequent and do not
significantly influence the accuracy of the emulation.

The analysis presented in this paper focuses on a snapshot
of the network state of the AT&T backbone from early morn-
ing (EST) on February 4, 2003. We focus on the eBGP routes
learned at the peering points that connect AT&T to other large
providers. That is, we exclude the routes learned from cus-
tomers and instead focus on the routing of outbound traffic to
the rest of the Internet. The initial BGP routing data consists
of 1,673,780 eBGP-learned routes for 92,348 prefixes with
45,922 distinct AS paths. We apply the tool to these inputs
and check whether the emulator produces the same answers
that the operational routers selected. In addition to collecting
BGP routing tables from the peering routers (where the eBGP

9

Policy Change Special Case Total Mispredictions
AS Paths 3 9 12/45922 (0.026%)

Routes 36 277 313/1673780 (0.019%)

Table 3. Summary of errors in applying import policy. Most of the errors re-
sulted from the fact that the prototype implementation does not currently
handle a special case in route map configuration.

Different Missing Total
AS Paths 66 187 253/45922 (0.551%)
Prefixes 120 483 603/92348 (0.653%)

Table 4. Summary of mismatches in predicting the set of best eBGP routes
at network exit points. The table shows the number of best eBGP route
predictions that did not agree with the route chosen by the corresponding
route reflector.

routes are learned), we also collect BGP tables from several
other routers in the network to verify the results.

B. Applying Import Policy

To verify that the first module correctly emulates the ap-
plication of import policy, we need only compare the route
attributes (i.e., local preference, MED, etc.) in the modified
routes table to the actual BGP routing tables. The modified
routes table contains the routes with attributes modified by ap-
plying the import policies specified in the import table to the
initial known routes table. Because the prototype uses routing
tables to approximate the actual routes received at each router
in the domain, we cannot determine what routes were dis-
carded by the import policy. Thus, our prototype cannot em-
ulate the filtering policies specified by import policies. Nev-
ertheless, the prototype is useful for determining the effects
of import policy configurations that set or manipulate the at-
tributes of routes (e.g., for traffic engineering purposes).

We compare the route attributes between the known routes
table and the modified routes table for all 1,673,780 eBGP-
learned routes with 45,922 distinct AS paths. Table 3 sum-
marizes the results of our validation. The emulator’s results
matched the route attributes seen in the BGP tables for all but
313 eBGP-learned routes on 12 distinct AS paths. We ob-
served 36 attribute mismatches over 3 AS paths, which can
likely be attributed to actual policy changes, since the routing
tables and the configuration files were captured at slightly dif-
ferent times of day; we verified this conclusion by inspecting
the configuration data for the next day. The remaining mis-
matches involved 9 unique AS paths because the prototype
did not handle a complex configuration scenario permitted on
Cisco routers. This accounted for 277 of the 313 route mis-
matches. Overall, the first module produced successful results
for more than 99.97% of the cases.

C. Computing the Set of Best eBGP Routes

To validate the computation of the set of best eBGP routes,
we compare the results of the second module with the best
routes selected at each top-level route reflector in the opera-

tional network. To verify that the module makes the correct
predictions for best routes at eBGP routers, we check that the
path chosen by a particular eBGP-speaking router appears in
the routing table of the corresponding route reflectors. These
routes match the vast majority of the time. However, in a few
cases, the two routers had different routes (i.e., with different
AS paths), even though one router apparently learned the route
directly from the other; these results are summarized in the
“Different” column in Table 4. The “Missing” column high-
lights cases where the RR did not have any route for that pre-
fix. Timing inconsistencies can explain both scenarios, which
together account for just over 0.5% of the cases.

To verify that the module does not incorrectly exclude
routes from the set of best eBGP routes, we check that, for
each prefix, the best route at each route reflector appears in the
set of best eBGP routes as computed by the emulator.4 In other
words, we consider cases where an RR’s best route would have
directed traffic towards some egress router that was not con-
tained in the set of best eBGP routes. Only 0.38% of best
routes at RRs for 1.3% of prefixes fell into this category. Ex-
amination of these anomalies suggests that routing dynamics
can explain these inconsistencies as well. Through manual in-
spection, we found that, in many cases, the best route at the
RR was clearly worse than the routes in the set of best eBGP
routes (e.g., the RR’s best route had the same local preference
but a higher AS path length). Often, the corresponding egress
router’s BGP table had a different route (e.g., with a higher
local preference, shorter AS path, etc.), consistent with the
“Different” case in Table 4.

D. Computing the Best Route at Each Router

To verify that our emulator accurately predicts the best
egress router, we examined the best routes in BGP tables for
other routers in the network. Namely, we compared the (des-
tination prefix, next-hop) pair from the routing table with the
results in the predicted routes table entry for that router. The
analysis focused on two access routers that connect directly to
customers in different geographic locations. We also analyzed
two route reflectors in order to evaluate the way our algorithm
traverses the iBGP signaling graph. The best route matched
our prediction for 99.5-99.7% of the cases, as summarized in
Table 5. The small number of mismatches fall into one of four
categories:
� Case 1: The destination prefix at the ingress router does
not appear in the known routes table, causing the emulator to
predict an empty egress set.
� Case 2: The route seen at the ingress router does not appear
in the modified routes table and, as such, does not appear in
the egress set.
� Case 3: The route seen at the ingress router does appear in
the modified routes table but does not appear in the egress

-
The reverse is not necessarily true. An egress point may have a larger IGP

path cost to each of the top-level RRs for certain sets of eBGP routes.

10

Router Case 1 Case 2 Case 3 Case 4 Total Mispredictions
RR1 1 33 326 22 382/82536 (0.463%)
RR2 5 33 187 5 230/81898 (0.281%)
AR1 8 38 180 5 231/81902 (0.281%)
AR2 7 151 170 34 362/70577 (0.513%)

Table 5. Summary of errors in predicting the best egress router (third mod-
ule). Shown are the number of predictions that do not correspond to the
best egress router from the BGP routing table. The 603 prefixes that were
incorrectly predicted by the second module are excluded.

Router Case 1 Case 2 Case 3 Case 4 Total Mispredictions
RR1 1 33 463 56 553/83139 (0.665%)
RR2 5 33 316 41 395/82501 (0.478%)
AR1 8 38 309 40 395/82505 (0.478%)
AR2 7 151 283 68 509/71180 (0.715%)

Table 6. Summary of errors for end-to-end validation.

points table.
� Case 4: The misprediction has no obvious explanation.

Cases 1 and 2 stemmed from timing inconsistencies, where
the route seen at the ingress router was not available at the
egress router when the routing table was dumped. Timing in-
consistencies also explain Case 3, where the ingress router
has a route that (while it exists) is no longer one of the best
eBGP-learned routes (say, due to the availability of other, bet-
ter routes). The unexplained mismatches account for less than
0.05% of the cases.

E. End-to-End Validation

We perform an end-to-end validation to study the effect of
error propagation on the best routes ultimately predicted by
the prototype. We compared the prototype’s prediction with
the same four routing tables used for the validation of the third
module, with the exception that the input included the errors
from the first two modules. At these four routers, the emulator
predicted the correct routes for 99.4% of all prefixes. Table 6
summarizes the results of the end-to-end validation.

We hypothesized that the majority of the 0.6% of mispre-
dicted routes could be explained by the dynamics of the input
data. A modification to the import policy could have changed
the choice of best route between the time the two routing tables
were captured. A more likely explanation is that the inconsis-
tencies were caused by routing dynamics that caused the tem-
porary appearance or disappearance of a route. For example,
if the best route at an eBGP-speaking router were temporarily
withdrawn at the time that the route reflector table was cap-
tured, inconsistencies between routing tables could arise.

To evaluate our hypothesis, we analyzed a feed of iBGP up-
date messages collected from the AT&T backbone on the same
day. For the prefixes with incorrect route predictions, 45% ex-
perienced a BGP update during the data collection period at
the same router where the apparent mismatch occurred, and
83% of the prefixes experienced an update at some router in
the AS during this period.

Our analysis suggests that most of the prediction errors re-
sult from changes in the input. Since most prefixes whose
routes change frequently do not receive much traffic [14],
these inconsistencies typically would not have a significant ef-
fect on the emulator’s ability to predict traffic flow. Ideally, the
emulator would receive a real-time stream of all of the eBGP-
learned routes. However, this is not currently possible because
commercial routers only support either (1) dumping the entire
BGP table (which contains all of the routes after import pro-
cessing, but imposes a load on the router and provides only a
static view) or (2) having a BGP session to a monitor (which
provides a real-time view of only the current best routes after
import processing).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of each mod-
ule. All of our performance tests were conducted on a Sun
Fire 15000 server with 192 GB of RAM and 48 900 MHz
Ultrasparc-III Copper processors. Because this is a time-
shared machine, we ran each of our experiments several times
to gain confidence in the timing consistency. Except where
noted, the prototype used only two processors (one for the
database and one for the emulator itself).

We evaluated running times for data sets of various sizes
and scenarios to demonstrate that the emulator is efficient
enough to be used in practice, even on a large AS such as
AT&T’s commercial IP backbone. Most ASes have fewer
BGP sessions, peers, and routers, and perhaps fewer prefixes.
To quantify the overhead of running the emulator for a small
number of sessions, we run the emulator on scenarios with just
one or two eBGP sessions. For the one-session experiment,
we select one of the eBGP sessions responsible for the largest
number of routes in the AT&T network. For the two-session
experiment, we include an eBGP session at the same router of
comparable size, but with a different neighboring AS. Because
we envision that network operators would use the emulator to
experiment with the effects of small changes in configuration
or topology, we also perform experiments that evaluate the
emulator’s effectiveness in evaluating incremental changes.

While our evaluation is preliminary, it demonstrates the ef-
ficiency of the BGP emulator, especially in the common case
of incremental changes.

A. Applying import policy

Table 7 summarizes the total running time for the first mod-
ule, which applies the import policies to the eBGP-learned
routes. This process has four separate steps: (1) parsing and
loading the routing tables, (2) parsing and loading the import
policies, (3) building the database indexes, and (4) applying
the import policies to the eBGP updates. The prototype can
parallelize the first two steps by router, since the tables and
configuration for each router can be parsed and loaded inde-
pendently. When the prototype loads these inputs for a partic-

11

Task Initial (sec) Steady-state (sec)
parse/load routing tables 521 (42.13%) —
parse/load import policy 0.78 (0.06%) 0.046 (4.64%)

build database indexes 257 (20.78%) —
apply configuration 458 (37.03%) 0.942 (95.36%)

Total 1236.78 0.988

Table 7. Running time for the first module in the emulator. After the initial
setup phase, propagating the effects of a routing policy change takes only
about 1 second for the common case.

Apply Im
port

Best eBG
P

Best route

Apply Im
port

Best eBG
P

Best route

0

500

1000

1500

R
un

ni
ng

 T
im

e (
se

c)

One Session
(12,557 prefixes;
 30,349 routes)

Two Sessions
(37,253 prefixes;

74,638 routes)

Fig. 6. Performance of the emulator for a smaller number of eBGP sessions

ular day’s data, the module must perform all four steps. How-
ever, once the routing tables and import policies have been
parsed and the indexes have been built, predicting the effects
of one configuration change is relatively painless: one router
configuration file must be re-parsed, and the new import pol-
icy must be applied to the set of routes. Performing these op-
erations for a single import policy change takes less than one
second on average.

Figure 6 shows that the initial loading phase performs con-
siderably faster in an AS with only one or two eBGP sessions
(common cases for smaller networks). In these cases, per-
forming all tasks associated with the first module takes about
109 seconds and 166 seconds, respectively. The running time
is considerably less because there are much fewer routes to
parse, from a single routing table.

B. Computing the Set of Best eBGP Routes

Table 8 summarizes the running times for the second mod-
ule, which computes the set of best eBGP routes. The total
running time for 92,419 prefixes was about four and a half
hours, or roughly 5.3 prefixes per second. Instead of com-
puting the best routes for 92,419 prefixes independently, the
module can avoid duplicate computation when multiple pre-
fixes are advertised in exactly the same way.

Clustering prefixes that have a common set of route at-
tributes5 takes 813 seconds. Performing route prediction with
caching takes 11,220 seconds, or about 8.2 prefixes per sec-

.
Because the AS path length affects the outcome of the second module but

the AS path itself does not, the module can cluster prefixes that have different
AS paths but the same AS path length. This optimization further reduces the
number of predictions that the second module must perform.

Predictions Time (sec) Prefixes/sec
Without caching 92419 17537 5.27

With caching 8091 12033 8.23

Table 8. Running times for the second module, which computes the set of
best eBGP routes. Recognizing that prefixes can be grouped according
to how they are advertised produces a significant speedup.

Hits Misses Time (sec) prefixes/sec
Without caching — — 390 211.6

With caching 82245 290 245 336.9

Table 9. Running times and cache performance for the third module, which
computes the best egress router. The results are from the validation of
RR1, where predictions are made for 82,535 prefixes. This is one less
than the 82,536 prefixes that we validated, as one prefix had an empty
egress set (a Case 1 error for which we could not make a prediction).

ond on average. Note that the optimized algorithm takes about
0.58 seconds per group of equivalent prefixes (or 0.12 sec-
onds per prefix) to compute a prediction, whereas the original
algorithm required 0.19 seconds per prediction. This appar-
ent average slowdown occurs because checking the cache re-
quires a database query to associate each prefix with a prefix
group; since many groups contain multiple prefixes, this re-
quires multiple loop iterations. Nevertheless, caching the re-
sults for prefixes that share a common set of modified routes
does provide an overall speedup of about 31%.

Figure 6 shows the running times for the second module
with one and two eBGP sessions and caching enabled. The
speedup for a small number of sessions is not as dramatic as
for other modules, because, even for a small number of pre-
fixes, there is not a linear reduction in the number of prefixes
and routes. Nevertheless, the running times are considerably
smaller than for a network as large as AT&T’s.

C. Computing the Best Route at Each Router

Table 9 shows the running time and cache performance for
the third module. The results come from the validation test
of RR1 from Table 5. The performance of the third module is
greatly improved by exploiting the nature of routing table data.
For an ingress router, we only need to calculate the best egress
router for a given egress set once. Without caching, it takes
390 seconds to predict the best egress router for the 82,535
prefixes at this router, or about 212 prefixes per second. When
the prototype caches the computation of the best egress router,
the running time is 245 seconds, or about 337 prefixes per
second. With caching enabled, the algorithm to compute the
best egress router only needs to run 290 times, as opposed to
82,535 times, which significantly improves the performance
of the third module. Figure 6 shows that module 3’s running
time is comparatively small: 19 seconds and 47 seconds for
one and two eBGP sessions, respectively.

12

VII. RELATED WORK

Prior work presented an IGP emulator that helps network
operators optimize link weights for intradomain traffic engi-
neering [2]. However, this emulator does not model changes
to BGP routing policies or the effects of iBGP on path selec-
tion. Recent work proposes efficient techniques for large-scale
parameter optimization for various network protocols, includ-
ing the tuning of the local preference attribute in BGP [20].
This work is complementary to ours, as the proposed search
techniques could use our emulator as the “inner loop”. These
techniques use the SSFNet simulator [21], which simulates the
message-passing details of the routing protocols. Although
SSFNet is useful for studying protocol dynamics, direct com-
putation of routing paths is a more efficient mechanism for
parameter optimization. In this paper, we presented an ab-
straction for router import policy; while similar to RPSL [22],
our abstractions are specifically designed to capture semantics
that are relevant to protocol emulation.

Previous work defined sufficient conditions for router con-
figuration within an AS to guarantee that the routing protocols
converge to a stable, deflection-free path assignment [9, 13].
The emulator we have presented assumes a separate mecha-
nism for checking that a network configuration satisfies these
conditions. In previous work, we proposed efficient tech-
niques for operators to tune BGP import policies to engineer
the flow of traffic [12]; this work assumes the existence of a
BGP emulator. The work also described ways to avoid policy
changes that could have unpredictable side effects on ingress
traffic, which is necessary to ensure that the inputs to the em-
ulator are deterministic and predictable. We previously pro-
posed a high-level architecture for a BGP emulator, including
the separation of modules in Figure 2 and the details of the
algorithm for the second module [17]; however, we did not
explore the algorithm for the third module or present any im-
plementation, validation, or evaluation results.

VIII. CONCLUSION

We have presented an emulator that accurately and effi-
ciently predicts the outcome of the BGP route selection pro-
cess in a single AS using only a snapshot of the network con-
figuration and the eBGP-learned routes from neighboring do-
mains. The emulator models the BGP decision process and
the complex interactions with other routing protocols. Our ex-
periments demonstrate the emulator’s accuracy and efficiency.

Our abstractions provide a clean separation between each
aspect of route prediction, as well as an abstract, vendor-
independent representation of the relevant parts of the router
configuration. We envision that our work could be combined
with higher-level mechanisms that spot misconfiguration or
check that other constraints are satisfied.

The prototype depends on many inputs including router
configuration files, BGP table dumps, and BGP session in-

formation for every BGP-speaking router in the AS. In real-
ity, operators may not have access to all of these inputs, and
some inputs may be incomplete or out-of-date. Producing ap-
proximate results in the absence of complete information is a
promising area for future work.

ACKNOWLEDGMENTS

We would like to thank Joel Gottlieb, Tim Griffin, and
Carsten Lund for their help in using the configuration data,
and Glenn Fowler for his tool for parsing the routing tables.
We also thank Magdalena Balazinska, Greg Harfst, and Stan
Rost for their comments on a draft of this paper.

REFERENCES

[1] Y. Rekhter and T. Li, “A Border Gateway Protocol.” RFC 1771, March 1995.
[2] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, “NetScope:

Traffic engineering for IP networks,” IEEE Network Magazine, pp. 11–19, March
2000.

[3] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP rout-
ing protocols,” IEEE Communication Magazine, October 2002.

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the
Internet topology,” in Proc. ACM SIGCOMM, pp. 251–262, August 1999.

[5] N. Spring, R. Mahajan, and D. Wetheral, “Measuring ISP topologies with Rocket-
Fuel,” in Proc. ACM SIGCOMM, August 2002.

[6] C. Labovitz, R. Malan, and F. Jahanian, “Internet routing stability,” IEEE/ACM
Trans. Networking, vol. 6, pp. 515–528, October 1998.

[7] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet routing con-
vergence,” IEEE/ACM Trans. Networking, vol. 9, pp. 293–306, June 2001.

[8] T. Griffin, F. Shepherd, and G. Wilfong, “The stable paths problem and interdomain
routing,” IEEE/ACM Trans. Networking, vol. 10, no. 1, pp. 232–243, 2002.

[9] G. Wilfong and T. G. Griffin, “On the correctness of IBGP configuration,” in Proc.
ACM SIGCOMM, August 2002.

[10] L. Gao and J. Rexford, “Stable Internet routing without global coordination,”
IEEE/ACM Trans. Networking, vol. 9, pp. 681–692, December 2001.

[11] A. Basu, A. Rasala, C.-H. L. Ong, F. B. Shepherd, and G. Wilfong, “Route oscilla-
tions in I-BGP with route reflection,” in Proc. ACM SIGCOMM, August 2002.

[12] N. Feamster, J. Borkenhagen, and J. Rexford, “Techniques for interdomain traf-
fic engineering.” In submission, 2002. http://www.research.att.com/
˜jrex/papers/bgpte.ps.

[13] T. G. Griffin and G. Wilfong, “Analysis of the MED oscillation problem in BGP,”
in Proc. International Conference on Network Protocols, November 2002.

[14] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of popular
destinations,” in Proc. Internet Measurement Workshop, November 2002.

[15] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True, “De-
riving traffic demands for operational IP networks: Methodology and experience,”
IEEE/ACM Trans. Networking, vol. 9, June 2001.

[16] S. Halabi and D. McPherson, Internet Routing Architectures. Cisco Press, 2001.
[17] N. Feamster and J. Rexford, “Network-wide BGP route prediction for traffic en-

gineering,” in Proc. Workshop on Scalability and Traffic Control in IP Networks,
SPIE ITCOM Conference, August 2002.

[18] D. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan, “Topology Inference
from BGP Routing Dynamics,” in Proc. Internet Measurement Workshop, (Mar-
seille, France), November 2002.

[19] A. Feldmann and J. Rexford, “IP network configuration for intradomain traffic en-
gineering,” IEEE Network Magazine, pp. 46–57, September/October 2001.

[20] T. Ye, H. T. Kaur, and S. Kalyanaraman, “Large-scale network pa-
rameter configuration using an on-line simulation framework.” In sub-
mission, 2003. http://www.ecse.rpi.edu/Homepages/shivkuma/
research/papers/ols-j.pdf.

[21] “SSFNet.” http://www.ssfnet.org/, 2003.
[22] C. Alaettinoglu et al., Routing Policy Specification Language (RPSL). Internet

Engineering Task Force, June 1999. RFC 2622.

