100

A Router Architecture for Real-Time
Communication in Multicomputer Networks

Jennifer Rexford, John Hall, and Kang G. Shin

Abstract— Parallel machines have the potential to sat-
isfy the large computational demands of real-time applica-
tions. These applications require a predictable communica-
tion network, where time-constrained traffic requires bounds
on throughput and latency while good average performance
suffices for best-effort packets. This paper presents a new
router architecture that tailors low-level routing, switch-
ing, arbitration, flow-control, and deadlock-avoidance poli-
cies to the conflicting demands of each traffic class. The
router implements bandwidth regulation and deadline-based
scheduling, with packet switching and table-driven multicast
routing, to bound end-to-end delay and buffer requirements
for time-constrained traffic, while allowing best-effort traf-
fic to capitalize on the low-latency routing and switching
schemes common in modern parallel machines. To limit the
cost of servicing time-constrained traffic, the router includes
a novel packet scheduler that shares link-scheduling logic
across the multiple output ports, while masking the effects of
clock rollover on the represention of packet eligibility times
and deadlines. Using the Verilog hardware description lan-
guage and the Epoch silicon compiler, we demonstrate that
the router design meets the performance goals of both traffic
classes in a single-chip solution. Verilog simulation experi-
ments on a detailed timing model of the chip show how the
implementation and performance properties of the packet
scheduler scale over a range of architectural parameters.

Keywords: Multicomputer router, real-time communication,
link scheduling, wormhole switching, packet switching

I. INTRODUCTION

Real-time applications, such as avionics, industrial pro-
cess control, and automated manufacturing, impose strict
timing requirements on the underlying computing system.
As these applications grow in size and complexity, par-
allel processing plays an important role in satisfying the
large computational demands. Real-time parallel comput-
ing hinges on effective policies for placing and scheduling
communicating tasks in the system to ensure that criti-
cal operations complete by their deadlines. Ultimately, a
parallel or distributed real-time system relies on an inter-
connection network that can provide throughput and delay
guarantees for critical communication between cooperating
tasks; this communication may have diverse performance
requirements, depending on the application [1]. However,
instead of guaranteeing bounds on worst-case communica-
tion latency, most existing multicomputer network designs
focus on providing good average network throughput and

The work reported in this paper was supported in part by the Na-
tional Science Foundation under grant MIP—9203895 and the Office
of Naval Research under grants N00014-94-1-0229. Any opinions,
findings, and conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the views
of NSF or ONR.

J. Rexford is with AT&T Labs — Research in Florham Park, New
Jersey, and J. Hall and K. G. Shin are with the University of Michigan
in Ann Arbor, Michigan.

packet delay. Consequently, recent years have seen increas-
ing interest in developing interconnection networks that
provide performance guarantees in parallel machines [2-8].

Real-time systems employ a variety of network architec-
tures, depending on the application domain and the per-
formance requirements. Although prioritized bus and ring
networks are commonly used in small-scale real-time sys-
tems [9], larger applications can benefit from the higher
bandwidth available in multi-hop topologies. In addition,
multi-hop networks often have several disjoint routes be-
tween each pair of processing nodes, improving the ap-
plication’s resilience to link and node failures. However,
these networks complicate the effort to guarantee end-to-
end performance, since the system must bound delay at
each link in a packet’s route. To deliver predictable com-
munication performance in multi-hop networks, we present
a novel router architecture that supports end-to-end delay
and throughput guarantees by scheduling packets at each
network link. OQur prototype implementation is geared to-
ward two-dimensional meshes; as shown in Figure 1; such
topologies have been widely used as the interconnection
network for a variety of commercial parallel machines. The
design directly extends to a broad set of topologies, includ-
ing the class of k-ary n-cube networks; with some changes
in the routing of best-effort traffic, the proposed architec-
ture applies to arbitrary point-to-point topologies.

Communication predictability can be improved by as-
signing priority to time-constrained traffic or to pack-
ets that have experienced large delays earlier in their
routes [10]. Ultimately, though, bounding worst-case com-
munication latency requires prior reservation of link and
buffer resources, based on the application’s anticipated
traffic load. Under this traffic contract, the network can
provide end-to-end performance guarantees through effec-
tive link-scheduling and buffer-allocation policies. To han-
dle a wide range of bandwidth and delay requirements,
the real-time router implements the real-time channel [11-
13] abstraction for packet scheduling, as described in Sec-
tion II. Conceptually, a real-time channel is a unidirec-
tional virtual connection between two processing nodes,
with a source traffic specification and an end-to-end de-
lay bound. Separate parameters for bandwidth and delay
permit the model to accommodate a wider range and larger
number of connections than other service disciplines [14—
16], at the expense of increased implementation complexity.

The real-time channel model guarantees end-to-end per-
formance through a combination of bandwidth regulation
and deadline-based scheduling at each link. Implement-
ing packet scheduling in software would impose a signifi-
cant burden on the processing resources at each node and

L] L1 L]
[{1 L] LL
= ——
_ Router
L] N {1
to/from
processor
[{1]
Fig. 1. Router in a Mesh Network: This figure shows a router

in a 4 X 4 square mesh of processing nodes. To communicate
with another node, a processor injects a packet into its router;
then, the packet traverses one or more links before reaching the
reception port of the router at the destination node.

would prove too slow to serve multiple high-speed links.
This software would have to rank packets by deadline for
each outgoing link, in addition to scheduling and executing
application tasks. With high-speed links and tight timing
constraints, real-time parallel machines require hardware
support for communication scheduling. An efficient, low-
cost solution requires a design that integrates this run-time
scheduling with packet transmission. Hence, we present a
chip-level router design that handles bandwidth regulation
and deadline-based scheduling, while relegating non-real-
time operations (such as admission control and route se-
lection) to the network protocol software.

Although deadline-based scheduling bounds the worst-
case latency for time-constrained traffic, real-time appli-
cations also include best-effort packets that do not have
stringent performance requirements [10,11,15,17]; for ex-
ample, good average delay may suffice for some status and
monitoring information, as well as the protocol for estab-
lishing real-time channels. Best-effort traffic should be able
to capitalize on the low-latency communication techniques
available in modern parallel machines without jeopardiz-
ing the performance guarantees of time-constrained pack-
ets. Section IIT describes how our design tailors network
routing, switching, arbitration, flow-control, and deadlock-
avoidance policies to the conflicting performance require-
ments of these two traffic classes. Time-constrained traf-
fic employs packet switching and small, fixed-sized packets
to bound worst-case performance, while best-effort packets
employ wormhole switching [18] to reduce average latency
and minimize buffer space requirements, even for large
packets. The router implements deadlock-free, dimension-
ordered routing for best-effort packets, while permitting
the protocol software to select arbitrary multicast routes
for the time-constrained traffic; together, flexible routing
and multicast packet forwarding provide efficient group
communication between cooperating real-time tasks.

Section IV describes how the network can reserve buffer
and link resources in establishing time-constrained connec-
tions. In addition to managing the packet memory and
connection data structures, the real-time router effectively
handles the effects of clock rollover in computing scheduling
keys for each packet. The router overlaps communication

101

scheduling with packet transmission to maximize utiliza-
tion of the network links. To reduce hardware complex-
ity, the architecture shares packet buffers and sorting logic
amongst the router’s multiple output links, as discussed in
Section V; a hybrid of serial and parallel comparison op-
erations enables the scheduler to trade space for time to
further reduce implementation complexity. Section VI de-
scribes the router implementation, using the Verilog hard-
ware description language and the Epoch silicon compiler.
The Epoch implementation demonstrates that the router
can satisfy the performance goals of both traffic classes in
an affordable, single-chip solution. Verilog simulation ex-
periments on a detailed timing model of the chip show the
correctness of the design and investigate the scaling prop-
erties of the packet scheduler across a range of architectural
parameters. Section VII discusses related work on real-time
multicomputer networks, while Section VIII concludes the
paper with a summary of the research contributions and
future directions.

II. REAL-TIME CHANNELS

Real-time communication requires advance reservation
of bandwidth and buffer resources, coupled with run-time
scheduling at the network links. The real-time channel
model [11] provides a useful abstraction for bounding end-
to-end network delay, under certain application traffic char-
acteristics.

Traffic parameters: A real-time channel is a unidirec-
tional virtual connection that traverses one or more net-
work links. In most real-time systems, application tasks
exchange messages on a periodic, or nearly periodic, ba-
sis. As a result, the real-time channel model characterizes
each connection by its minimum spacing between messages
(Imin time units) and maximum message size (Smax bytes),
resulting in a maximum transfer rate of Smax/Imin bytes
per unit time. To permit some variation from purely pe-
riodic traffic, a connection can generate a burst of up to
Bimax messages in excess of the periodic restriction Iy, .
Together, these three parameters form a linear bounded
arrival process [19] that governs a connection’s traffic gen-
eration at the source node.

End-to-end delay bound: In addition to these traffic pa-
rameters, a connection has a bound D on end-to-end mes-
sage delay, based on the minimum message spacing Ilniy.
At the source node, a message m; generated at time ¢; has
a logical arrival time

Eo(mi):{ti ifz=20

max{fo(m;_1) + Imin, ti} ifi>0.

By basing performance guarantees on these logical arrival
times, the real-time channel model limits the influence an
ill-behaving or malicious connection can have on other traf-
fic in the network. The run-time link scheduler guarantees
that message m; reaches its destination node by its dead-
line £o(m;) + D.

Per-hop delay bounds: The network does not admit a
new connection unless it can reserve sufficient buffer and
bandwidth resources without violating the requirements of

102

Traffic Data Structure
Queue 1 | On-time time-constrained traffic | Priority queue (by deadline £(m)+d)
Queue 2 | Best-effort traffic First-in-first-out queue
Queue 3 | Early time-constrained traffic Priority queue (by logical arrival time £(m))

TABLE 1
Real-Time Channel Scheduling Model: UNDER THE REAL-TIME CHANNEL MODEL, EACH LINK TRANSMITS TRAFFIC FROM THREE

SCHEDULING QUEUES. TO PROVIDE DELAY GUARANTEES TO TIME-CONSTRAINED CONNECTIONS, THE LINK GIVES PRIORITY TO THE on-time
TIME-CONSTRAINED MESSAGES IN QUEUE 1 OVER THE best-effort TRAFFIC IN QUEUE 2. QUEUE 3 SERVES AS A STAGING AREA FOR HOLDING

ANY early TIME-CONSTRAINED MESSAGES.

existing connections [11,20]. A connection establishment
procedure decomposes the connection’s end-to-end delay
bound) into local delay bounds d; for each hop in its
route such that d; < I, and Zj d; < D. Based on the
local delay bounds, a message m; has a logical arrival time
Ej(ml) = j_l(mi) + dj_l for 7 >0

at node j in its route, where j =0 corresponds to the source
node. Link scheduling ensures that message m; arrives
at node j no later than time ¢;_q(m;) + d;_1, the local
deadline at node j—1. In fact, message m; may reach node
j earlier, due to variations in delay at previous hops in the
route. The scheduler at node j ensures that such “early”
arrivals do not interfere with the transmission of “on-time”
messages from other connections.

Run-time link scheduling: Each link schedules time-
constrained traffic, based on logical arrival times and dead-
lines, in order to bound message delay without exceeding
the reserved buffer space at intermediate nodes. The sched-
uler, which employs a multi-class variation of the earli-
est due-date algorithm [21], gives highest priority to time-
constrained messages that have reached their logical ar-
rival time (i.e., £;(m;) < t), transmitting the message with
the smallest deadline ¢;(m;) + d;, as shown in Table I.
If Queue 1 is empty, the link services best-effort traffic
from Queue 2, ahead of any early time-constrained mes-
sages (i.e., £;(m;) > t). This improves the average per-
formance of best-effort traffic without violating the delay
requirements of time-constrained communication. Queue
3 holds early time-constrained traffic, effectively absorbing
variations in delay at the previous node. Upon reaching
its logical arrival time, a message moves from Queue 3 to
Queue 1.

Link horizon parameter: By delaying the transmis-
sion of early time-constrained messages, the link scheduler
can avoid overloading the buffer space at the downstream
node [11,15,16]. Still, the scheduler could potentially im-
prove link utilization and average latency by transmitting
early messages from Queue 3 when the other two schedul-
ing queues are empty. To balance this trade-off between
buffer requirements and average performance, the link can
transmit an early time-constrained message from Queue
3, as long as the message is within a small horizon h >0
of its logical arrival time (i.e., £;(m;) < t + h). Larger
values of h permit the link to transmit more early time-

constrained traffic, at the expense of increased memory re-
quirements at the downstream node. Although each con-
nection could conceivably have its own h value, employing
a single horizon parameter allows the link to transmit early
traffic directly from the head of Queue 3, without any per-
connection data structures.

Buffer requirements: To avoid buffer overflow or mes-
sage loss, a connection must reserve sufficient memory for
storing traffic at each node in its route. The required buffer
space at node j depends on the connection’s local delay
bound d;, as well as the horizon parameter h;_; for the
incoming link. In particular, node j can receive a mes-
sage from node j—1 as early as £;(m;) — (dj—1 + hj_1),
if node j—1 transmits the message at the earliest possi-
ble time. In the worst case, node j can hold a message
until its deadline ¢;(m;) 4+ d;. Hence, for this connection,
£;(my) € [t—dj,t+d;_1+h;_1] for any messages m; stored
at node j at time ¢. If a connection has messages arrive as
early as possible, and depart as late as possible, then node
j could have to store as many as

[dj +(djr + hj—l)w

Imin

messages from this connection at the same time. By reserv-
ing buffer and bandwidth resources in advance, the real-
time channel model guarantees that every message arrives
at its destination node by its deadline, independent of other
best-effort and time-constrained traffic in the network.

I1I. MIXING BEST-EFFORT AND TIME-CONSTRAINED
TRAFFIC

Although the real-time channel model bounds the
worst-case performance of time-constrained messages, the
scheduling model in Table I can impose undue restrictions
on the packet size and flow-control schemes for best-effort
traffic. To overcome these limitations, we propose a router
architecture that tailors its low-level communication poli-
cies to the unique demands of the two traffic classes. Fine-
grain, priority-based arbitration at the network links per-
mits the best-effort traffic to capitalize on the low-latency
techniques in modern multicomputer networks without sac-
rificing the performance guarantees of the time-constrained
connections. Figure 2 shows the high-level architecture of
the real-time router, with separate control and data path
for the two traffic classes.

103

‘ incoming links ‘
injection | | A | A A,
' \v N\
Dﬁ El? [] [] []
¢ \y best-effort \y
time-constrained
connection id data new address
control Gonnection: : Packet : <——| Frée "]
 Table: Memory g—=|Address _
: : : : =]
Packet Scheduling Logic
\V time-constrained
\v \v \v \v best-effort
] [] []] []
reception |

outgoing links ‘

Fig. 2.

Real-Time Router: This figure shows the real-time router architecture, with separate control and data path for best-effort and

time-constrained packets. The router includes a packet memory, connection routing table, and scheduling logic to support delay and

bandwidth guarantees for time-constrained traffic. To connect to the local processor, the router exports a control interface, a reception

port, and separate injection ports for each traffic class.

A. Complementary Switching Schemes

To ensure that time-constrained connections meet their
delay requirements, the router must have control over
bandwidth and memory allocation. For example, suppose
that a time-constrained message arrives with a tight dead-
line (i.e., £(m;) +d —t is small), while the outgoing link is
busy transmitting other traffic. To satisfy this tight tim-
ing requirement, the outgoing link must stop servicing any
lower-priority messages within a small, bounded amount
of time. This introduces a direct relationship between con-
nection admissibility and the maximum packet size of the
time-constrained and best-effort traffic sharing the link. In
most real-time systems, time-constrained communication
consists of 10-20 byte exchanges of command or status in-
formation [9]. Consequently, the real-time router restricts
time-constrained traffic to small, fixed-size packets that
can support a distributed memory read or write operation.
This bounds link access latency and buffering delay while
simplifying memory allocation in the router.

To ensure predictable consumption of link and buffer re-
sources, time-constrained traffic employs store-and-forward
packet switching. By buffering packets at each node, packet
switching allows each router to independently schedule
packet transmissions to satisfy per-hop delay requirements.
To improve average performance, the time-constrained
traffic could conceivably employ virtual cut-through switch-
ing [22] to allow an incoming packet to proceed directly
to an idle outgoing link. However, in contrast to tra-
ditional virtual cut-through switching of best effort traf-
fic, the real-time router cannot forward a time-constrained
packet without first assessing its logical arrival time (to

ensure that the downstream router has sufficient buffer
space for the packet) and computing the packet dead-
line (which serves as the logical arrival time at the down-
stream router). To avoid this extra complexity and over-
head, the initial design of the real-time router implements
store-and-forward packet switching, which has the same
worst-case performance guarantees as virtual cut-through
switching. A future implementation could employ virtual
cut-through switching to reduce the average latency of the
time-constrained traffic.

Although packet switching delivers good, predictable
performance to small, time-constrained packets, this ap-
proach would significantly degrade the average latency of
long, best-effort packets. Even in a lightly-loaded network,
end-to-end latency under packet switching is proportional
to the product of packet size and the length of the route.
Instead, the best-effort traffic can employ wormhole switch-
ing [18] for lower latency and reduced buffer space require-
ments. Similar to virtual cut-through switching, wormhole
switching permits an arriving packet to proceed directly
to the next node in its route. However, when the outgo-
ing link is not available, the packet stalls in the network
instead of buffering entirely within the router.

In effect, wormhole switching converts the best-effort
scheduling “queue” in Table I into a logical queue that
spans multiple nodes. The router simply includes small
five-byte flit (flow control unit) buffers [23] to hold a few
bytes of a packet from each input link. When an incoming
packet fills these buffers, inter-node flow control halts fur-
ther transmission from the previous node until more space
is available; once the five-byte chunk proceeds to a buffer
at the outgoing link, the router transmits an acknowledg-

data byte 8
strobe/enable)
virtual channel id I
flit acknowledgement
Fig. 3. Link Encoding: In the real-time router, each link can

transmit a byte of data, along with a strobe signal and a virtual
channel identifier. In the reverse direction, an acknowledgment
bit indicates that the router can store another flit on the best-
effort virtual channel

z offset —
connection id
y offset Tm) +d
length
data bytes data bytes (18)

(a) Best-effort packet (b) Time-constrained packet

Fig. 4. Packet Formats: This figure illustrates the packet for-
mats for best-effort and time-constrained packets in the real-
time router. Best-effort packets consist of a two-byte routing
header and a one-byte length field, along with the variable-length
data. Time-constrained packets are 20 bytes long and include the
connection identifier and the deadline from the previous hop in
the route, which serves as the logical arrival time at the current
router

ment bit to signal the upstream router to start sending the
next flit. This fine-grain, per-hop flow control permits best-
effort traffic to use large variable-sized packets, reducing or
even avoiding packetization overheads, without increasing
buffer complexity in the router. The combination of worm-
hole and packet switching, with best-effort traffic consum-
ing small flit buffers and time-constrained connections re-
serving packet buffers, results in an effective partitioning
of router resources.

B. Separate Logical Resources

Even though wormhole and packet switching exercise
complementary buffer resources, best-effort and time-
constrained traffic still share access to the same net-
work links. To provide tight delay guarantees for time-
constrained connections, the router must bound the time
that the variable-sized, wormhole packets can stall the for-
ward progress of on-time, time-constrained traffic. How-
ever, a blocked wormhole packet can hold link resources at
a chain of consecutive routers in the network, indirectly de-
laying the advancement of other traffic that does not even
use the same links. This complicates the effort to provi-
sion the network to bound worst-case end-to-end latency,
as discussed in the treatment of related work in Section VII.
In order to control the interaction between the two traffic
classes, the real-time router divides each link into two wvir-
tual channels [23]. A single bit on each link differentiates
between time-constrained and best-effort packets, as shown
in Figure 3; each link also includes an acknowledgment bit
for flow control on the best-effort virtual channel.

Each wormhole virtual channel performs round-robin ar-
bitration on the input links to select an incoming best-

104

effort packet for service, while the packet-switched virtual
channel transmits time-constrained packets based on their
deadlines and logical arrival times. Priority arbitration be-
tween the two virtual channels tightly regulates the intru-
sion of best-effort traffic on time-constrained packets on
each outgoing link. This effectively provides flit-level pre-
emption of best-effort traffic whenever an on-time time-
constrained packet awaits service, while permitting worm-
hole flits to consume any excess link bandwidth. In a sepa-
rate simulation study, we have demonstrated the effective-
ness of using flit-level priority arbitration policies to mix
best-effort wormhole traffic and time-constrained packet-
switched traffic [24-26].

While the real-time router gives preferential treatment to
time-constrained traffic, the outgoing links transmit best-
effort flits ahead of any early time-constrained packets, con-
sistent with the policies in Table I. Although this arbitra-
tion mechanism ensures effective scheduling of the traffic
on the outgoing links and the reception port, the best-
effort and time-constrained packets could still contend for
resources at the injection port at the source node. The
local processor could solve this problem by negotiating be-
tween best-effort and time-constrained traffic at the injec-
tion port, but this would require the processor to perform
flit-level arbitration. Instead, the real-time router includes
a dedicated injection port for each traffic class. The two
injection ports, coupled with the low-level arbitration on
the outgoing links, ensure that time-constrained traffic has
fine-grain preemption over the best-effort packets across
the entire path through the network, while allowing best-
effort packets to capitalize on any remaining link band-

width.

C. Buffering and Packet Forwarding

To support the multiple incoming and outgoing ports,
the real-time router design requires high throughput for re-
ceiving, storing, and transmitting packets. Internally, the
router isolates the best-effort and time-constrained traffic
on separate buses to increase the throughput and reduce
the complexity of the arbitration logic. Each incoming
and outgoing port includes nominal buffer space to avoid
stalling the flow of data while waiting for access to the bus.
The best-effort bus is one flit wide and performs round-
robin arbitration among the flit buffers at the incoming
ports. Running at the same speed as the byte-wide in-
put ports, this five-byte bus has sufficient throughput to
accommodate a peak load of best-effort traffic. Transfer-
ring best-effort packets in five-byte chunks incurs a small
initial transmission delay at each router, which could be
reduced by using a crossbar switch; however, we employ a
shared bus for the sake of simplicity. Other recent multi-
computer router architectures have used a wide bus for flit
transfer [27,28].

The structure and placement of packet buffers plays a
large role in the router’s ability to accommodate the perfor-
mance requirements of time-constrained connections. The
simplest solution places a separate queue at each input link.
However, input queuing has throughput limitations [29],

since a packet may have to wait behind other traffic des-
tined for a different outgoing link. In addition, queuing
packets at the incoming links complicates the effort to
schedule outgoing traffic based on delay and throughput
requirements. Instead, the real-time router queues time-
constrained packets at the output ports; the router shares
a single packet memory among the multiple output ports
to maximize the network’s ability to accommodate time-
constrained connections with diverse buffer requirements.
To accommodate the aggregate memory bandwidth of the
five input and five output ports, the router stores packets
in 10-byte chunks, with demand-driven round-robin arbi-
tration amongst the ports.

Since time-constrained traffic is not served in a first-
in first-out order, the real-time router must have a data
structure that records the idle memory locations in the
packet buffer. Similar to many shared-memory switches
in high-speed networks, the real-time router maintains an
idle-address pool [29], implemented as a stack. This stack
consists of a small memory, which stores the address of
each free location in the packet buffer, and a pointer to
the first entry. Initially, the stack includes the address of
each location in the packet memory. An incoming packet
retrieves an address from the top of the stack and incre-
ments the stack pointer to point to the next available entry.
Upon packet departure, the router decrements this pointer
and returns the free location to the top of stack. The idle-
address stack always has at least one free address when
a new packet arrives, since the real-time channel model
never permits the time-constrained traffic to overallocate
the buffer resources.

D. Routing and Deadlock-Avoidance

Although wormhole switching reduces the buffer require-
ments and average latency for best-effort traffic, the low-
level inter-node flow control could potentially introduce
cyclic dependencies between stalled best-effort packets.
To avoid these cycles, the real-time router implements
dimension-ordered routing, a shortest-path scheme that
completely routes a packet in the z-direction before pro-
ceeding in the y-direction to the destination, as shown by
the shaded nodes in Figure 1. Dimension-ordered routing
avoids packet deadlock in a square mesh [30] and also facil-
itates an efficient implementation based on x and y offsets
in the packet header, as shown in Figure 4(a); the offsets
reach zero when the packet has arrived at its destination
node. To improve the performance of best-effort traffic,
an enhanced version of the router could support adaptive
wormhole routing and additional virtual channels, at the
expense of increased implementation complexity [31,32].
In particular, non-minimal adaptive routing would enable
best-effort packets to circumvent links with a heavy load
of time-constrained traffic.

Although routing is closely tied with deadlock-avoidance
for best-effort packets, the real-time router need not dictate
a particular routing scheme for the time-constrained traf-
fic. Instead, each time-constrained connection has a fixed
path through the network, based on a table in each router;

105

this table is indexed by the connection identifier field in the
header of each time-constrained packet, as shown in Fig-
ure 4(b). As part of establishing a real-time channel, the
network protocol software can select a fixed path from the
source to the destination(s), based on the available band-
width and buffer resources at the routers. The protocol
software can employ a variety of algorithms for selecting
unicast and multicast routes based on the resources avail-
able in the network [33]. Once the connection establish-
ment protocol reserves buffer and bandwidth resources for
a real-time channel, the combination of bandwidth regu-
lation and packet scheduling prevents packet deadlock for
time-constrained traffic. Table IT summarizes how the real-
time router employs these and other policies to accommo-
date the conflicting performance requirements of the two
traffic classes.

IV. MANAGING TIME-CONSTRAINED CONNECTIONS

A real-time multicomputer network must have effective
mechanisms for establishing connections and scheduling
packets, based on the delay and throughput requirements
of the time-constrained traffic. To permit a single-chip im-
plementation, the real-time router offloads non-real-time
operations, such as route selection and admission control,
to the network protocol software. At run-time, the router
coordinates access to buffer and link resources by man-
aging the packet memory and the connection data struc-
tures. In addition, the router architecture introduces effi-
cient techniques for bounding the range of logical arrival
times and deadlines, to limit scheduler delay and imple-
mentation complexity.

A. Route Selection and Admission Control

Establishing a real-time channel requires the applica-
tion to specify the traffic parameters and performance re-
quirements for the new connection. Admitting a new con-
nection, and selecting a multi-hop route with suitable lo-
cal delay parameters, is a computationally-intensive proce-
dure [10,11,20]. Fortunately, channel establishment typi-
cally does not impose tight timing constraints, in contrast
to the actual data transfer which requires explicit guaran-
tees on minimum throughput and worst-case delay. In fact,
in most cases, the network can establish the required time-
constrained connections before the application commences.
To permit a single-chip solution, the real-time router rel-
egates these non-real-time operations to the protocol soft-
ware. The network could select routes and admit new con-
nections through a centralized server or a distributed pro-
tocol. In either case, this protocol software can use the
best-effort virtual network, or even a set of dedicated time-
constrained connections, to exchange information to select
a route and provision resources for each new connection.

The route selected for a connection depends on the traf-
fic characteristics and performance requirements, as well
as the available buffer and bandwidth resources in the net-
work. As part of establishing a new real-time channel, the
protocol software assigns a unique connection identifier at
each hop in the route. Then, each node in the route writes

Time-Constrained

Best-Effort

Switching

Packet switching

Wormbhole switching

Packet size

Small, fixed size

Variable length

Link arbitration

Deadline-driven

106

Round-robin on input links

Routing

Table-driven multicast

Dimension-ordered unicast

Buffers

Shared output queues

Flit buffers at input links

Rate-based

Flow control

Flit acknowledgments

TABLE II
Architectural Parameters: THIS TABLE SUMMARIZES HOW THE REAL-TIME ROUTER SUPPORTS THE CONFLICTING PERFORMANCE

REQUIREMENTS OF TIME-CONSTRAINED AND BEST-EFFORT TRAFFIC.

Fields
outgoing connection id
local delay bound d
bit-mask of output ports
incoming connection id
bit-mask of output ports
horizon value h

Write Command
Connection parameters

Horizon parameter

TABLE III
Control Interface Commands: THIS TABLE SUMMARIZES THE
CONTROL COMMANDS USED TO CONFIGURE THE REAL-TIME ROUTER.

control information into the router’s connection table, as
shown in Table III. At run-time, this table is indexed
by the connection identifier field of each incoming time-
constrained packet, as shown in Figure 4(b). To minimize
the number of pins on the router chip, the controlling pro-
cessor updates this table as a sequence of four, one-byte op-
erations that specify the incoming connection identifier and
the three fields in the table. After closing a connection, the
network protocol software can reuse the connection iden-
tifier by overwriting the entry in the routing table. The
processor uses the same control interface to set the horizon
parameters h for each of the five outgoing ports.

As shown in Table III, the routing table stores the con-
nection’s identifier at the next node, the local delay bound
d, and a bit mask for directing traffic to the appropriate
outgoing port(s). When a packet arrives, the router indexes
the table with the incoming connection identifier and re-
places the header field with the new identifier for the down-
stream router. At the same time, the router computes the
packet’s deadline from the logical arrival time in the packet
header and the local delay bound in the connection ta-
ble. Finally, the bit mask permits the router to forward an
incoming packet to multiple outgoing ports, allowing the
network protocol software to establish multicast real-time
channels. This facilitates efficient, timely communication
between a set of cooperating nodes. To simplify the design,
the real-time router requires a multicast connection to use
the same value of d for each of its outgoing ports at a single
node. Then, based on the bit mask in the routing table,
the router queues the updated packet for transmission on
the appropriate outgoing port(s).

By implementing a shared packet memory, the real-time
router can store a single copy of each multicast packet, re-
moving the packet only after it has been transmitted by
each output port selected in the bit mask. The shared
packet memory also permits the network protocol software
to employ a wide variety of buffer allocation policies. On
the one extreme, the route selection and admission control
protocols could allocate packet buffers to any new connec-
tion, independent of its outgoing link. However, this could
allow a single link to consume the bulk of the memory loca-
tions, reducing the chance of establishing time-constrained
connections on the other outgoing links. Instead, the ad-
mission control protocol should bound the amount of buffer
space available to each of the five outgoing ports. Simi-
larly, the network could limit the size of the link horizon
parameters h to reduce the amount of memory required by
each connection. In particular, at run-time, a higher-level
protocol could reduce the h values of a router’s incoming
links when the node does not have sufficient buffer space
to admit new connections.

B. Handling a Clock with Finite Range

The packet deadline at one node serves as the logical
arrival time at the downstream node in the route. Car-
rying these logical arrival times in the packet header, as
shown in Figure 4(b), implicitly assumes that the net-
work routers have a common notion of time, within some
bounded clock skew. Although this is not appropriate in
a wide-area network context, the tight coupling in parallel
machines minimizes the effects of clock skew. Alternatively,
the router could store additional information in the connec-
tion table to compute £;(m;) from a packet’s actual arrival
time and the logical arrival time of the connection’s previ-
ous packet [34]; however, this approach would require the
router to periodically refresh this connection state to cor-
rectly handle the effects of clock rollover. Instead, the real-
time router avoids this overhead by capitalizing on the tight
coupling between nodes to assume synchronized clocks.

Even with synchronized clocks, the real-time router can-
not completely ignore the effects of clock rollover. To
schedule time-constrained traffic, the router architecture
includes a real-time clock, implemented as a counter that
increments once per packet transmission time. For a prac-
tical implementation, the router must limit the number
of bits b used to represent the logical arrival times and

deadlines of time-constrained packets. Since logical ar-
rival times continually increase, the design must use mod-
ulo arithmetic to compute packet deadlines and schedule
traffic for transmission. As a result, the network must re-
strict the logical arrival times that can exist in a router at
the same time; otherwise, the router cannot correctly dis-
tinguish between different packets awaiting access to the
outgoing link.

Selecting a value for b introduces a fundamental trade-off
between connection admissibility and scheduler complex-
ity. To select a packet for transmission, the scheduler must
compare the deadlines and logical arrival times of the time-
constrained packets; for example, the data structures in
Table I require comparison operations to enqueue/dequeue
packets. Larger values of b would increase the hardware
cost and latency for performing these packet comparison
operations. However, smaller values of b would restrict the
network’s ability to select large delay bounds d and hori-
zon parameters h for time-constrained connections. The
network protocol software can limit the delay and hori-
zon parameters, based on the value of b imposed by the
router implementation. Alternatively, in implementing the
router, a designer could select a value for b based on typical
requirements for the expected real-time applications.

To formalize the trade-off between complexity and ad-
missibility, consider a connection traversing consecutive
links j—1 and j, with local delay parameters d;_; and d;,
respectively, where link j—1 has horizon parameter h;_;.
As discussed in Section II, a packet can arrive as much as
hj_1+d;_1 time units ahead of its logical arrival time £; (m)
and depart as late as its deadline £; (m)+d;. Consequently,

Ci(my) €[t —dj,t+dj—1+hji]

for any messages m; from this connection at time ¢. The
network must ensure that the router can differentiate be-
tween the full range of logical arrival times in this set.
The router can correctly interpret logical arrival times and
deadlines, even in the presence of clock rollover, as long
as every connection has h;_1+d;_; and d; values that are
less than half the range of the on-chip clock. That is, the
router requires d; < 20-1 and dj_1+hj_1 < 201 for all
connections sharing the link.

Under this restriction, the router can compare packets
based on their logical arrival times and deadlines by using
modulo arithmetic. For example, suppose b = 8 (i.e., the
clock has a range of 256 time units) and the connections all
satisfy d; <40 and d;_1+h;_1 < 106. At time ¢t =240, this
configuration corresponds to Figure 5. Any early packets
have logical arrival times between 240 and 346, modulo 256.
For example, a packet with £(m)=_80 would be considered
early traffic (since (80 —#)mod 256 = 96 < 128). Similarly,
any on-time packets have logical arrival times between 200
and 240. For example, a packet with £(m) = 210 would
be considered on-time traffic (since (¢ — 210)mod 256 =
30 < 128). Since on-time packets have £;(m;) < ¢, their
deadlines satisfy £;(m;)+d; € [t,t 4+ d;]. Hence, these
deadlines also fall within the necessary range in Figure 5,
allowing the router to compute (¢;(m;)+d; —t)mod 256 to

107

range of packet

logical arrival times

128

Fig.5. Handling Clock Rollover: This figure illustrates the effects
of clock rollover with an 8-bit clock, where the current time is
t =240 (mod 256). In the example, all connections satisfy d; < 40
and d;_1 4+hj_1 < 106, ensuring that the router can correctly
compare £;(m;) to t to distinguish between on-time and early
packets.

compare on-time packets based on their deadlines.

V. ScHEDULING TIME-CONSTRAINED PACKETS

To satisfy connection delay, throughput, and buffer
requirements, each outgoing port must schedule time-
constrained packets based on their logical arrival times and
deadlines, as well as the horizon parameter. The real-time
router reduces implementation complexity by sharing a sin-
gle scheduler amongst the early and on-time traffic on each
of the five output ports. Extensions to the scheduler archi-
tecture further reduce the implementation cost by trading
space for time.

A. Integrating Farly and On-Time Packets

To maximize link utilization and channel admissibility,
each outgoing port should overlap packet scheduling op-
erations with packet transmission. As a result, packet
size determines the acceptable worst-case scheduling de-
lay. Scheduling time-constrained traffic, based on delay or
throughput parameters, typically requires a priority queue
to rank the outgoing packets. Priority queue architectures
introduce considerable hardware complexity [35-39], par-
ticularly when the link must handle a wide range of packet
priorities or deadlines. For example, most high-speed solu-
tions require O(n) hardware complexity to rank n packets,
using a systolic array or shift register consisting of n com-
parators [35,40,41]. Additional technical challenges arise
in trying to integrate packet scheduling with bandwidth
regulation [42], since the link cannot transmit a packet un-
less it has reached its logical arrival time.

To perform bandwidth regulation and deadline-based
scheduling, the real-time router could include two prior-
ity queues for each of its five outgoing ports, as suggested
by Table I. However, this approach would be extremely ex-
pensive and would require additional logic to transfer pack-
ets from the “early” queue to the “on-time” queue; this is
particularly complicated when multiple packets reach their
eligibility times simultaneously. In the worst case, an out-
going port could have to dequeue a packet from Queue 1
or Queue 3, enqueue several arriving packets to Queue 1

horizon
parameter

comparators 7 bS

108

eligible/
ineligible

ear_lx{

on-time MUX
(I>1) 70 1
check

adder
bit mask logic
l

[+d

port
select
mask

write enable
(from decode)

Fig. 6. Comparator Tree Scheduler: This figure shows the scheduling architecture in the real-time router. The leaf nodes at the base of
the comparator tree stores a small amount of per-packet state information.

On-time: | 0 | 0 | Lm)+d—1t |

Early: [0] 1 [f(m)—t |

Fig. 7. Scheduler Keys: This figure illustrates how the real-time
router assigns a key to each time-constrained packet awaiting
transmission on an outgoing port. A single bit differentiates on-
time and early packets; ineligible traffic refers to packets that are
not destined to this port.

Ineligible: | 1 | — |

and/or Queue 3, and move a large number of packets from
Queue 3 to Queue 1, all during a single packet transmis-
sion time. To avoid this complexity, the real-time router
does not attempt to store the time-constrained packets in
sorted order. Instead, the router selects the packet with the
smallest key via a comparator tree, as shown in Figure 6.
Like the systolic and shift register approaches,; the tree ar-
chitecture introduces O(n) hardware complexity. For the
moderate size of n in a single-chip router, the comparator
tree can overlap the O(lgn) stages of delay with packet
transmission.

To avoid this excessive complexity, the real-time router
integrates early and on-time packets into a single data
structure. Each link schedules time-constrained packets
based on sorting keys, as shown in Figure 7, where smaller
keys have higher priority. A single bit differentiates be-
tween early and on-time packets. For on-time traffic, the
lower bits of the key represent packet lazity, the time re-
maining till the local deadline expires, whereas the key for
early traffic represents the time left before reaching the
packet’s logical arrival time. The packet keys are normal-
1zed, relative to current time ¢, to allow the scheduler to
perform simple, unsigned comparison operations, even in
the presence of clock rollover. Each scheduling operation
operates independently to locate the packet with the min-

imum sorting key, permitting dynamic changes in the val-
ues of keys. The base of the tree computes a key for each
packet, based on the packet state and the current time
t, as shown in the right side of Figure 6; the base of the
tree stores per-packet state information, whereas the packet
memory stores the actual packet contents.

B. Sharing the Scheduler Across Qutput Ports

By using a comparator tree, instead of trying to store the
packets in sorted order, the router can allow all five out-
going ports to share access to this scheduling logic, since
the tree itself does not store the packet keys. As shown
in Figure 6, each leaf in the tree stores a logical arrival
time £(m), a deadline £(m) + d, and a bit mask of outgoing
ports, assigned at packet arrival based on the connection
state. The bit mask determines if the leaf is eligible to com-
pete for access to a particular outgoing port. When a port
transmits a selected packet, 1t clears the corresponding field
in the leaf’s bit mask; a bit mask of zero indicates an empty
packet leaf slot and a corresponding idle slot in the packet
memory. The base of the tree also determines if packets
are early (¢(m) > t) or on-time (¢(m) < t) and computes
the sorting keys based on the current value of ¢. At the top
of the sorting tree, an additional comparator checks to see
if the winner is an early packet that falls within the port’s
horizon parameter; if so, the port transmits this packet,
unless best-effort flits await service.

Still, to share the comparator logic, the scheduler must
operate quickly enough to overlap run-time scheduling with
packet transmission on each of the outgoing ports. Conse-
quently, the real-time router pipelines access to the com-
parator tree. With p stages of pipelining, the scheduler has
a row of latches at p— 1 levels in the tree, to store the sort-
ing key and buffer location for the winning packet in the
subtrees. Every few cycles, another link begins its schedul-
ing operation at the base of the tree. Similarly, every few

horizon
parameter
lg(n/k)
levels
A N
k o 06 o
packets |

Fig. 8. Logic Sharing: This figure illustrates how the scheduler can
trade space for time by sharing comparator logic amongst groups
of k packets.

cycles, another link completes a scheduling operation and
can initiate a packet transmission. As a result, the router
staggers packet departures on the five outgoing ports. The
necessary amount of pipelining depends on the latency of
the comparator tree, relative to the packet transmission
delay.

C. Balancing Hardware Complexity and Scheduler Latency

The pipelined comparator tree has relatively low hard-
ware cost, compared to alternate approaches that imple-
ment separate priority queues for the early and on-time
packets on each outgoing port. However, as shown in Sec-
tion VI, the scheduler logic is still the main source of com-
plexity in the real-time router architecture. To handle n
packets, the scheduler in Figure 6 has a total of 2+41gn
stages of logic, including the operations at the base of the
tree as well as the comparator for the horizon parameter.
In terms of implementation cost, the tree requires n com-
parators and n leaf nodes, for a total of 2n elements of
similar complexity. As n grows, the number of leaf nodes
can have a significant influence on the bus loading at the
base of the tree. Fortunately, for certain values of n, the
comparator tree has low enough latency to avoid the need
to fully pipeline the scheduling logic. This suggests that
the scheduler could reduce the number of comparators by
trading space for time.

Under this approach, the scheduler combines several leaf
units into a single module with a small memory (e.g., a
register file) to store the deadlines and logical arrival times
for k packets, as shown in Figure 8. At the base of the
tree, each of the n/k modules can sequentially compare its k
sorting keys, using a single comparator, to select the packet
with the minimum key; this incurs k stages of delay. Then,
a smaller comparator tree finds the smallest key amongst

109

n/k packets. As a result, the scheduler incurs

(k+1y+g(%)

stages of delay. Note that, for £ = 1, the architecture re-
duces to the comparator tree in Figure 6, with its 2 4+ Ign
stages of logic. For larger values of k, the scheduler has
larger arbitration delay but reduced implementation com-
plexity. The architecture in Figure 8 has 2n/k compara-
tors, as well as a lighter bus loading of n/k elements at
the base of the tree. In addition, larger values of k al-
low the base of the tree to consist of n/k k-element reg-
ister files, instead of n individual registers, with a reduc-
tion in chip complexity. With a careful selection of n and
k, the real-time router can have an efficient, single-chip
implementation that performs bandwidth regulation and
deadline-based scheduling on multiple outgoing ports.

VI. PERFORMANCE EVALUATION

To demonstrate the feasibility of the real-time router,
and study its scaling properties, a prototype chip has been
designed using the Verilog hardware description language
and the Epoch silicon compiler from Cascade Design Au-
tomation. This framework facilitates a detailed evaluation
of the implementation and performance properties of the
architecture. The Epoch tools compile the structural and
behavioral Verilog models to generate a chip layout and
an annotated Verilog model for timing simulations. These
tools permit extensive testing and performance evaluation
without the expense of chip fabrication.

A. Router Complexity

Using a three-metal, 0.5um CMOS process, the 123-pin
chip has dimensions 8.1 mm x 8.7 mm for an implemen-
tation with 256 time-constrained packets and up to 256
connections, as shown in Table IV. The scheduling logic
accounts for the majority of the chip area, with the packet
memory consuming much of the remaining space, as shown
in Table V. Operating at 50 MHz, the chip can transmit or
receive a byte of data on each of its ten ports every 20 nsec.
This closely matches the access time of the 10-byte-wide,
single-ported SRAM for storing time-constrained traffic;
the memory access latency is the bottleneck in this real-
ization of the router. Since time-constrained packets are
20-bytes long, the scheduling logic must select a packet for
transmission every 400 nsec for each of the five output ports
To match the memory and link throughputs, the compara-
tor tree consists of a two-stage pipeline, where each stage
requires approximately 50 nsec.

Although the tree could incorporate up to five pipeline
stages, the two-stage design provides sufficient throughput
to satisfy the output ports. This suggests that the link
scheduler could effectively support a larger number of pack-
ets or additional output ports, for a higher-dimensional
mesh topology. Alternately, the router design could re-
duce the hardware cost of the comparator tree by sharing
comparator logic between multiple leaves of the tree, as

Parameter Value
Connections 256
Time-constrained packets 256
Clock (sorting key) 8 (9) bits
Comparator tree pipeline | 2 stages
Flit input buffer 10 bytes

(a) Architectural parameters

110

Parameter Value
Process 0.5pm 3-metal CMOS
Signal pins 123
Transistors 905, 104

Area 8.1 mm x 8.7 mm
Power 2.3 watts

(b) Chip complexity

TABLE 1V
Router Specification: THIS TABLE SUMMARIZES THE ARCHITECTURAL PARAMETERS AND CHIP COMPLEXITY OF THE PROTOTYPE

IMPLEMENTATION OF THE REAL-TIME ROUTER.

Unit Area Transistors

Packet scheduler 34.02 mm? 555025

Memory and control | 5.97 mm? 268161

Best-effort support 1.55 mm? 45352

Connection table 0.65 mm? 20966

Idle-address pool 0.35 mm? 15600
TABLE V

Router Components: THIS TABLE SUMMARIZES THE AREA
CONTRIBUTION AND TRANSISTOR COUNT FOR THE MAIN COMPONENTS
OF THE ROUTER.

discussed in Section V-C. Figure 9 highlights the cost-
performance trade-offs of logic sharing, based on Epoch
implementations and Verilog simulation experiments. As
k increases, the scheduler complexity decreases in terms
of area, transistor count, and power dissipation, with rea-
sonable increases in scheduler latency. The results start
with a grouping size of k=4, since the Epoch library does
not support static RAM components with fewer than four
lines. (For k=1, the graphs plot results from the router
implementation in Table V, which uses flip-flops to store
packet state at the base of the tree. The Epoch silicon com-
piler generates a better automated layout of these flip-flops
than of the small SRAMs, resulting in better area statistics
in Table V, despite the larger transistor count. A manual
layout would significantly improve the area statistics for
k> 1; still, the area graph shows the relative improvement
for larger values of k.)

These plots can help guide the trade-off between hard-
ware complexity and scheduler latency in the router imple-
mentation. For example, a group size of £ =4 reduces the
number of transistors by 45% (from 555,025 to 306, 829).
The number of transistors does not decrease by a factor of
four, since the smaller scheduler still has to store the state
information for each packet; in addition, the scheduler re-
quires additional logic and registers to serialize access to
the shared comparators. Still, logic sharing significantly
reduces implementation complexity. Larger values of k fur-
ther reduce the number of comparators and improve the
density of the memory at the base of the tree. Scheduler
latency does not grow significantly for small values of k. For

k = 4, delay in the comparator tree increases by just 67%
(from 0.115 psec to 0.192 psec). The lower bus loading at
the base of the tree helps counteract the increased latency
from serializing access to the first layer of comparators and
significantly reduces power dissipation.

B. Simulation Ezperiments

Since Verilog simulations of the full chip are extremely
memory and CPU intensive, we focus on a modest set of
timing experiments, aimed mainly at testing the correct-
ness of the design. A preliminary experiment tests the
baseline performance of best-effort wormhole packets. To
study a multi-hop configuration, the router connects its
links in the x and y directions. The packet proceeds from
the injection port to the positive x link, then travels from
the negative z input link to the positive y direction; af-
ter reentering the router on the negative y link, the packet
proceeds to the reception port. In this test, a b byte worm-
hole packet incurs an end-to-end latency of 30 + & cycles,
where the link transmits one byte in each cycle. This de-
lay is proportional to packet length, with a small overhead
for synchronizing the arriving bytes, processing the packet
header, and accumulating five-byte chunks for access to the
router’s internal bus. In contrast, packet switching would
introduce additional delay to buffer the packet at each hop
in its route.

An additional experiment illustrates how the router
schedules time-constrained packets to satisfy delay and
throughput guarantees, while allowing best-effort traffic to
capitalize on any excess link bandwidth. Figure 10 plots
the link bandwidth consumed by best-effort traffic and each
of three time-constrained connections with the following
parameters, in units of 20-byte slots:

d Imin
0 8 9
1 5 7
2 3 4

All three connections compete for access to a single network
link with horizon parameter h =0, where each connection
has a continual backlog of traffic. The time-constrained
connections receive service in proportion to their through-
put requirements, since a packet is not eligible for service

600000

T T T T
G——>9 Number of transistors
500000 8
400000 +

300000 [

200000

Number of transistors

100000 -

1 2 4 8 16 32 64 128 256
k (group size)

12

G——>5 Scheduling latency

Latency (microseconds)
[e2]
T

O I I I I
1 2 4 8 16 32 64 128 256

k (group size)

Power (milliwatts)
(0]
o
o
T

111

50 T T T
G—>o Area of tree
40 + y
o
[
@
Ea| 1
£
o
S
\‘C’TL 20 + B
©
o
<
10 - 8
O L L L L L L I
1 2 4 8 16 32 64 128 256
k (group size)
1600 ‘ ‘ ‘ ‘
G——>6 Power dissipation
1200 + 8

400 -

O I I I I I I I
1 2 4 8 16 32 64 128 256

k (group size)

Fig. 9. Evaluating Logic Sharing: These plots compare different implementations of the comparator tree, with different group sizes k.
As k grows, implementation complexity decreases but scheduler latency increases.

till its logical arrival time. Similarly, the link transmits
each packet by its deadline, with best-effort flits consum-
ing any remaining link bandwidth.

VII. RELATED WORK

This paper complements recent work on support for real-
time communication in parallel machines [2-7]. Several
projects have proposed mechanisms to improve predictabil-
ity in the wormhole-switched networks common in modern
multicomputers. In the absence of hardware support for
priority-based scheduling, application and operating sys-
tem software can control end-to-end performance by regu-
lating the rate of packet injection at each source node [7].
However, this approach must limit utilization of the com-
munication network to account for possible contention be-
tween packets, even from lower-priority traffic. This is a
particularly important issue in wormhole networks, since
a stalled packet may indirectly block the advancement of
other traffic that does not even use the same links. The un-
derlying router architecture can improve predictability by
favoring older packets when assigning virtual channels or
arbitrating between channels on the same physical link [23].

Although these mechanisms reduce variability in end-to-

Fig.

500
_ 400 - 1
[%)
=
o) best-effort
8 300 - .
c
(]
0
5 tion 2
_% 200 - connection
Q
c
S connection 1
o
100
connection 0
O L L L L
0 200 400 600 800 1000

Time (clock cycles)

10. Timing Experiment: This experiment evaluates a mix-
ture of time-constrained and best-effort packets competing for
access to a single outgoing link with horizon A =0. The sched-
uler satisfies the deadlines of the time-constrained packets, while
permitting best-effort flits to capitalize on any additional band-
width

end latency, more aggressive techniques are necessary to
guarantee performance under high network utilization. A
router can support multiple classes of traffic, such as user
and system packets, by partitioning traffic onto different
virtual channels, with priority-based arbitration for access
to the network links [23]. Flit-level preemption of low-
priority virtual channels can significantly reduce intrusion
on the high-priority packets. Still, these coarse-grain pri-
orities do not differentiate between packets with different
latency tolerances. With additional virtual channels, the
network has greater flexibility in assigning packet priority,
perhaps based on the end-to-end delay requirement, and
restricting access to virtual channels reserved for higher-
priority traffic [4,5].

Coupled with restrictions on the source injection rate,
these policies can bound end-to-end packet latency by lim-
iting the service and blocking times for higher-priority traf-
fic [3]. Although assigning priorities to virtual channels
provides some control over packet scheduling, this ties pri-
ority resolution to the number of virtual channels. The
router can support fine-grain packet priorities by increas-
ing the number of virtual channels, at the expense of ad-
ditional implementation complexity; these virtual channels
incur the cost of additional flit buffers and larger virtual
channel identifiers, as well as more complex switching and
arbitration logic [32]. Instead of dedicating virtual channels
and flit buffers to each priority level, a router can increase
priority resolution by adopting a packet-switched design.

The priority-forwarding router chip [6] follows this ap-
proach by employing a 32-bit priority field in small, 8-
packet priority queues at each input port. The router in-
corporates a priority-inheritance protocol to limit the ef-
fects of priority inversion when a full input buffer limits
the transmission of high-priority packets from the previ-
ous node; the input buffer’s head packet inherits the pri-
ority of the highest-priority packet still waiting at the up-
stream router. In contrast, the real-time router implements
a single, shared output buffer that holds up to 256 time-
constrained packets, with a link-scheduling and memory
reservation model that implicitly avoids buffer overflow. By
dynamically assigning an 8-bit packet priority at each node,
the real-time router can satisfy a diverse range of end-to-
end delay bounds, while permitting best-effort wormhole
traffic to capitalize on any excess link bandwidth.

VIII. CONCLUSION

Parallel real-time applications impose diverse communi-
cation requirements on the underlying interconnection net-
work. The real-time router design supports these emerging
applications by bounding packet delay for time-constrained
traffic, while ensuring good average performance for best-
effort traffic. Low-level control over routing, switching,
and flow control, coupled with fine-grain arbitration at
the network links, enables the router to effectively mix
these two diverse traffic classes. Careful handling of clock
rollover enables the router to support connections with di-
verse delay and throughput parameters with small keys
for logical arrival times and deadlines. Sharing schedul-

112

ing logic and packet buffers amongst the five output ports
permits a single-chip solution that handles up to 256 time-
constrained packets simultaneously. Experiments with a
detailed timing model of the router chip show that the de-
sign can operate at 50 MHz with appropriate pipelining of
the scheduling logic. Further experiments show that the
design can trade space for time to reduce the complexity
of the packet scheduler.

As ongoing research, we are considering alternate link-
scheduling algorithms that would improve the router’s scal-
ability. In this context, we are investigating efficient hard-
ware architectures for integrating bandwidth regulation
and packet scheduling [42]; these algorithms include ap-
proximate scheduling schemes that balance the trade-off
between accuracy and complexity, allowing the router to
efficiently handle a larger number of time-constrained pack-
ets. We are also exploring the use of the real-time router as
a building block for constructing large, high-speed switches
that support the quality-of-service requirements of real-
time and multimedia applications. The router’s delay and
throughput guarantees for time-constrained traffic, com-
bined with good best-effort performance and a single-chip
implementation, can efficiently support a wide range of
modern real-time applications, particularly in the context
of tightly-coupled local area networks.

REFERENCES

[1] D. Ferrari, “Client requirements for real-time communication
services,” IEEE Communications Magazine, pp. 65-72, Novem-
ber 1990.

[2] L. R. Welch and K. Toda, “Architectural support for real-time
systems: Issues and trade-offs,” in Proceedings of the Interna-
tional Workshop on Real-Time Computing Systems and Appli-
cations, December 1994.

[3] M. W. Mutka, “Using rate monotonic scheduling technology for
real-time communications in a wormhole network,” in Proceed-
ings of the Workshop on Parallel and Distributed Real-Time
Systems, April 1994.

[4] J.-P. Li and M. W. Mutka, “Priority based real-time commu-
nication for large scale wormhole networks,” in Proceedings of
the International Parallel Processing Symposium, pp. 433-438,
April 1994.

[6] A. Saha, “Simulator for real-time parallel processing architec-
tures,” in Proceedings of the IEEE Annual Simulation Sympo-
stum, pp. 74-83, April 1995.

[6] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Ya-
maguchi, “Design and implementation of a priority forward-
ing router chip for real-time interconnection networks,” Inter-
national Journal of Mini and Microcomputers, vol. 17, no. 1,
pp. 42-51, 1995.

[7] R. Games, A. Kanevsky, P. Krupp, and L. Monk, “Real-time
communications scheduling for massively parallel processors,”
in Proceedings of the Real-Time Technology and Applications
Symposium, pp. 76-85, May 1995.

[8] S. Balakrishnan and F. Ozguner, “Providing message delivery
guarantees in pipelined flit-buffered multiprocessor networks,”
in Proceedings of the Real-Time Technology and Applications
Symposium, pp. 120-129, June 1996.

[9] R. S. Raji, “Smart networks for control,” IEEE Spectrum,

vol. 31, pp. 49-55, June 1994.

C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne,

“Real-time communication in packet-switched networks,” Pro-

ceedings of the IEEE, vol. 82, pp. 122-139, January 1994.

D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time commu-

nication in multi-hop networks,” IEEFE Transactions on Parallel

and Distributed Systems, vol. 5, pp. 1044-1056, October 1994.

D. Verma, H. Zhang, and D. Ferrari, “Delay jitter control for

real-time communication in a packet switching network,” in Pro-

ceedings of Tricom, 1991.

(11]

(12]

(13]

(14]

15]

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

(36]

D. Ferrari and D. C. Verma, “A scheme for real-time channel
establishment in wide-area networks,” IEEE Journal on Selected
Areas in Communications, vol. SAC-8, pp. 368-379, April 1990.
H. Zhang and D. Ferrari, “Rate-controlled service disciplines,”
Journal of High Speed Networks, vol. 3, no. 4, pp. 389-412, 1994.
H. Zhang, “Providing end-to-end performance guarantees using
non-work-conserving disciplines,” Computer Communications,
vol. 18, pp. 769-781, October 1995.

L. Georgiadis, R. Guerin, V. Peris, and K. N. Sivarajan, “Effi-
cient network QoS provisioning based on per node traffic shap-
ing,” IEEE/ACM Transactions on Networking, vol. 4, pp. 482—
501, August 1996.

Y. Ofek and M. Yung, “The integrated MetaNet architecture: A
switch-based multimedia LAN for parallel computing and real-
time traffic,” in Proceedings of IEKE INFOCOM, pp. 802-811,
1994.

W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal
of Distributed Computing, vol. 1, no. 3, pp. 187-196, 1986.

R. L. Cruz, “A calculus for network delay, part I: Network ele-
ments in isolation,” IEEE Transactions on Information Theory,
vol. 37, pp. 114-131, January 1991.

Q. Zheng and K. G. Shin, “On the ability of establishing
real-time channels in point-to-point packet-switched networks,”
IEEE Transactions on Communications, pp. 1096-1105, Febru-
ary/March/April 1994.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard real-time environment,” Journal of the
ACM, vol. 20, pp. 46-61, January 1973.

P. Kermani and L. Kleinrock, “Virtual cut-through: A new
computer communication switching technique,” Computer Net-
works, vol. 3, pp. 267-286, September 1979.

W. Dally, “Virtual-channel flow control,” ITEEFE Transactions
on Parallel and Distributed Systems, vol. 3, pp. 194-205, March
1992.

J. Rexford, J. Dolter, and K. G. Shin, “Hardware support for
controlled interaction of guaranteed and best-effort communi-
cation,” in Proceedings of the Workshop on Parallel and Dis-
tributed Real-Time Systems, pp. 188—-193, April 1994.

J. Rexford and K. G. Shin, “Support for multiple classes of traffic
in multicomputer routers,” in Proceedings of the Parallel Com-
puter Routing and Communication Workshop, pp. 116-130, May
1994.

J. Rexford, W. Feng, J. Dolter, and K. G. Shin, “PP-MESS-SIM:
A flexible and extensible simulator for evaluating multicomputer
networks,” IEEFE Transactions on Parallel and Distributed Sys-
tems, pp. 25—40, January 1997.

J. Duato and P. Lopez, “Bandwidth requirements for wormhole
switches: A simple and efficient design,” in Proc. FEuromicro
Workshop on Parallel and Distributed Processing, pp. 377-384,
1994.

C. B. Stunkel et al., “The SP2 high-performance switch,” IBM
Systems Journal, vol. 34, pp. 185-204, February 1995.

F. A. Tobagi, “Fast packet switch architectures for broadband
integrated services digital networks,” Proceedings of the IEEE,
vol. 78, pp. 133-167, January 1990.

W. J. Dally and C. L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Transactions
on Computers, vol. C-36, no. 5, pp. 547-553, May 1987.

L. Ni and P. McKinley, “A survey of wormhole routing tech-
niques in direct networks,” IEEFE Computer, pp. 62-76, Febru-
ary 1993.

K. Aoyama and A. Chien, “Cost of adaptivity and virtual lanes
in a wormhole router,” Journal of VLSI Design, vol. 2, no. 4,
pp. 315-333, 1995.

W. C. Lee, M. G. Hluchyj, and P. A. Humblet, “Routing subject
to quality of service constraints in integrated communication
networks,” IEEE Network Magazine, pp. 46-55, July/August
1995.

Q. Zheng, K. G. Shin, and C. Shen, “Real-time communication
in ATM,” in Proc. Annual Conference on Local Computer Net-
works, pp. 156-164, October 1994.

H. J. Chao, “A novel architecture for queue management in the
ATM network,” IEEE Journal on Selected Areas in Communi-
cations, vol. 9, pp. 1110-1118, September 1991.

D. Picker and R. D. Fellman, “VLSI priority packet queue with
inheritance and overwrite,” IEEE Transactions on Very Large
Scale Integration, vol. 3, pp. 245-253, June 1995.

113

[37] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission
control for networks with bounded delay services,” IEEE/ACM
Transactions on Networking, vol. 4, pp. 885-901, December
1996.

[38] J. Rexford, A. Greenberg, and F. Bonomi, “Hardware-efficient
fair queueing architectures for high-speed networks,” in Proceed-
ings of IEEE INFOCOM, pp. 638-646, March 1996.

[39] S.-W. Moon, K. Shin, and J. Rexford, “Scalable hardware prior-
ity queue architectures for high-speed packet switches,” in Pro-
ceedings of the Real-Time Technology and Applications Sympo-
stum, pp. 203-212, June 1997.

[40] H. J. Chao and N. Uzun, “A VLSI sequencer chip for ATM
traffic shaper and queue manager,” IEEE Journal of Solid-State
Clircuits, vol. 27, pp. 1634-1643, November 1992.

[41] C. E. Leiserson, “Systolic priority queues,” in Proceedings of the
Caltech Conference on VLSI, pp. 200-214, January 1979.

[42] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong, “Scalable
architectures for integrated traffic shaping and link scheduling
in high-speed ATM switches,” IEEE Journal on Selected Areas
in Communications, vol. 15, pp. 938-950, June 1997.

Jennifer Rexford received a B.S.E. degree
in electrical engineering from Princeton Uni-
versity in 1991, and M.S. and Ph.D. degrees
in computer science and engineering from the
University of Michigan in Ann Arbor, in 1993
and 1996, respectively. Since 1996, she has
been in the Networking and Distributed Sys-
tems center at AT&T Labs—Research in New
Jersey. Her research interests include rout-
ing/signaling protocols, video streaming, and
packet scheduling, with an emphasis on effi-
cient support for quality-of-service guarantees. Her e-mail address is
jrex@research.att.com.

John M. Hall received a B.S.E. degree in
computer engineering from the University of
Michigan, Ann Arbor, Michigan in 1996. He
worked at Hewlett-Packard’s Microprocessor
Technology Lab, Fort Collins, Colorado work-
ing on the physical design of an IA-64 micro-
processor and has recently returned to the Uni-
versity of Michigan graduate school majoring
in electrical engineering. His e-mail address is

hallj@umich.edu

Kang G. Shin is Professor and Director of
the Real-Time Computing Laboratory, Depart-
ment of Electrical Engineering and Computer
Science, The University of Michigan, Ann Ar-
bor. He has authored/coauthored more than
460 technical papers (about 170 of these in
archival journals) and numerous book chap-
ters in the areas of distributed real-time com-
puting and control, fault-tolerant computing,
computer architecture, robotics and automa-
tion, and intelligent manufacturing. He has
coauthored (jointly with C. M. Krishna) a textbook “Real-Time Sys-
tems,” McGraw Hill, 1997. In 1987, he received the Outstanding
IEEE Transactions on Automatic Control Paper Award for a paper on
robot trajectory planning. In 1989, he also received the Research Ex-
cellence Award from The University of Michigan. In 1985, he founded
the Real-Time Computing Laboratory, where he and his colleagues
are investigating various issues related to real-time and fault-tolerant
computing. He has also been applying the basic research results of
real-time computing to multimedia systems, intelligent transporta-
tion systems, embedded systems, and manufacturing applications.
He received the B.S. degree in Electronics Engineering from Seoul
National University, Seoul, Korea, in 1970, and both the M.S. and

Ph.D. degrees in Electrical Engineering from Cornell University,
Ithaca, New York, in 1976 and 1978, respectively. From 1978 to
1982 he was on the faculty of Rensselaer Polytechnic Institute, Troy,
New York. He has held visiting positions at the U.S. Air Force Flight
Dynamics Laboratory, AT&T Bell Laboratories, Computer Science
Division at the University of California at Berkeley, IBM T.J. Watson
Research Center, and the Software Engineering Institute at Carnegie
Mellon University. He also chaired the Computer Science and En-
gineering Division at The University of Michigan for three years be-
ginning in January 1991. He is an IEEE Fellow, was the Program
Chairman of the 1986 IEEE Real-Time Systems Symposium (RTSS),
the General Chairman of the 1987 RTSS, the Guest Editor of the
1987 special issue of IEEE Transactions on Computers on real-time
systems, a Program Co-Chair for the 1992 International Conference
on Parallel Processing, and served on numerous technical program
committees. He also chaired the IEEE Technical Committee on Real-
Time Systems during 1991-1993, was a Distinguished Visitor of the
Computer Society of the IEEE, an Editor of IEEE Transactions on
Parallel and Distributed Computing, and an Area Editor of Interna-
tional Journal of Time-Critical Computing Systems.

114

