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ABSTRACT
Network administrators constantly need to monitor network
traffic for congestion and attacks. To do so, they must per-
form a large number of measurements on the traffic simul-
taneously, to detect different types of anomalies such as
heavy hitters or super-spreaders. However, performing all
of these measurements within the constrained memory ar-
chitecture of modern network devices poses significant chal-
lenges. Specifically, despite significant growth in the mem-
ory size in these devices, the number of memory accesses per
packet remains extremely limited. We propose BeauCoup,
a system based on coupon collectors that supports many
traffic-monitoring queries simultaneously while making at
most one memory update for each packet. BeauCoup can be
implemented in environments where memory access is very
expensive, such as high-speed programmable switches.

1 INTRODUCTION
Network operators constantly monitor network traffic to
detect attacks, performance problems, and faulty equipment.
For example, they need to identify flows that are heavy hit-
ters (e.g., a destination IP that receives a large volume of
traffic) or super-spreaders [28] (e.g., a source IP that com-
municates with many different destination IP addresses).
Network operators typically worry about multiple kinds of
problems simultaneously. For example, they may check con-
tinuously for worms, port scans, DDoS attacks, SYN floods,
and heavy flows. Each of these monitoring tasks (or queries)
can measure the traffic based on different characteristics. To
detect a worm we may need to look for source IPs that are
sending traffic to many different destinations, whereas to
detect a heavy hitter flow we may look for a flow (defined by
the tuple (source IP, destination IP)) that generates a large vol-
ume of traffic. Indeed, efficient techniques for network traffic
monitoring have been widely studied [19, 20, 26, 27, 31].
Emerging programmable network switches can analyze

traffic directly in the data plane as packets stream by. These
programmable switches offer significant flexibility in the
tasks they can perform; yet, tomaintain line rate, they impose
significant constraints on memory and processing resources.
As the packet is processed by the switch, a limited number
of simple computations may be performed; additionally, the

switch has a finite amount of SRAM for maintaining state
across packets. Furthermore, each packet passing through
the switch may access only a small handful of locations in
this memory. In fact, the limitation on the number of on-chip
memory accesses per packet is much more significant than
the constraint on the total size of memory, particularly when
trying to support many queries simultaneously.

While some past systems can support one query entirely in
the data-plane hardware (e.g., for heavy-hitter detection [2,
27]), existing techniques for handling multiple queries rely
heavily on software support:

• Sampling: The simplest approach is to sample packets
in the data plane [6], and have a software controller com-
pute multiple statistics on the samples. While useful for
detecting high-volume flows, sampling is less effective for
more sophisticated queries such as counting the number of
distinct attributes (e.g., distinct destination IPs in detecting
sources that are super-spreaders).

• Key-value stores: Systems such asMarple [22] and Sonata [16]
use the data plane to support portions of multiple queries,
including packet filtering and simple key-value stores.
However, to maintain per-flow state, these systems of-
fload storage and processing to software after exhausting
the limited data-plane resources.

• Sketches: Compact data structures are an attractive al-
ternative to storing per-flow state. Several recent works
collect information about all potentially relevant flows
in a data-plane sketch, and then have the controller soft-
ware analyze the sketch to compute the statistics of in-
terest [19, 20, 29], Some solutions can support multiple
queries on the same packet dimension (or key), using a
general purpose sketch. However, supporting queries with
multiple different keys would require a separate data struc-
ture for each dimension.

While using compact data structures to answer queries
approximately is clearly on the right track, we need new
techniques that can handle numerous heterogeneous queries
in the data plane, despite the limitation on memory accesses.
We present BeauCoup, which supports a general query ab-
straction that counts the number of distinct items (i.e., with
different attributes) seen across a set of related packets (with
the same key), and flags the keys with distinct counts above



a threshold. For example, in the super-spreader query, the
source IP is the key, the destination IP is the attribute, and
the threshold checks whether a source IP has communicated
with too many different destination IPs. However, to handle
many queries with different keys and attributes accurately
and efficiently, BeauCoup cannot simply maintain multiple
sketches (on different keys) and alternate among the sketches
arbitrarily for different packets.

Instead, we appeal to the coupon collector problem [13] to
identify a suitable subset of packets (based on their attributes)
to trigger updates for each query. A coupon collector is an
algorithm that consists of a set of coupons, and a probability
for selecting each coupon. For each item in the stream, one
of the coupons is selected randomly (with replacement), and
the coupon collector is satisfied when all of the coupons
have been collected. In our setting, we select a coupon for
each query by computing a random hash function over the
packet’s attribute. By adjusting the parameters of the coupon
collector for each query, BeauCoup bounds the total number
of memory accesses for each packet. In essence, each packet
collects a coupon for a bounded number of queries, but in
a carefully chosen way as to achieve high accuracy for all
of the queries. In designing and evaluating BeauCoup, we
make the following contributions:

Limited access memory model: We introduce a com-
putational model for analyzing network traffic under a con-
stant number of memory accesses per packet. Our model
brings together streaming inputs (e.g., cash-register [21])
with constraints on how memory is divided and accessed
(e.g., cell-probe [30]). This model, presented in § 2, is relevant
to hardware devices that process a streaming input, and is
of independent interest.

Query compilation that bounds memory access: We
show how to map each query to an equivalent query com-
posed solely of a distinct counter in § 3. We execute each
of the given queries using a coupon collector, which is con-
figured to approximately identify when the distinct count
has reached the threshold. Our query compiler allocates the
limited memory access among multiple queries. It finds the
optimal coupon-collector parameters for each query, and
mediates the contention between queries to perform at most
one memory access per packet, as described in § 4.

Adapting BeauCoup to PISA architecture: We outline
how to implement BeauCoup within the packet-processing
pipeline of PISA (Protocol-Independent Switch Architecture)
switches in § 5. We compile the queries to generate coupon
parameters that fit the computational constraints of PISA.
Then, we map the coupon collection scheme to use TCAM
match rules, to collect coupons for all queries in parallel.
In the remainder of the paper we describe the results of

our evaluation in § 6, summarize related work in § 7, and
present concluding remarks in § 8.

2 MANY QUERIES WITH FEW UPDATES
Limited memory access has become a major constraint in
hardware devices, due to the mismatch between the growth
of network link speed and the relatively slower growth of
memory access speed. The main goal of BeauCoup is to
support multiple network monitoring queries on hardware
which only allows limited memory access. We begin this
section by framing the computational model of limited mem-
ory access. We then describe how to formulate queries to
distinct counters, and finally we define the relevant perfor-
mance metrics for algorithms created for this model.

2.1 Limited Memory Access Model
Our model for processing network packets closely resembles
the cash register streaming model (addition only), while the
memory access constraint resembles a variant of cell probe
model (can access a limited number of memory locations).

An algorithmA running under the limited memory access
streaming model will observe an infinite stream of network
packets i1, . . . , iN sequentially. When processing packet it ,
the algorithm may opt to read or write O(1) memory loca-
tions, as well as produce some outputA(i1, . . . , it ). Now, we
formally define the limited memory access streaming model:
(1) Word-based access: A word is a minimal unit of mem-

ory to be read or written together. Depending on the
platform, it typically contains 32 or 64 bits.

(2) Constant number of memory accesses: When pro-
cessing packet it , the algorithm can only access Γ words
of memory per packet, where Γ is a small constant. The
algorithm can read a particular wordM[j], perform arbi-
trary computation, and write a new value into the same
memory location; this is considered one memory access.

(3) Sub-linear memory size: The system has memory ar-
ray M with a limited size, typically sub-linear to the
stream size, with the j-th word referred to asM[j].
Sub-constant Access Memory Model We further de-

fine a sub-model of the limited memory access model with
γ ≤ 1 memory access per packet. Note that the algorithm
cannot make fractional word access, therefore can only ac-
cess a few whole words per packet (fewer than Γ), and should
access fewer than γ words per packet on average.
In this paper, we will be using the sub-constant access

memory model. For completeness, we summarize the param-
eters of the model in the following definition.

Definition 2.1. A streaming algorithmA in the sub-constant
access memory model with parameters (M,w,γ , Γ) is an al-
gorithm that uses a memory ofM words ofw bits each, and
moreover:

• Nomore than Γmemory access (read/write operations)
are permitted per item; and
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• On any stream of N items, no more than γ · N + o(N )

accesses are performed in total.

Typically, we expect memory size M = o(N ), but not
as constrained as in traditional streaming algorithms (e.g.,
memory sizeM = N 1/2 is often acceptable). Γ is a relatively
small constant (such as 1 or 5), and γ is very small (e.g. 0.01).

The main advantage of sub-constant access algorithms is
that we can expect to run many of them in parallel on a sin-
gle Constant Access Memory unit. Generally speaking, if we
have a family of k sub-constant-access algorithms {Ai }

k
i=1

with parameters (Mi ,w,γi , Γ), we can expect to be able to
run them jointly on the same stream with the resulting al-
gorithm A having parameters

(∑k
i=1Mi ,w,

∑k
i=1 γi , Γ

)
. A

can be executed on the Constant Access Memory Model, as
long as

∑k
i=1 γi < Γ, assuming we manage to time-share each

Ai ’s memory access.

2.2 Flexible Queries as Distinct Counters
A variety of network-monitoring tasks can be modelled as a
distinct counter, counting the number of distinct attributes
seen across a set of packets. For example, a super-spreader is
defined as a host in the network thad sends packets to many
(e.g., 1000+) distinct destinations. Finding a super-spreader
can be characterized as finding a set of packets with the same
source IP address, and many distinct destination IP addresses.
In this section, we formally define our query model, and give
some more examples of queries in this format.

A query q consists of a key projection keyq , attribute pro-
jection attrq , and threshold Tq . When executing this query,
each packet i from the input stream is projected to a key
keyq(i) and an attribute attrq(i). The query is defined as: for
any particular key k , output an alert (q,k) when the set of
input packets satisfying keyq(i) = k has at least Tq different
values of attrq(i). That is, output (q,k) when:��{attrq(i) | keyq(i) = k}

�� > Tq .
The super-spreader example we mentioned earlier can be
expressed as a query with keyq(i) = {i .srcIP}, attrq(i) =
{i .dstIP}, and threshold Tq = 1000. Our goal is to build a
system that simultaneously executes a set of queries Q =
{q1,q2, . . . }, and output alerts (qj ,kj ) while processing the
input packet stream.
In Table 1, we present more examples of how to formu-

late common network-monitoring tasks in our query model.
In particular, we assume i .timestamp is distinct across all
packets, so the user may write a query to count packets by
defining attrq(i) = {i .timestamp}, i.e., counting the number
of timestamps seen. We also note that filtering operations
can be implicitly reduced into this query formulation, as

Name Key Attribute Threshold
Super-spreader srcI P dst I P 1000
Port scan srcI P dstPor t 100
Heavy hitter ...
IP pair

{srcI P, dst I P } t imestamp 10000

Heavy hitter ...
IP&port pair

{srcI P, srcPor t,
dst I P, dstPor t }

t imestamp 10000

SYN-flood {dst I P, dstPor t }
{srcI P, srcPor t }

if TCP SYN,
otherwise ∅

5000

Table 1: Examples of query parameters.

shown in the SYN-flood example above—by projecting irrel-
evant packets to a fixed value, the distinct counting query
effectively ignores them.
Many other network-monitoring tasks can be expressed

in this formulation by using a combination of packet IP
addresses, ports, timestamps, etc. as the query key and query
attribute. Our goal in this work is to execute many such
queries simultaneously using one algorithm, under a strict
memory access constraint of Γ = 1 shared among all queries.
One natural way to share memory accesses is to allocate

γq memory accesses to each query q, such that each query q,
when run individually in a sandboxed environment, makes
fewer than γq memory access per packet. When running
together, all queries would make

∑
q∈Q γq memory accesses

per packet on average. We can thus satisfy the average mem-
ory access constraint easily by using small γq such that∑
q∈Q γq ≤ Γ. However, when processing a single packet,

we need to arbitrate between multiple queries when they
simultaneously want to access memory, so we do not violate
the constraint of accessing at most Γ = 1 word per packet.

2.3 Performance Metrics
It may be impossible to make timely and accurate reports
whenever a query exceeds its threshold, especially when
operating under memory access constraint Γ. An approxi-
mated algorithm may alert too early, or too late. We define
the relative error of an algorithm as follows:

• True count: Say the algorithm first outputs (q,k) at time t ,
after witnessing input stream i1, i2, . . . , it ; at this time, the
true number of distinct attributes seen by the algorithm is
T(Aq) =

��{attrq(i) | keyq(i) = k, i ∈ i1, i2, . . . , it }
��.

• Absolute error: However, the algorithm should have
reported when there is exactlyTq distinct items. We define
its absolute error as |T (Aq) −Tq |.

• Relative error: We normalize and use |T(Aq )−Tq |
Tq

as the
relative error of output (q,k). This scaled error includes
both the bias E[T (Aq)] −Tq and the variance of T(Aq).
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3 QUERY AS A COUPON COLLECTOR
In this section, we examine how BeauCoup answers a single
query.

A coupon collector consists of a set of coupons and a prob-
ability for selecting each coupon. In the basic algorithm, for
each packet, one of the coupons is randomly selected (with
replacement), and the algorithm completes when all of the
coupons have been collected. Intuitively, the coupon collec-
tor can answer the following question: if there are k coupons,
what is the probability that one would need over j packets to
collect all of the coupons. By adjusting the likelihood (proba-
bility) of collecting each coupon, we minimize the expected
number of coupons that need to be updated for each packet.
Therefore, we can simultaneously try to collect coupons for
many queries, while only performing sub-constant memory
access on average.
We now show how coupon collectors may be used as

distinct counters. Then, we explain how a query may be
transformed to a coupon collector.

3.1 Coupon Collector as a Distinct Counter
It is impossible to answer distinct counting queries exactly
under the sub-constant memory access model. Fortunately,
approximate algorithms [1, 7, 8, 12–14] provide answers with
relatively high accuracy, while only requiring memory that
is logarithmic in the number of distinct keys in the stream.

We utilize a well-known algorithm called the coupon col-
lector as the a distinct counter. In the basic coupon collector
problem [13], the input is a set of coupons P such that each
coupon ci is issued with probability pi . At each time, one
of the coupons is selected at random (with replacement).
The coupon collector problem for a given n is defined as
how many coupons need to be drawn in expectation until a
collection of n different coupons have been drawn.

Let’s look at a simple example. There are fivemajor airlines
in the United States, and Jane Doe files one of them uniformly
at random every time she travels. In expectation, she needs
to fly 11.42 times to experience all five airlines. The analysis
is as follow: her first flight is always a new airline, while the
second flight has a 4

5 chance to be on another new airline—it
takes 5

4 flights in expectation to experience a second new
airline (collect the second coupon). Similarly, she needs to
travel 5

3 times to experience a third airline, and so on; in total
it takes

∑5
i=1

5
i = 11.42 travels (trials) to try all airlines, i.e.,

collect all five coupons.
For the most simple case of collecting n out ofm coupons,

where all have the same probability p = 1
m , we can analyze

the coupon collector problem as follows:
• With j coupons already collected, the probability that the
next coupon is a new, unseen coupon (out of the m − j

uncollected ones) is m−j
m .

• Thus, the number of new coupons to be drawn until receiv-
ing a new unseen coupon is a geometric random variable
Geo(m−j

m ) with expectation m
m−j .

• We need to collect n new coupons, hence the total coupons
that need to be drawn is

∑n−1
j=0 Geo(

m−j
m ), and we need to

draw in expectation
∑n−1

j=0
m
m−j coupons.

To count distinct elements seen within an attribute space,
instead of drawing coupons at random, we can map random
subsets of attributes to each coupon. Assume we are given a
sequence of elements from attribute set S = {attrq(i), ∀i}.
By randomly choosingm disjoint, equal-sized subsets S1, S2,
. . . , Sm ⊂ S and mapping them tom coupons, we essentially
draw a new coupon with probability p = |Sj |

S
every time we

see a new element from S, while seeing repeated elements
does not lead to new coupons being collected. Hence, if we
again require collecting n out of m coupons, we can ana-
lyze the expected number of distinct elements to be seen as
follows:
• Given |S| is large, with j coupons already collected, the
probability that the next distinct item in S leads to a dif-
ferent coupon is p(m − j) =

(m−j) |Sj |
|S |

.
• Hence, the number of distinct items needed before we
collect another coupon is a geometric random variable
Geo(p(m − j)) with expectation 1

p(m−j) .
• The total number of distinct items needed, until we collect
n coupons, can thus be written as

∑n−1
j=0

1
p(m−j) .

We can adjust n,m, and p to tune the number of distinct
items that need to be seen before the coupon collector is sat-
isfied. In particular, increasing p orm leads to fewer distinct
items needed, while increasing n leads to more.

3.2 Transform Query to Coupon Collector
Recall that, as defined in Section 2, an algorithm running
query q takes input packet stream i1, i2, . . . and projects each
packet into a key keyq(i) and an attribute attrq(i); this query
should output an alert k when it has seen enough packets
with keyq(i) = k with more than Tq distinct attrq(i).

To implement queryq under thememory access constraint,
we can use a random hash function with a coupon collector.
Assume we have a memory model withw-bit words, and we
are allowed γ ≤ 1 memory accesses per packet. We can pack
all coupons as bits in one memory word, and read/write all
of them at once. For example, ifw=32 bits, we can pack and
collect at most 32 coupons.
We illustrate this process in Figure 1. Say we use m =

4 coupons to implement our query, each activates with a
certain probability p = 1/8, and requires all of them to be
collected. Note that in this casem ·p = 1/2 < 1, which means
in expectation half of the packets will have no coupon. Packet
1 maps to key C , and activates the first coupon. We locate
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Output alert:
Key C

Key Coupons
A
B
C
E
…

Packet 1
Key:C, Coupon:#1

…

Packet 2
Key:E, No Coupon

Packet 3
Key:E, Coupon:#3

Packet 4
Key:D, No Coupon

…

Figure 1: Queries are expressed as collecting coupons.
When enough coupons are collected, the algorithm
outputs an alert.

the memory location M[C] and mark its first bit to 1. At
this point, all four bits inM[C] are set to 1, thus the coupon
collection is finished and we output an alertC . Packet 2 does
not activate any coupon. Packet 3 activates the third coupon,
and has key E. Since it is the first coupon collected for key E,
we assign a new memory location M[E] and mark its third
bit to 1; we do not output anything after processing packet
3, asM[E] does not have all bits set to 1 yet. Since packets
with key D have not collected any coupon yet, the memory
does not contain a bitmap for key D.
In this example, checking whether a memory location

has collected all the coupons is very straightforward, as we
can simply compare the memory word withm binary bits
111...1. We call the special case full coupon collection, i.e.,
n = m. This is somewhat easier to implement on practical
hardware (via a simple comparison). We call the n < m case
partial coupon collection, which requires counting 1 bits in
a memory word on the hardware to check if there are n
coupons collected. As we show later in the evaluation in
Section 6, partial coupon collection significantly improves
accuracy, at the cost of using more coupons (hence, using
more hardware resources).

In summary, the algorithm Aq executes as follow:
• Given the distinct counting threshold Tq , we first find a
combination ofm,n, andp such that, it takes approximately
Tq distinct attributes in expectation to collect n out ofm
coupons, where each attribute maps to each coupon with
probability p.

• We use a random hash functionh(attrq(i)) → (0, 1] to map
random subsets of attributes to a coupon. In particular, we
say coupon j is activated by input packet i if h(attrq(i)) ∈
(j · p, (j + 1) · p].

• For each input packet i , we compute keyq(i) and attrq(i).
If the hash value indicates coupon j is activated, i.e.,

∃0 ≤ j < m,h(attrq(i)) ∈ (j · p, (j + 1) · p],

we collect this coupon, by setting j-th bit of memory word
M[keyq(i)] to 1. We also check if the number of 1 bits has
exceeded n, and if so, output an alert.

• In practice, we have a memory array with bounded size
using an integer index. We can use another hash function
to map keyq(i) to an index, as well as use a part of memory
word lengthw to store the key itself in the table to detect
hash collisions. This effectively makes the memory array
a hash table, and hash collisions are rare as long as the
array is sufficiently large.

Note that algorithm Aq accesses memory with probability
m · p, hence we require m · p ≤ γ memory accesses per
packet. Also, in the worst case the algorithm requires γ · N
memory size, linear to the stream size (when all packets have
different keys), although real-world traffic exhibits strong
locality (different packets often share the same key) and the
algorithm uses o(N ) memory empirically.

3.3 Adjusting Coupon Probabilities
To find the right coupon collector for a given query, we need
to find n,m, and p which satisfy a few constraints: memory
word size n ≤ m ≤ w , memory access constraintm · p ≤ γ ,
and activation threshold

∑n−1
j=0

m
p(m−j) ≈ Tq . Out of all of the

allowed combinations, we should choose the one providing
the highest accuracy (minimized average relative error). One
of our main challenges is to find these parameters according
to the query threshold provided, such that we achieve better
accuracy both analytically and empirically.

Let’s look at a simple example. Suppose a query searches
for all source IPs that send packets to at least 1024 destina-
tion IPs. In this case, we have keyq(i) = {i .srcIP}, attrq(i) =
{i .dstIP}, and, most importantly,Tq = 1024. Intuitively, if the
condition is formulated using a single coupon (n =m = 1),
BeauCoup sets the probability to collect this coupon to bep =
1/1024. The algorithm first selects a random hash function h.
For each packet i traversing through the switch, we “collect”
the single coupon if h(i .dstIP) ∈ [0, 1/1024). For any partic-
ular key k , the stream of packets satisfying i .srcIP = k and
having distinct i .dstIP will form a sequence of Bernoulli tri-
als; the required number of trials is geometrically distributed
and therefore, in expectation we see 1

p = 1024 distinct i .dstIP
before the single coupon is collected. The total memory ac-
cess probability in this case is exactlym · p = 1/1024, and
thus compatible with a memory access constraint γ = 0.001.

As a slightly more complex example, if the memory access
requirement is loosened to γ = 0.2, we can use an alternative
scheme: to collect n = 13 coupons out of m = 20 in total,
and p = 1/1024. The algorithm still first selects a random
hash function h, and for each incoming packet i , checks if
h(i .dstIP) ≤ p ·m. If that’s the case, we find out the activated
coupon ⌊

h(i .dst I P )
p ⌋; for example, h(i .dstIP) = 0.01, so we

activated the 10-th coupon. We then read the memory word
stored at address i .srcIP , set the 10-th bit to 1, and check
if there are already 13 bits set to 1 before writing it back.
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For any particular i .srcIP , the required number of distinct
i .dstIP to observe until collecting the (j+1)-th coupon (with j
coupons already collected) is geometrically distributed with
Geo(p(m − j)), hence the total expected distinct items to
observe is E[T (Aq)] =

∑n−1
j=0

1
p(m−j) = 1029 before n = 13

coupons are activated. This setup requires on average p ·m =
0.0196 memory access per packet. Although the expected
activation time E[T (Aq)] deviates from our goalTq by 0.5%,
this setup leads to a much lower average relative error thanks
to using more coupons. (In fact, it is BeauCoup’s optimal
strategy under γ = 0.2 andTq = 1024, with minimal average
relative error.)
As a rule of thumb, we should use as many coupons as

possible, as more coupons lead to lower relative error. Mean-
while, for a given Tq , using more coupons both leads to a
smaller per-coupon probability pq and larger total memory
accessmq ·pq . Thus, for a given queryq with thresholdTq and
memory access constraint γq , we need to find a small pq and
large nq ,mq to maximize accuracy, subject to pq ·mq ≤ γq
and E[T (Aq)] ≈ Tq .

Note that our distinct counters operate at a regime where
γ is extremely small (e.g., γ = 0.01), and each packet could
have different key keyq(i). This differentiates our approach
from other algorithms, such as UnivMon [20] which supports
only one query key, or HyperLogLog [12] which uses γ = 1
memory access per item.

4 MULTIPLE CONCURRENT QUERIES
Section 3 showed how to support a single query under a
memory access constraint. In this section, we show how
to execute multiple queries together under a total memory
access constraint, as well as how to activate coupons and
perform coupon collection for multiple queries.
Given a set of queries Q, with their query parameters

(nq ,mq ,pq)which already satisfies individualmemory access
constraints γq , our goal now is to design an algorithm AQ

that runs all of these queries simultaneously, under global
memory access constraints. While the average memory ac-
cess constraint γ words per packet is straightforward to
satisfy (as long as

∑
q∈Q γq ≤ γ ), it is non-trivial to satisfy

the hard constraint imposed by our hardware target, namely
accessing at most Γ = 1 word per packet.

In this section, we discuss how we combine all queries by
embedding their coupons into the output space of random
hash functions, and activate at most one coupon globally
across all queries.

4.1 Group Queries with the Same Attribute
Our first step is to group different queries together based on
the attribute they are counting. Different queries counting

the same attribute use random hash functions over that at-
tribute to activate their coupons. If we use the same hash
function for these queries, we can allocate different output
ranges to each query, such that at most one coupon will be
activated among them. Therefore, one random hash function
per attribute is sufficient for all queries.

As an example, say queries q1 and q2 both use attrq1 (i) =
attrq2 (i) = {i .dstIP}. q1 uses mq1 = 2 coupons each with
probability pq1 = 1/8, while q2 usesmq2 = 2 coupons each
with probability pq2 = 1/64. We then define a single random
hash function h {i .dst I P } over the attribute, and partition its
range (0, 1] for the two queries: (0, 1/8] for coupon 1 of q1,
(1/8, 2/8] for coupon 2 of q1; (2/8, 2/8+1/64] for coupon 1 of
q2, and (2/8+ 1/64, 2/8+ 2/64] for coupon 2 of q2. For other
output values, no coupon is associated. More queries using
the same attributes are stacked accordingly. Note that we
would never run out of the (0, 1] range because total memory
access across all queries (

∑
qmq · pq ) is smaller than γ ≤ 1.

4.2 Select at Most One Coupon to Update
After grouping queries by their attributes, we define one
random hash function for each of the attributes, such as
h {i .srcI P } , h {i .dstPor t } , h {i .t imestamp } , etc. When a packet
arrives, we compute all these random hash functions to find
out if any hash function’s output value is associated with a
coupon. If there is exactly one coupon activated, we obtain
its query q, coupon ID, as well as the query key associated
with this packet keyq(i). Subsequently, we can collect this
new coupon into memory locationM[(q,keyq(i)]. We note
that different queries may shareM by writing to different
memory indexes. However, if there is more than one coupons
activated, we need to perform tie-breaking. BeauCoup only
tie-breaks if there are exactly two coupons, by tossing a coin
and allowing each coupon to succeed with 50% probability.
We discuss technical details of how to implement the coin
toss in Section 5.3. When there are more than two coupons,
we discard all of them; this has limited effect on our system’s
accuracy, as we can prove in Appendix C that the probability
of having ≥ 3 coupons activated is merely a few percent.

5 IMPLEMENTING BEAUCOUP ON PISA
High-speed programmable switches can run measurement
algorithms at line rate, offering unprecedented visibility to
network operators. However, switch data planes impose a
constraint on memory accesses per packet, due to the funda-
mental mismatch between link speed and memory through-
put In this section, we give an overview of the PISA pro-
grammable switch and its other constraints beside limited
memory access.We discuss the neededmodifications to Beau-
Coup, so that it may run within these constraints.
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5.1 Programmable Switch Architecture
APISA (Protocol Independent SwitchArchitecture) switch [3]
implements a series of match-action tables as a pipeline to
achieve programmable packet processing. At each pipeline
stage, the switch can match on a packet’s header data or
metadata using bit patterns defined by the switch controller,
and execute the corresponding actions associated with the
matched rule. The actions can be arithmetic computations
over the packet’s header data or metadata, or it can be a read
or write to on-board register memory. The register memory
is arranged with a fixed word length—a maximum of 32 bits
in current hardware. We can only perform O(1) memory
reads/writes per packet, and these accesses must be shared
among various switch functionality. We also have a limited
memory size, but as we discussed earlier, onboard SRAM is
getting cheaper and is less of a bottleneck in modern systems,
while the mismatch between link speed rate and memory
throughput leads to a memory access constraint.

The lookup table entries support both exact matching via
SRAM (Static Random Access Memory) and ternary match-
ing via TCAM (Ternary Content Addressable Memory), and
are originally motivated by matching network routing rules
based on IP address prefix. Our hardware target also supports
computing hash functions over header data as a possible ac-
tion; this facilitates our use of random hash functions to im-
plement probabilistic coupon collection. Although hardware
targets impose constraints on the number of match rules and
number of hash functions we can compute, these constraints
are not bottlenecks in our system implementation.
For the purpose of this paper, we abstract all other hard-

ware limitations away and assume the hardware target sup-
ports infinite memory with word sizew = 32 bits, and allows
Γ = 1memory access per packet for monitoring purpose. An
algorithm can use arbitrarily many exact and ternary match
rules when implementing the monitoring queries.

Upon deciding to output an alert, the algorithm can trigger
a special action to send a packet to the switch’s controller
port, or to a special output port that is linked to a monitoring
server. The controller or server can then process the query
and key, and act accordingly.

5.2 Finding Query Parameters
To run a set of queries Q on a PISA switch, we need to first
find parameters for each individual query q ∈ Q, namely the
total number of couponsmq , number of coupons to collect
nq , and per-coupon probability pq .

On practical systems such as PISA switches, random hash
functions output binary bits. We therefore need to match on
these bits to implement probability pq . In this paper, we use
the most straightforward form of probability pq = 2−b by ex-
actly matching b random bits, in order to simplify matching

different coupons with a single hash function. For proba-
bilities not in 2−b form, [25] discussed how to approximate
them using ternary match rules on random binary bits.

We implement a straightforward design to split the global
memory access constraint γ among all queries: the strictly
fair policy, limits the memory access of every individual
query to γq =

γ
|Q |

. However, we note that a query with large
threshold Tq may not need all of its fair share, and a more
optimized policy may reallocate a portion of the memory
accesses to queries with smaller thresholds.

Now, given a query’s averagememory access constraintγq ,
the next step is to find parameters (nq ,mq ,pq), that minimize
average relative error while satisfying the memory access
constraint mq · pq ≤ γq . We use the following heuristic
algorithm to find the optimal parameters for query q:

(1) Iterate through progressively smaller power of two coupon
probabilities (pq = 1/2, 1/4, . . . ). For the current trial, say
probability is fixed at pq = 1

2b .
(2) Compute the constraint on the total number of coupons

m = min(w, ⌊
γq
pq
⌋), based on memory access constraint

and word lengthw = 32 bits.
(3) Try all combinations of 1 ≤ nq ≤ mq ≤ m, and find the

combinationwith expected outputE[T (Aq)] =
∑n−1

j=0
1

p(m−j)
closest to the required thresholdTq . (We restrict nq =mq
if we must use full coupon collection.)

(4) Denote the closest combination (nq ,mq ,pq) as currently
optimal, if its relative bias |E[T (Aq)] −Tq |/Tq is either
better than the previous optimal combination, or is al-
ready smaller than a predetermined tolerance 1%. We
choose 1% here because among all possible query parame-
ters, there’s approximately a 1% gap between consecutive
thresholds. Hence, a narrower tolerance will prohibit all
but one set of parameters to be used. Also, average rela-
tive error due to natural random variance in the process
is much larger than 1%.

We terminate the process when pq is so small that the algo-
rithm waits for longer thanTq for the first coupon, i.e., when
w · pq <

1
Tq
. The currently optimal combination (nq ,mq ,pq)

is then saved as q’s query parameters. We repeat this process
for all queries q ∈ Q.

5.3 Using TCAM to Activate Coupons
Ternary Content-Addressable Memory (TCAM) is capable of
simultaneously matching a binary string (e.g., 10010) with
many ternary matching rules (e.g., 1***0). Originally de-
signed for forwarding network packets to their desired des-
tinations, TCAM is also useful for us to probabilistically
activate coupons and run our coupon collector scheme.
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Match h(i.dstIP) Query#,Coupon#
000**** (1,0)
001**** (1,1)
010000* (2,0)
010001* (2,1)

Nomatch
Nomatch
Nomatch
Nomatch

Match h(i.srcIP) Query#,Coupon#
00000** (6,0)
00001** (6,1)
00010** (6,2)

… …

Match h(i.dstPort) Query#,Coupon#
… …

Match h(i.srcPort) Query#,Coupon#
… …

Matched

Nomatch

Matched

Nomatch

Match (matched,rnd)Which coupon?
0000,* No coupon
1000,* From table #1
0100,* From table #2
0010,* From table #3
0001,* From table #4
1100,0 From table #1
1100,1 From table #2
1010,0 From table #1
1010,1 From table #3
1001,0 From table #1
1001,1 From table #4
0110,0 From table #2
0110,1 From table #3

… …

Figure 2: Using TCAM rules to activate coupons.

Recall that our system compiles a query q into a series of
coupons, and activates them each independently and proba-
bilistically when witnessing unique attrq(i) values. We can
compute a random hash function h(attrq(i)), and match on
its bits to get the desired probability. When enough coupons
for a single query and key are collected, we say this coupon
collector finished collection and outputs an alert.
As described in Section 4.1, all queries using the same

attribute are grouped together and use a single random hash
function. We generate the output TCAM match rules to map
the distinct output ranges of this hash function to individual
coupons of each query, and since the match rules are disjoint,
at most one coupon will be activated. Using the example in
Section 4.1 again, two p = 1/8 coupons and two p = 1/64
coupons can be implemented as bit matching rule 000***,
001***, 010000, and 010001, respectively, over a 6-bit out-
put of random hash function. This process is repeated for all
attributes, to generate multiple TCAM match tables.

Still, there may be more than one coupon activated across
all the hash functions we ran. We use another TCAM lookup
table to select the activated coupon if there’s exactly one,
and perform tie-breaking when more than one is activated.
In our implementation, we match on one extra random bit
to break tie a fairly when there are exactly two coupons
activated, and discard all coupons if there are more than two.
The entire process, including the example from Section 4.1,
is illustrated in Figure 2.

Each activated coupon carries metadata about query q, in-
cluding its thresholdTq , key projection keyq , and how many
coupons to collect in total. We can subsequently read the
coupon bitmap stored at memory location M[(q,keyq(i))],
add one coupon by setting a particular bit to 1, and check if
we collected sufficient coupons by counting if there’s already
nq bits set to 1.

To implement BeauCoup on PISA hardware, we allocate a
sufficiently large hash-indexed register memory array asM,
which maps (q,keyq(i)) to an integer index using another
random hash function. We can also record the flow keys into

the register array, and detect hash collisions (which has very
small probability when the array is sufficiently large). We
ignore those coupons upon hash collision.

5.4 Life of a Packet
To summarize, the switch processes packet i as follows:
(1) We compute hash functions over all different query at-

tributes h(attrq(i)), for all attrq .
(2) We use TCAM to match on each random hash function’s

output, and the TCAM rules may suggest some coupons
are activated. With high probability, we will get ≤ 1
coupons; we use TCAM again to tie-break if there are
two coupons. We ignore the unlikely case where three
or more coupons are activated simultaneously.

(3) Given coupon j of query q is activated, we read memory
at location M[(q,keyq(i))], which stores a bitmap ofmq
coupons. We collect the current coupon j by setting j-th
bit to 1 in the bitmap, then check if we have collected nq
coupons; if so, we output (q,keyq(i)).

(4) Note that future packets may again add coupon to this
already saturated coupon bitmap, and repeat the same
alert for all coupons collected. We can use other estab-
lished mechanisms, such as a bloom filter, to de-duplicate
the alert and not send (q,keyq(i)) repeatedly when more
coupons get activated. Alternatively, the alert receiver
can send a control message to the programmable switch
to clear up the bitmap atmemory locationM[(q,keyq(i))].

6 EVALUATION
In this section, we use traffic traces collected from an Inter-
net backbone switch to evaluate BeauCoup’s accuracy and
resource utilization.
We use the CAIDA Anonymized Internet Traces Dataset

2018 [4], collected over 5 minutes on March 15th 2018 13:00,
which includes 135 Million packets in total. There are 3.0 Mil-
lion unique IP pairs (with 0.8 Million unique source IPs and
0.7 Million unique destination IPs), and 8.6 Million unique
flows (defined as the 5-tuple of IP source/destination, proto-
col, and source/destination ports).

We evaluate the algorithm based on average relative error—
whether the alert was sent just in time, or too early or too
late. It is either averaged over all alerts belonging to a single
query, or all alerts across all queries.
While our algorithm can be implemented on PISA hard-

ware, we use a Python-based experimental implementation
to collect ground-truth and analyze statistics such as average
relative error. We repeat each experiment 100 times with dif-
ferent random hash functions to observe the variance of our
algorithm’s accuracy.We also evaluated howmuch hardware
resources our algorithm used, including TCAM match rules
and actual memory access per packet. Note that algorithms
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Figure 3: Using partial coupon collection (stop when n = 20 out ofm = 32 coupons are collected) leads to narrower
distribution of how many distinct items are collected, hence a lower average relative error.
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Figure 4: For partial coupon collection with fixedm =
32 total coupons, collecting n = 20 ∼ 22 coupons leads
to the lowest error.

run on PISA programmable switches can always run at full
line rate (e.g., 100Gbps per port), as long as we do not run
out of the switch’s hardware resource constraint.

6.1 Comparing Partial/Full Collection
We start by evaluating the coupon collector for a single
query—the super-spreader query that identifies source IP ad-
dresses that send traffic to more than Tq distinct destination
IP addresses (i.e., keyq(i) = i .srcIP and attrq(i) = i .dstIP ).
The experiment analyzes BeauCoup’s empirical behavior an-
swering a single query, and also compares the full coupon
collection approach with partial coupon collection.

In this experiment, we first fix each coupon for activation
probabilityp = 1/32 for a new unique i .dstIP , or equivalently
matching for a particular output value of a 5-bit random hash
function. Say we definem = 32 such coupons (all values of
the 5-bit hash), and require all of them be collected (n =m =
32). In expectation, we need to observe

∑32
i=1Geo(32/i) ≈ 127

distinct IP addresses, hence this configuration is useful for a
threshold near 127. We can adjust the threshold by changing

the number of coupons we collect; for example, if we define
onlym = 20 coupons each with p = 1/32 and wait for all of
them be collected, we need to observe in expectation about
108 distinct addresses.

The expectation of the number of distinct items seen be-
fore the coupon collector finishes collecting, or E[T (Aq)],
can be easily adjusted by changing the number of coupons
or changing per-coupon probability. However, our goal is
to lower the variance of how many distinct addresses are
seen before an alert is sent (T(Aq)), which directly impacts
average relative error. In Figure 3 we plot the probability
density function of T(Aq), which is equivalent to the sum
of PDF of a series of geometric variable. As we can see, the
distribution is slightly left-skewed.
The benefit of using partial coupon collection is immedi-

ately demonstrated in Figure 3. When we only collect n = 20
out ofm = 32 coupons defined before sending an alert, the
distribution is much narrower, with average relative error
14%, compared with the 25%when usingn =m = 32 coupons
or 28% when using n =m = 20 coupons.
We further analyze the effect of only partially collecting

coupons in Figure 4. Here we always usem = 32 coupons in
total, and different algorithms wait until they have collected
n = 6 to 32 coupons before sending an alert. In each case
we have different expected number of distinct element to be
seen, and we define this value as threshold Tq to calculate
the average relative error under the ideal case. We can see
that using 20 ∼ 22 out of 32 coupons gives us the lowest
average relative error, i.e., the most narrow distribution.
Therefore, empirically, optimal query parameters shall

define as many coupons per query as possible, and set nq
to be approximately 2

3mq . This produces the lowest average
relative error.
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Figure 5: Partial coupon collection is significantly
more accurate than full coupon collection, and its er-
ror decreases faster when given more memory access.

6.2 Adjusting Memory Access Constraint
Now we run BeauCoup with multiple queries and observe
its average relative error under varying per-packet memory
access constraint.

We wrote |Q| = 26 distinct queries that resemble various
monitoring demands a network administrator may have,
choosing keys and attributes from timestamp, IP addresses,
and ports, etc. The threshold ranges from 100 to 10000, and is
selected based on the likely use cases of the particular query.
In each experiment, we vary the average memory access
constraintγ from 0.1 to 1word per packet, and the BeauCoup
compiler computes the optimal query parametersnq ,mq , and
pq for each query q using memory access constraintγq =

γ
|Q |

.
Once query parameters have been set, we convert all the

queries into TCAM match rules over random hash functions,
and run the algorithm (by executing these TCAM matches)
over the input packets. The resulting algorithm computes
11 random hash functions per packet for different random
attributes, and uses less than 1000 TCAM match rules for
coupon activation and tie breaking, both are well under the
hardware switch’s capacity.

6.2.1 Overall accuracy. In Figure 5, we compare Beau-
Coup’s accuracy between using only full coupon collection
(requiring nq =mq ) versus allowing partial coupon collec-
tion. The average relative error is much lower when we allow
partial collection. This requires slightly more complicated
arithmetic with no significant performance hit (e.g., Intel
CPUs have special instruction supporting counting binary
ones in memory words, and PISA switches can use a few
TCAM table lookups to count segment-by-segment). Thus,
we should use partial collection whenever the hardware tar-
get permits.
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Figure 6: TCAM match rules used by full and par-
tial coupon collection, as well as tie-breaking between
multiple activated coupons.
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Figure 7: Actual memory access per packet, compared
with the allowed average memory access per packet
(γ ) specified as input.

Naturally, when given more memory access, both full-
collection and partial-collection variants of BeauCoup im-
proved their average relative error.

6.2.2 Resource utilization. We now analyze the hardware
resource utilization of the two variants of the coupon col-
lection algorithm. First, in Figure 6 we plot the number of
TCAM matching rules used for activating coupons (match
on random hash functions) and for tie breaking. Since there
are 11 hash functions for our particular set of queries, we
need 11+

(11
2
)
TCAM rules for tie-breaking (plus two special

rules for zero or too many coupons). Full coupon collection
uses much fewer coupons, hence much fewer TCAM match
rules than partial coupon collection. This is due to a natu-
ral property of a coupon collector—the last coupon is the
hardest to collect, hence smaller numbers of coupons are
sufficient for a very large threshold. Nevertheless, partial
coupon collection uses about 600 TCAM rules, or 72% of the
theoretical maximum (|Q| ·w = 26 · 32 = 832).
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Figure 8: Query with the lowest threshold experiences themost significant accuracy improvement when allowing
more memory access per packet.
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Figure 9: Queries with the same threshold exhibits similar accuracy improvement trendwhen givenmore allowed
memory access, despite different key and attribute definitions.

Meanwhile, we also plot the actual memory access per
packet when running our algorithm, compared with the al-
lowed memory access γ . As shown in Figure 7, if partial
coupon collection is allowed, the algorithm uses almost all
the memory access quota efficiently, hence the usage closely
tracks the y = x line. In contrast, when we must use full
coupon collection, most queries do not fully use their al-
located memory access. We conclude that partial coupon
collection, when supported by hardware target, can more
effectively use the allowed memory access.

We also analyzed the empirical memory size requirement
for our algorithm when running on the CAIDA trace. We
analyze the memory size neededM , i.e., the number of query
keys with at least one coupon collected, with respect to the
length N of the stream, and found that we indeed use sub-
linear memory sizeM = o(N ), implying that the real-world
Internet traffic trace exhibits strong locality. In fact, we have
approximately M = Θ(N 0.75) when using partial coupon
collection andM = Θ(N 0.80) for full coupon collection.

6.2.3 Effect on individual queries. We also compare the
effect of increasing memory access γ on individual query’s
average relative error. In Figure 8, we choose four different
queries with various Tq from 100, 500, 5000, to 10000 and
analyze their accuracy under partial coupon collection. Nat-
urally, the query with the lowest threshold is the hardest to
execute, as it requires high probability coupons and easily
run out its memory access budget. Increasing γ allows it to

increase accuracy significantly. For queries with larger Tq ,
the improvement is not as significant.
Notably, the query with Tq = 10000 already reached its

optimal accuracy when γ = 0.2, and its accuracy slightly
deteriorates when we allow more memory accesses. This is
due to having collisions with other queries when the system
has more than one activated coupon and enters tie-breaking,
which skews the activation probability of each coupon.

We also compare different queries with the sameTq = 1000
yet with different keyq and attrq definition. Here we use four
queries as an example, the first one being super-spreader. As
we can see from Figure 9, their average relative error has
almost the same relation regardingmemory access constraint
γ . The third plot in Figure 9 has a slightly higher variance,
and is because this particular query produces fewer outputs
in our experiment trace, hence there are more outliers for
the average relative error statistics.

7 RELATEDWORK
Streaming and memory model: In [21], Muthukrishnan
surveyed several established streaming analysis models, and
used an abstraction of maintaining one high-dimensional
vector. Each incoming item will change one entry in the
vector. The streaming models differ in the changes they can
make to items in the vector: cash register is addition only,
turnstile allows addition and subtraction, and strict turnstile
allows addition and subtraction, yet requires the entries to be
always non-negative. Subsequently, queries are made against
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this high dimensional vector. Our paper uses the cash register
model with unit addition, for an individual query and sub-
streams of the input stream partitioned by the query key.
The cell probe model [18, 23, 30] is a limited memory ac-

cess model often used to prove data structure lower bounds.
In [30], Yao proved that ⌈log(n)⌉ probes (memory accesses)
are necessary to check whether an item exists in a mem-
ory array of size n. Larsen et al. [18] discussed other similar
lower bounds on how many memory accesses are necessary
to solve a certain problem. Usually, in the cell probe model
the algorithm is allowed to be adaptive, meaning that it can
decide which memory address to look at next based on the
content of memory it has already read earlier. We modified
the cell probe model to allow at most Γ memory words to be
accessed per packet, while introducing a new notion of sub-
constant memory access, requiring the algorithm to make at
most γ memory accesses per packet on average. This model
is abstracted from our experience working with high-speed
programmable switches, yet we can also identify similar sit-
uations in other computing architectures where low latency
is required or a memory cache hierarchy exists.

In [24], Pontarelli et al. proposed a related model where a
system has both faster on-chip memory and slower, larger
off-chip memory, and can only perform a limited number
of off-chip memory accesses per packet. In [17], Kim et al.
implemented a practical off-chip memory for PISA switches.

Networkmonitoring query:Marple [22] and Sonata [16]
proposed query languages to allow operators express com-
plex and composite queries over network traffic, and subse-
quently run the queries (or part of them) in the switch data
plane. Sonata supports running multiple queries together,
however it does not use approximation when answering
queries, therefore will run out of hardware resources quickly
when there are too many queries.

HashPipe [27] and PRECISION [2] answer an approxi-
mate counting query on a single key type, and report the
flow key with the largest count (the heavy hitter flows).
FlowRadar [19] uses XOR and counters to answer an ex-
act counting query across multiple switches in the network.
Although its update can be done in data plane, it requires
offline decoding to recover the counters for individual flow
keys.
UnivMon [20] proposed using a universal sketch to an-

swers many different queries over a single flow key. For
input lengthm with n different items, it maintains O(loд(n))
different count-sketches, and requires O(loд(n)) memory ac-
cess per packet in the worst case. It is non-adaptive in that
the memory updates are the same regardless of the query,
however the sketch analysis is relatively complex and needs
to be done outside of the network data plane. It is also possi-
ble to implement many sketches, such as Count-Sketch [5],

Count-Min Sketch [10], HyperLogLog [12], etc., or more re-
cent works like ElasticSketch [29], in the switch data plane
to answer various types of queries over a single flow key.
Our work is unique in supporting both multiple flow

keys and multiple queries (distinct counts over different at-
tributes). It also runs within the switch data plane without
the need for offline analysis. The distinct counter abstrac-
tion allows network operators to express many queries to
observe a variety of anomalies, and running many approxi-
mated queries provides unique value alongside with existing
systems that run a handful of exact queries.

Approximate count-distinct: [9] surveyed prior works
on approximately counting the number of distinct elements,
which can be roughly categorized into two flavors: K-Minimum-
Value and Distinct Sampling. K-Minimum-Value [1] com-
putes a random hash function over all input elements, and
uses the k smallest values observed to infer how many dis-
tinct elements has been observed. Distinct Sampling [15]
samples new distinct element at a small probability, and in-
fer the count by the number of items sampled.We can sample
an item out of 2n distinct items, if we wait for n consecutive
leading zeros in the output bits of a random hash function.
HyperLogLog [11, 12] builds upon the idea of Distinct

Sampling but instead partitions the incoming stream into k
sub-streams and use k independent estimators, and output
the harmonic mean of their estimates. Each estimator records
the longest consecutive leading zeros seen from the output
of a random hash function.

Our implementation of coupon collector for distinct count-
ing query can be viewed as a modified version of the Hyper-
LogLog algorithm with only 1-bit counters, and the counters
are only changed to 1 with probability p, which somewhat
resembles Distinct Sampling. We incurred approximation
error in this process, in exchange for limited memory access:
all counters are packed into one memory word. This also
enabled us to use sub-constant memory access, while all
variants of HyperLogLog uses at least one memory access
per new item.

8 CONCLUSION
We present BeauCoup, a streaming algorithm to simulta-
neously execute many distinct counting queries under sub-
constant memory access model. BeauCoup enables network
operators to run many network monitoring queries simul-
taneously over high-speed network traffic, under the strict
memory access constraints of the PISA programmable net-
work switches. Evaluation showed that BeauCoup can ef-
ficiently use all memory access allocated to the algorithm,
uses a moderate amount of other hardware resources, and
can achieve 20% to 40% average relative error on our test
queries over a real-world internet backbone traffic trace.
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Appendices
A REMARKS FOR SUB-CONSTANT

MEMORY ACCESS MODEL
We argue that when sub-constant memory access becomes
the primary constraint, algorithms cannot utilize larger mem-
ory size well. We demonstrate this notion in an extreme case:
set word length tow = 1 under access constraint Γ = 1, i.e.,
the algorithm is restricted to access only one bit of informa-
tion.

We first assume thememory size is also only one bit. To an-
swer a distinct query with threshold T , the optimal strategy
is to collect one coupon with probability 1/T . The number
of distinct attributes seen until this coupon is collected (this
bit set to one) is a geometric variable X = Geo(1/T ) with
expectation T .
Now let’s see if an algorithm with N bits of memory can

do better. Its strategy should also be to collect one coupon
(write to one bit) with probability pj , for every bit 1 ≤ j ≤ N .
Since the algorithm cannot look at two bits, it must output
an alert based on the bit it is currently accessing. Thus, its
behavior for writing into each bit is independently a geomet-
ric random variable Geo(pj ) (with respect to the number of
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distinct attributes seen). The algorithm’s behavior is the min-
imum of N geometric variables, which is also a geometric
variable:

Y = Geo

(
1 −

N∏
j=1

(1 − pj )

)
Thus, the two algorithm will behave similarly in terms of
output if we require E[X ] = E[Y ] = T . Note that if we set all
pjs be the same, and N → ∞, we have

1 −
N∏
j=1

(1 − pj ) = 1/T

⇒ e−Np = 1 − 1/T

⇒ p = −
log(1 − 1/T )

N

≈
1
NT

Some readers may argue that an algorithm can still per-
form two state transfers even with only one bit of memory,
namely from 0 to 1 and from 1 to accept. Under such setup,
the optimal algorithm with 1-bit memory size behaves as
the Negative Binomial Distribution random variable (sum of
two Geometric variable):

Pr [X = x] =
4(1 + x)(1 − 2/T )x

T 2 ,

while the algorithm with N bit memory behaves as the mini-
mum of N i.i.d Negative Binomial Distribution random vari-
ables. This complicates the computation, yet empirically does
not give much benefit either.
We conclude that under 1-bit memory access per packet

constraint, we did not gain any asymptotic benefit by having
larger memory size.
Now we assume we have multiple queries to compute

with different keys, and still have a one bit memory access
constraint. Obviously, different queries must use disjoint bits,
and each should opt for memory access for only γq = O

(
1
Tq

)
fractions of the input. Since we require γ ≥

∑
q∈Q γq , we

need
∑
q 1/Tq ≤ O(γ ).

Therefore, to achieve non-trivial accuracy, a query with
threshold T should roughly cost 1/T memory accesses per
packet. Hence, under 1-bit memory access constraint, we
need a large query thresholdTq such that

∑
q∈Q 1/Tq = O(1).

B USINGWORD MEMORY AS DISTINCT
COUNTERS

Currently, we use the w-bit word memory as a bitmap for
the coupon collector, however there may be better ways to
use the 2w states available. We now analyze how far away
our scheme is from the optimal.

Let us fix w = 32 bits and arbitrarily choose our goal as
to count exactly n = 5 distinct elements (and report on the
sixth element). In our current scheme, we effectively use
a random hash function to map all input elements into 32
bins, then wait until at least five bins are nonempty. During
this process, hash collisions may occur, Where we may map
two different items to the same bin, thus effectively under-
counting. (It is impossible to over-count.) The probability for
under-counting to occur is exactly

1 −
P32
6

326
= 39.2%.

In the meantime, an ideal scheme using the 32-bit memory
can split the entire 232 state space to a few stages, remember-
ing which elements have been seen. In particular, it may use
X > 32 bins, and represent which bin is nonempty using

(X
1
)

states when there’s one item, which two bins are nonempty
using

(X
2
)
states, etc. We now require

n∑
i=1

(
X

i

)
≤ 2w

For w = 32 and n = 5, we have X ≤ 220. Thus, the ideal
algorithm has a lower under-counting probability of

1 −
P220
6

2206
= 6.6%.

Thus, we can somewhat say the n = 5,m = 32 coupon
collection scheme is only using the states inw=32 bit with
about 60% efficiency. This is adequate for our purpose of
network monitoring queries, when a 40% relative error is
tolerated in exchange for limited memory access. However,
future works may improve on how to store states in thew-bit
word, for example by using it as a bloom filter, to achieve
closer to optimal accuracy.

C PROBABILITY OF COUPON
COLLISIONS

Although the expected number of coupons activated per
packet is bounded by γ ≤ Γ ≤ 1, it is possible to have
multiple coupons activated simultaneously, triggering a tie-
break. We can bound the probability of tie-breaking events
as follows:

Recall that coupons defined over the same attribute are all
grouped together and use different output ranges of one ran-
dom hash function, so they will never collide. Thus, collision
happens across multiple hash functions. Now we analyze the
probability for having multiple hash functions where each
reports one coupon as activated.

We consider the system usesH > 3 randomhash functions,
each with activation probability x1,x2, . . . ,xH , and we have∑
xi ≤ γ ≤ 1. Each random hash function will activate
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coupons independently, hence the total number of activated
coupons is the sum of H Bernoulli random variables.
In our current system implementation, we only perform

tie-breaking when C = 2 and ignore all coupons when C ≥

3. The probability for having more than C ≥ 3 coupons
activated is maximized when all hash functions share the
same probability, i.e., xi =

γ
H . In this case, the number of

coupons activated follows a binomial distribution B(n =

H ,p =
γ
H ). Hence, plug in γ = 1 (maximum allowed) and

H = 11 (our example query set), and we have

Pr
[
B(n = H ,p =

γ

H
) ≥ 3

]
= 7.11%

This is smaller than or on par with the optimal average rel-
ative error achieved by coupon collectors for distinct count-
ing (about 15% ∼ 30%), and therefore not fundamental to
BeauCoup’s error.We further note that this probability grows
very slowly with H , and is only 8.0% when H = 104.

Still, it creates a downward bias for individual coupon’s
activation probability; we leave the correction for this bias
in query planning for future work.
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