Tracking P4 Program Execution in the Data Plane

Suriya Kodeswaran
Princeton University

Praveen Tammana
Princeton University

Abstract

While programmable switches provide operators with much-needed
control over the network, they also increase the potential sources
of packet-processing errors. Bugs can happen anywhere: in the P4
program, the controller installing rules into tables, or the compiler
that maps the P4 program into the resource-constrained switch
pipelines. Most of these bugs manifest themselves after certain se-
quences of packets with certain combinations of rules in the tables.
Tracking each packet’s execution path through the P4 program, i.e.,
the sequence of tables hit and the actions applied, directly in the
data plane is useful in localizing such bugs as they occur in real
time. The fact that programmable data planes require P4 programs
to be loop-free and can perform simple integer arithmetic opera-
tions makes them amenable to Ball-Larus encoding, a well-known
technique in profiling execution paths in software programs that
can efficiently encode all N paths in a single [log(N)]-bit variable.
However, for real-world P4 programs, the path variable can get
quite large, making it inefficient for integer arithmetic at line rate.
Moreover, the encoding could require a subset of tables, that would
otherwise have no data dependency, to update the same variable.
By carefully breaking up the P4 program into disjoint partitions
and tracking each partition’s execution path separately, we show
how to minimally augment P4 programs to track the execution path
of each packet.

CCS Concepts

+ Networks — Programmable networks; « Software and its
engineering — Software testing and debugging; - Hardware
— Bug detection, localization and diagnosis.

ACM Reference Format:

Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen Tammana, and Jen-
nifer Rexford. 2020. Tracking P4 Program Execution in the Data Plane. In
Symposium on SDN Research (SOSR "20), March 3, 2020, San Jose, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3373360.3380843

1 Introduction

Programmable switches [4, 7, 11, 16] allow network operators to
customize the switch data-plane using high-level languages such
as P4 [12]. This provides much-needed flexibility and fine-grained

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSR °20, March 3, 2020, San Jose, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7101-8/20/03...$15.00
https://doi.org/10.1145/3373360.3380843

Mina Tahmasbi Arashloo

Cornell University

Jennifer Rexford
Princeton University

control over switches in the network. However, compared to fixed-
function switches, programmability increases the potential sources
of packet processing errors as a significant portion of the data-plane
behavior is only specified at program compile or run time.

To see why, consider all the complicated pieces of software in-
volved in operating the data plane of a programmable switch. The
P4 program itself, which specifies the match-action tables and the
order in which they should process incoming packets, can get quite
large and complicated in practice: the switch.p4 program [15], the
open-source implementation of a standard switch in P4, has ~1034
different control paths through 157 tables and ~307 actions! To fit
these programs into the extremely resource-constrained physical
pipelines of programmable switches, P4 compilers implement sev-
eral rounds of aggressive target-specific optimizations and code
transformations, which makes the compiler software grow into
large complicated pieces of software with hundreds of thousands of
line of code. Finally, after the P4 program is compiled and installed
on the switch, the contents of match-action tables are continuously
modified by control-plane programs that add, modify, and remove
rules from the tables at run-time. In practice, these control-plane
programs are often large and complicated as well, as they have to
deal with the intricacies of consistently transitioning the data plane
from one set of rules to another in response to various run-time
events.

Any bug in this complex collection of software can adversely
affect how packets are processed in the data plane. Previous work
has uncovered several bugs in existing P4 and control-plane pro-
grams [3, 5, 8, 14]. There are also several bug reports for existing
compilers, describing non-trivial mismatches between the expected
packet processing behavior described in the P4 program and the
observed behavior of the compiled program running on the switch.
In most cases, these bugs happen in corner cases, only manifest-
ing themselves after certain sequences of incoming packets with
certain combinations of rules in the tables. Thus, given the size
and complexity of real-world P4 programs, they are typically not
uncovered during testing prior to deployment. Even when they
are triggered by production traffic afterwards, their subtle nature
makes them difficult to reproduce for analysis.

In this paper, we propose a useful data-plane primitive for de-
tecting and localizing such bugs as they occur in real time: tracking
each packet’s execution path through the P4 program, i.e., the se-
quence of tables hit and the actions applied, directly on the data
plane. This effectively turns every packet that goes through the
switch into a potential test packet for the data plane. If there is
prior knowledge about expected execution paths for certain classes
of traffic, e.g., from static analysis of the program or in form of
assertions from the programmers themselves, it is possible to de-
tect when the observed execution path deviates from the expected

https://doi.org/10.1145/3373360.3380843
https://doi.org/10.1145/3373360.3380843

SOSR 20, March 3, 2020, San Jose, CA, USA

one directly in the data plane. Alternatively, one could send some
packets from every observed path to a local controller running on
the switch CPU to compute their expected execution paths and
compare them against the observed ones. One could even have
each switch tag the packet with the observed execution path, e.g.,
as part of the INT header, so that the final destination can recover
and analyze every decision made by every switch in processing the
packet.

Besides detecting bugs, tracking packets’ execution paths in the
data plane is a valuable tool for localizing bugs as well. Suppose the
operators detect a problem with a certain subset of traffic, either a
mismatch between their expected and observed execution paths as
described above or other correctness and performance problems
detected through other monitoring tools. To localize the problem,
operators can simply ask the switch to send the program paths that
those packets are taking right then in the data plane to the controller
to analyze where in the P4 program the problem is coming from.
Once the problem is localized to a certain part of the program, they
can then find out whether it is due to a bug in the P4 program itself,
or an incorrect match-action rule installed by the control plane, or
the compiler not compiling that part of the program correctly.

To track packet execution paths in the data plane, we need to
augment the original P4 program to encode the sequence of tables
and actions that process the packet as it goes through the switch. As
table and actions are triggered, we can track their execution by up-
dating the Packet Header Vector (PHV), the limited per-packet state
that travels with the packet throughout its processing time. The
PHYV is a valuable fixed size resource, typically a few hundred bytes,
storing parsed packet header as well as any meta data required for
processing the packet. Typically, the more complex a program is,
the greater number of PHV bits it requires for processing packets.
A seemingly natural approach towards tracking packet execution
paths is to have a flag bit for each portion of the program we want
to track, setting it to one if it was used in processing the packet.
This, however, can quickly deplete the available bits in the PHV.

We find that Ball-Larus encoding [2], a well-known technique in
profiling execution paths in software, is a promising fit for tracking
packet execution paths in P4 programs: As we show in §2, when
programs are loop free, like in P4, Ball-Larus can encode all N
program paths in a single [log(N)]-bit variable, thus adding min-
imal overhead to the per-packet meta-data that is carried across
data-plane stages. Moreover, Ball-Larus encoding does not require
sophisticated updates to the path variable: it carefully labels every
transition between program statements with an integer. As the
input (packet in our setting) transitions from one statement to the
next, the integer label for that transition is added to the path vari-
able, an operation perfectly within the capabilities of programmable
data planes today.

Nevertheless, if adapted naively, Ball-Larus encoding can have
prohibitive overhead in terms of action complexity and number
of stages. For large and complex P4 program such as switch.p4,
the path variable can get as large as a few hundred bits, making it
inefficient for integer arithmetic at line rate. Moreover, the encoding
adds extra data dependencies between tables that have to update
the path variable. These extra dependencies could force tables, that
were otherwise independent and mapped by the compiler to the
same stage in the hardware pipeline, to span across multiple stages

Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen Tammana, and Jennifer Rexford

AK 0
ABDEGHI 1
ABDEFHI 2
ABCEFHI 7
ABCEFHJ 8

Figure 1: The control flow graph of an example P4 program with
edges labeled by the Ball-Larus algorithm.

instead. We show, in §4, how we overcome both of these challenges
by carefully partitioning the P4 program and tracking the execution
path of each partition separately.

We have implemented a prototype that takes a P4 program as
input and outputs an augmented P4 program that can track packet
execution paths. We augment a variety of P4 programs, includ-
ing switch.p4, using our prototype and evaluate the amount of
data-plane resource needed by our augmentation on a Barefoot
Tofino [16] switch. Our preliminary results demonstrate that even
for programs as large and complicated as switch.p4 with ~103
paths, we can track packet’s execution path in the data plane using
only ~178 bits of meta data and the same number of data-plane
stages as the non-augmented program.

2 Ball-Larus for P4 Programs

Ball-Larus encoding is a well-known technique for efficiently pro-
filing execution paths in software [2]. For loop-free programs, i.e.,
programs whose control flows graphs (CFGs) are directed acyclic
graphs (DAGs), it can encode all N paths of a program in a sin-
gle [log(N)]-bit variable. More specifically, it labels every edge in
the DAG, i.e., transitions between program statements, with an
integer. As the input transitions from one statement to the next in
the program, the integer label assigned to that transition is added
to the variable that is tracking the input’s execution path. When
the program finishes processing the input, the value in the path
variable is a number between 0 and N, uniquely identifying the
path the input took through the program.

Ball-Larus encoding is a promising fit for tracking packet ex-
ecution paths in P4 programs. First, P4 programs are restricted
to be loop-free to allow for their efficient implementation on pro-
grammable switches. Thus, given a P4 program, we can construct
a DAG representing the program’s CFG and run the Ball-Larus
algorithm on it. Moreover, programmable switches allow P4 pro-
grams to define per-packet meta-data variables carried with the
packet throughout its processing, and to define actions to update
them using simple arithmetic operations. Thus, once the Ball-Larus
algorithm assigns labels to the edges in the program’s DAG, we
can augment the program with a meta-data variable to track the

Tracking P4 Program Execution in the Data Plane

SOSR 20, March 3, 2020, San Jose, CA, USA

A ipvatable '} [| [frTTeTTm s ittt I e H

3 G A Mbox table | ! IPvatable ! | Statstable |

K 1 1 1

__________) ininiuiininieiinint V=1 E I | i E F : v J i

1

i Mbox table E Stats table D V+=4 | "G V=2 ! Vo va=1]

'8 fe ! o i il SR8 _____4 ' | SS- SSmeees '
L —— ') N\ ..

Stage 1 Stage 2 Stage 1 Stage 2 Stage 3 Stage 4

(a) Without Augmentation

(b) Augmented with a single variable for path tracking

Figure 2: Mapping of CFG nodes in our example programs to pipeline stages without augmentation for path tracking (2(a)), and when aug-

mented with a single variable for tracking paths (2(b)).

execution path, and extra actions to update its value on the DAG’s
transitions based on the labels.

Running example. Consider the control flow graph of the sim-
ple P4 program in figure 1. It first checks whether it has received a
valid IPv4 packet (node A in the CFG). If so, it first applies the T_mbox
table (node B), which has two actions: A_encap (node D) tunnels
packets towards sensitive destination IP addresses specified in the
table rules to a middlebox for further analysis, and A_noop (node C)
simply lets other packets through. Next, the program applies the
T_ipv4 table (node E), which performs a longest prefix match on
the packet’s final destination and either sets the address of its next
hop in A_set_nhop (node F) or drops it if it is not matched (node G).
Finally, the program applies the T_stats table (node H), which has
two actions as well: A_count (node I) to count certain destination
IP addresses, specified in the table rules, and A_noop (node J) to let
other packets through. Non-IPv4 packets are simply dropped (node
K).

If we run the Ball-Larus algorithm on this DAG, it will mark
edges A — Band H — J with number 1, edge B — C with 4,
E — F with 2, and all other edges with 0. As shown in figure 1,
adding up the numbers on the edges along each of the nine different
paths in the CFG will lead to a unique number between 0 and 8
which uniquely identifies that path. Now, to track each packet’s
execution path in the P4 program, we augment the program with
(i) a meta-data variable, called V in the figure, to track the path ID,
and (ii) an extra action on any transition in the CFG that is assigned
anon-zero label, ie, A — B, B — C,and E — F, to simply add the
value of the label to V. For transitions that are between a table and
its actions, i.e., B— C and E — F, we cannot add an extra action
on the transition. Instead we can augment the table action itself to
perform the addition.

With this augmentation in place, when the program finishes pro-
cessing a packet on a switch, V contains the unique identifier for the
path the packet has taken through the program. The path identified
shows precisely which CFG nodes, i.e., conditionals, tables, and
actions, the packet has hit in this switch. However, as we discuss
next, such augmentations can cause non-negligible overheads when
applied to real-world P4 programs.

3 Challenges

By tracking all N paths of a program in a [log(N)]-bit variable, Ball-
Larus has minimal overhead in terms of the amount of per-packet
meta-data it needs in the data plane. However, when applied to P4
programs, using a single variable to keep track of the execution
path has two negative implications.

Addition on large operands. First, for large P4 programs with
many paths, such as switch.p4, the size of meta-data variable V'
that keeps track of the path (log(N)) can get as large as a few
hundred bits. Existing programmable data planes, however, cannot
perform arithmetic operations on operands larger than 64 bits in a
single stage. Thus, performing addition on a few-hundred-bit-wide
variable would have to span multiple stages. Ball-Larus encoding
requires multiple such additions, one on every edge in the CFG that
has a non-zero label. Thus, for large P4 programs, it can significantly
increase the number of pipeline stages required for the augmented
program in the data plane.

Extra data dependencies. Second, all the augmented actions,
and their corresponding tables, would have extra data dependencies
with each other as they all update the same path variable. This
can cause the augmented P4 program to use up more stages on
the data plane compared to the original one. Consider T_ipv4 and
T_stats for instance. Without any augmentation, they have no data
dependencies as both just read the destination IP and do not write to
it. Thus, as shown in figure 2(a), both tables and their corresponding
actions can reside in the same stage when the program is compiled
and installed on the switch. After augmentation, however, both
A_set_nhop from T_ipv4 and A_noop from T_stats update V, and
therefore, as shown in figure 2(b), can no longer be placed on
the same stage. Similarly, the extra action that increments V on
transition from node A to node B cannot be placed on the same
stage as T_mbox and its actions.

Thus, the augmented program needs four stages in the data
plane, two more than the original program: A, K, and the action
incrementing V on A — B all reside on the first stage, T_mbox and its
actions are on the second stage, T_ipv4 and T_stats and their actions
each get their own stage as they were both dependent on T_mbox
before and are now dependent on each other as well. As the number
of pipeline stages on existing switches is typically small (<32), these
extra dependencies quickly become problematic for large programs
such as switch.p4 that have hundreds of mostly-independent tables
and heavily rely on the compiler placing multiple tables on the
same stage to fit in the data plane.

4 Multi-Variable Path Encoding

To make Ball-Larus feasible for large P4 programs, we make the
following observation: if we break-up the program’s CFG into mul-
tiple sub-DAGs, we can concurrently track the execution path in
each sub-DAG using independent meta-data variables. This helps
alleviate both of the challenges in §3. First, each sub-DAG has fewer
paths compared to the original DAG. Thus, its path variable can
potentially stay within the bit-width limits of arithmetic operands

SOSR 20, March 3, 2020, San Jose, CA, USA

Vie=1y hdr.ipv4.isValid()

Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen Tammana, and Jennifer Rexford

Path v2 @ e \ [
Y = 1 IPv4 table
BDHI 0
L — 1= V1 += 5
BDHJ 1
V1+=2
BCHI 7 [N A
_ | rmmmmmmmmmmm S [
BCHJ 3 Mbox table : Stats table
c '
F — ! J
A_set_nhop AEG |1 V2#=2 | V2 +=1
— N2e=1 LT 1]| S ———
AEF 2
Dummy
@ Stage 1 Stage 2

(a) sub-DAG 1

(b) sub-DAG 2

(c) Mapping to the pipeline

Figure 3: The example program partitioned into two sub-DAGs (3(a) and 3(b)), the execution path of each tracked by a different meta-data
variable. 3(c) shows how the program augmented with multiple variables is mapped to the same number of stages as the non-augmented

program in figure 2(a).

in each stage. Moreover, augmented actions and their correspond-
ing tables in different sub-DAGs update different path variables. As
such, they can co-exist in the same stage and no longer need to
span across multiple stages.

The partitioning problem. Given a DAG D, we want to find
K sub-DAGs Dy, - - - , Dk that respectively have Py, - - - , Pk paths
tracked by variables Vi,---, Vg, such that (i) the bit-width of
each V;, i.e., len(V;) = [log(P;)] is within the limits of arithmetic
operands in programmable switches, and (ii) once the program is
augmented to track the execution path of these K sub-DAGs, it still
uses the same number of data-plane stages as the non-augmented
program. Note that the tuple (V;, - - - , Vi) still uniquely identifies
the execution path throughout the entire program.

Running example. Suppose we break up the CFG in figure 1
into two sub-DAGs as shown in figures 3(a) and 3(b). The first
sub-DAG contains the conditional (node A), the drop action (node
K), and table T_ipv4 and its actions (nodes E, F, and G) while the
second sub-DAG contains the rest, i.e., table T_mbox and T_stats and
their actions. In each sub-DAG, connected sets of the nodes from
the original DAG that are not present are replaced with dummy
nodes. We run Ball-Larus independently on each sub-DAG to mark
the edges with labels, and use two separate meta-data variables
to track the execution path in each sub-DAG: V; will updated on
transitions in the first sub-DAG, and V; is updated on transitions
in the second sub-DAG.

This partitioning satisfies our conditions: V; and V; track 3 and 4
paths, respectively, and each need two bits. Thus, they are within the
bit-width limits of arithmetic operands on programmable switches.
Moreover, there is no extra dependency between T_ipv4 and T_stats
as each are updating a different path variable. Similarly, there is
no extra dependency between T_mbox and the action updating the
path variable for the edge between A and B. Thus, as depicted in
figure 3(c), the augmented program can be mapped to two stages,
not using any extra stages compared to the original program.

Choosing K. Setting a value for K is not straightforward as
the benefits of partitioning come at a cost. After partitioning, the
total number of bits used for path encoding across all sub-DAGs
is Zi'(:l [log(P;)]. Depending on the partitioning, this can be larger
than the optimal [log(N)] that is achievable without partitioning

and using a single variable for tracking the execution path. This can
happen for two reasons. First, not all combinations of paths in differ-
ent sub-DAGs construct a valid execution path in the entire program.
For instance, in our example in figure 3, V; can track AK and V;
can track BDHI, but their combination, i.e., (AK, BDHI), will never
happen in the program as a whole. More generally, (V1,-- -, Vk)
encodes P; X Py X - - - X Pk paths which, due to partitioning, can be-
come larger than N, the total number of valid paths in the program.
Second, suppose we manage to partition the original DAG such that
Py X Py X - -+ X Pk is equal to N, for instance by using a larger K
and partitioning the program into more sub-DAGs. Then, [log(N)]
will be equal to [Zé‘:llog(Pi)], and Zli‘zl [log(P;)] can become K bits
larger than log(N) due to rounding.

To find a suitable value for K, we exploit the mapping of tables
and conditionals in the original non-augmented P4 program to the
switch pipeline. More specifically, suppose T denotes the set of
tables and conditionals that are mapped to stage s when we compile
the original P4 program to the switch. This information is available
from the output of P4 compilers for existing programmable switches.
Suppose Tpax is the size (in number of tables) of the largest T. If
we set K to Tpnax, it is possible to assign all tables and conditionals
in the same T to different sub-DAGs. As a result, after encoding,
their augmented actions will not be dependent on each other, and
therefore, they will remain on the same stage. Thus, the augmented
program will use the same number of data-plane stages as the
non-augmented program!.

The Optimization Problem. To decide how to assign tables
and conditionals in each T to the K sub-DAGs, we use an integer
linear program (ILP). The ILP takes the CFG and T;s as input, and
outputs a;jj, which is set to one if node i is assigned to sub-DAG
J, and is zero otherwise. Here, a node is either a table or a condi-
tional (which is treated similar to a table by existing programmable
switches) together with its actions. The objective is to minimize

1Unless the augmented actions of the same T; do not fit in the same stage anymore
due to the extra ALUs used for addition. We have not observed this corner case even in
our most complicated evaluated programs (§5). But, even if it happens, our approach
still correctly tracks execution paths and the augmented program just spans over one
or few extra stages.

Tracking P4 Program Execution in the Data Plane

SOSR 20, March 3, 2020, San Jose, CA, USA

Program Statistics Path Encoding Statistics
Programs Paths (N) | Tables | Stages | Actions | Path Vars (K) Adfled Added Metaéata (bits)
Actions | our approach | optimal ([log(N)T])

tna-action-selector.p4 6 2 2 6 1 0 3 3
source-routing.p4 5 1 7 6 3 3 3 3
tna-multicast.p4 36 6 4 15 2 2 6 6
fabric-bng.p4 1.01 x 10° 67 11 73 20 35 46 30

simple switch.p4 1.76 x 10? 35 7 157 8 11 47 31
switch.p4 1.75 x 103 157 12 307 21 71 178 114

Table 1: A summary of our benchmark programs and the extra data-plane resource needed for multi-variable path encoding.

Zg(: 1Vi, where v; is the number of bits required to track all the
paths in sub-DAG i.

The first set of constraints are of the form 0 < v; < MAX W,
where MAX W is the maximum number of bits allowed in arith-
metic operands in each stage on the switch. Next, as discussed
above, for each stage s and sub-DAG j, we ensure that only one node
from Ty is assigned to sub-DAG j using the following constraint:
Yietr.aij = 1. For each node i, we have constraints of the form
Zf: 1aij = 1 that it is assigned to only one sub-DAG. Finally, sup-
pose p; € Ris the log of the number of outgoing edges of CFG node i.
We estimate log of the number of paths in sub-DAG j as Z?L 1Pi " aij,

and relate that to v; using the constraint Zfilpi - ajj < vj.

5 Evaluation

Prototype. Using Barefoot Tofino [16] as target, we have imple-
mented a prototype that takes a P4 program as input and outputs an
augmented P4 program that can track packet execution paths. More
specifically, given an input program prog.p4, we first compile the
program using the Tofino compiler to extract the program’s control
flow graph, and the mapping from the the program’s tables and
conditionals to the pipeline stages, both useful by-products of the
compilation process. We have developed a python script that takes
the CFG and the mapping as input, and partitions the CFG into
multiple sub-DAGs by solving the optimization problem discussed
in §4 using the puLP package. The script then runs the Ball-Larus
algorithm on each sub-DAG to obtain the integer labels for each
transition. Even for our largest example programs, we found that
the time required to solve the optimization problem and obtain
the integer labels, takes under 5 seconds. A reference to the entire
system is provided in figure 4.

Augmenting the program. Next, we augment prog.p4 in the
following way. First, we add a meta-data variable v_i to track the
execution path of each sub-DAG. Second, for each action of each
table that has a non-zero integer label on its incoming edge, we
add a single instruction to add the label to the path variable for the
corresponding sub-DAG. Finally, in Ball-Larus encoding, only one
of the two outgoing edges of each conditional will have a non-zero
label. Thus, for each conditional, we add an action on the branch
with the non-zero label to update the path variable for the sub-DAG
assigned to that conditional accordingly.

Integration with existing compilers. An ideal starting point
for augmenting programs is to modify its intermediate representa-
tion (IR) typically used by compilers during the compilation process.
The program’s IR is its parsed representation, typically stored in
a graph. It is a more detailed version of its control graph with
each node corresponds to some piece of syntax in the original

P4
Compiler

Run MVBL &
Augment

Partition
CFG

Figure 4: End to end system to augment an input P4 program with
multi-variable Ball-Larus path encoding.

Table mappings

program. During the compilation process, the IR goes through a
sequence of passes that transform it to a more optimized version,
some performing target-independent optimizations such as remov-
ing unreachable pieces of code, and others transforming the IR to
better fit on the specified target. Our augmentations can be another
pass in the process, adding extra nodes in the graph for the meta-
data variables and actions required to keep track of the execution
paths in the computed sub-DAGs. In fact, for our initial prototype,
we implemented our encoding as an IR pass in P4’s open-source
compiler [13]. However, we did not have access to add passes to
Tofino’s compiler. Thus, our prototype for Tofino parses the input
program line by line and injects the extra meta-data variables and
actions directly into the program’s code.

Benchmark Programs. We augment six P4 programs of vary-
ing size and complexity, listed in table 1, using our prototype and
evaluate the amount of data-plane resource needed by our aug-
mentation on a Tofino switch. The first three, two taken from the
examples included with the Tofino compiler and one from P4 tutori-
als [1], are smaller, with a few tables and actions, and not more than
a few tens of execution paths. The last three are much larger and
more complicated with hundreds of tables and actions and more
than billions of paths: fabric-bng.p4 and switch.p4, specifically, are
production-quality programs implementing a Broadband Network
Gateway (BNG) and a standard switch, respectively.

Data-Plane Overhead. Table 1 summarizes the extra data-
plane resources caused by program augmentation. Our partitioning
strategy (§4) ensures no extra dependencies between tables and con-
ditionals that are mapped to the same stage after the compilation
of the original program. Thus, as expected, augmented programs
do not use any extra stages compared to the original programs.

There is a slight increase in the number of actions in the aug-
mented program. This is expected: as discussed above, while we can
augment existing table actions to update path variables, we have
to add extra actions to perform one addition to update path vari-
ables for transitions out of conditionals. These extra light-weight
actions, however, do not stop our augmented benchmarks from
fitting in the switch. This is because the mapping from tables and
conditionals to the stages does not change after augmentation and
the extra actions merely use the extra ALUs in the stages that were
previously unused by the original program.

SOSR 20, March 3, 2020, San Jose, CA, USA

Finally, recall from §4 that while partitioning makes the augmen-
tation feasible for large programs, both in terms of the number of
stages and complexity of addition operations to path variables, it
comes at the cost of using extra bits to encode paths that cannot
occur in the program. Using extra bits for encoding execution paths
means leaving fewer bits in the PHV for the original P4 program.
Thus, we use our benchmark programs to ensure that our multi-
variable approach can still efficiently encode the execution paths
for the program without exhausting the available PHV bits.

More specifically, as shown in Table 1, we compare the optimal
number of bits required to encode all N paths of the program,
i.e,, [log(N)], to the number of bits used by our multi-variable
encoding, i.e., the sum of the sizes of the K path variables tracking
execution paths in the K different partitions of the program. The
most complicated program, switch.p4, can be encoded with 178
bits, and the other two large programs can be encoded with 47 and
46 bits. For comparison, KeySight, the closest related work that
can encode such information [18] uses 32K bits of metadata for
encoding in the worst case (see §6). Moreover, recall that the optimal
encoding would require a single Ball-Larus variable, creating extra
data-dependencies between otherwise independent tables when
their actions update that variable. The naive encoding, which is
to update a corresponding flag bit on every action in the program,
is similarly prohibitive. In existing programmable switches, these
approaches only work for encoding the small and simple input
programs, and do not scale efficiently to larger real-world programs
such as fabric-bng.p4 and switch.p4. Thus, we believe our multi-
variable encoding overhead, and its difference from optimal, is
not considerable given its significant benefits in terms of number
of stages and action complexity and as the amount of per-packet
meta-data on existing switches is a few thousand bits.

6 Related Work

Data-Plane Post-Cards. Previous work has explored collecting
information about a packet into a “post-card” as it traverses the
switch and sending relevant post-cards to a controller to help debug
network problems. NetSight’s post-card [6] includes the packet
header, its outgoing port, and the version number for the rules
installed on the switch that processed the packet but does not track
which tables and actions have been hit by the packet. KeySight [18]
copies every packet field that is read and written to in each match-
action table into the post-card, but at the cost of using ~32K bits of
meta-data for large programs such as switch.p4. In our approach,
on the other hand, the “post-card” contains the unique identifier
for the path the packet has taken through the program and uses
only a few hundred bits for switch.p4.

Test Packet Generation. Previous work such as ATPG [17]
and P4pktgen [10] study automatic generation of test packets from
specifications of network devices. Test packets cannot exercise
every packet processing scenarios for specifications of real-world
switches such as switch.p4. Our approach is complementary to
these efforts since, by enabling operators to trace packet’s execution
path on the data plane at run time, it enables them to detect and
localize bugs on execution paths not exercised during testing.

Verification. Recent work [5, 8, 9, 14] explores automatic veri-
fication of various properties about P4 programs using techniques
such as static analysis or symbolic execution. However, not all

Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen Tammana, and Jennifer Rexford

properties can yet be verified by existing tools and these tools still
operate at the level of the P4 program. That is, they can verify if
the software logic is bug free for a specific set of bugs. However,
the hardware mapping for the program may have been incorrectly
performed by the compiler during compilation. Thus, these tools
cannot be used to find compiler bugs, especially for compilers that
are not open-source. As a result, our approach can complement
these works by enabling the detection and localization of bugs in
the P4 programs that are missed by the verification tools, or bugs
in the compiler or the controller installing rules on the data plane.

7 Conclusion

We propose a useful data-plane primitive for detecting and localiz-
ing bugs as they occur in real time: tracking each packet’s execution
path through the P4 program, i.e., the sequence of tables hit and the
actions applied, directly in the data plane. In our ongoing work, we
plan to design, implement, and evaluate end-to-end monitoring and
debugging systems, both in the data plane and control plane, that
use the path information to detect and localize bugs in P4 programs,
the compiler, and the controller.

Acknowledgments

We thank our shepherd, Robert Soule, and the anonymous reviewers
from SOSR’20 for their thoughtful feedback.

References

[1] P4 Tutorials. https://github.com/p4lang/tutorials/. Accessed: November 2019.

[2] T.Ball and J. R. Larus. Efficient Path Profiling. In International Symposium on
Microarchitecture, 1996.

[3] M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford. A NICE Way to Test
OpenFlow Applications. In NSDI, 2012.

[4] Cisco Catalyst 9300 Programmable Switches. https://www.cisco.com/c/en/us/
products/switches/catalyst-9300-series-switches/index.html. Accessed: May
November.

[5] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos.
Uncovering Bugs in P4 Programs with Assertion-Based Verification. In SOSR,
2018.

[6] N.Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown. I Know What
Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks. In
NSDI, 2014.

[7] EX9200 Programmable Switches. https://www.juniper.net/us/en/products-
services/switching/ex-series/ex9200/. Accessed: November 2019.

[8] J.Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C. Cascaval,
N. McKeown, and N. Foster. P4V: Practical Verification for Programmable Data
Planes. In SIGCOMM, 2018.

[9] N.Lopes, N. Bjorner, N. McKeown, A. Rybalchenko, D. Talayco, and G. Varghese.
Automatically Verifying Reachability and Well-Formedness in P4 Networks. MSR
Technical Report, MSR-TR-2016-65, 2016.

[10] A.Nétzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas. P4pktgen: Automated

Test Case Generation for P4 Programs. In SOSR, 2018.

Advanced Programmable Switch. https://www.stordis.com/products/. Accessed:

November 2019.

P4 Language Consortium. https://p4.org/. Accessed: November 2019.

P4_16 Reference Compiler. https://github.com/p4lang/p4c. Accessed: November

2019.

[14] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu. Debugging
P4 Programs with Vera. In SIGCOMM, 2018.

[15] P4_16 Reference Compiler: switch.p4. https://github.com/p4lang/switch/tree/

master/p4src. Accessed: November 2019.

Tofino, World’s Fastest P4-Programmable Ethernet Switch ASICs. https://www.

barefootnetworks.com/products/brief-tofino/. Accessed: November 2019.

[17] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic Test Packet

Generation. In CONext, 2012.

Y. Zhou, J. Bi, T. Yang, K. Gao, C. Zhang, J. Cao, and Y. Wang. KeySight: Trou-

bleshooting Programmable Switches via Scalable High-Coverage Behavior Track-

ing. In International Conference on Network Protocols (ICNP), 2018.

[11

[
L

[16

(18

https://github.com/p4lang/tutorials/
https://www.cisco.com/c/en/us/products/switches/catalyst-9300-series-switches/index.html
https://www.cisco.com/c/en/us/products/switches/catalyst-9300-series-switches/index.html
https://www.juniper.net/us/en/products-services/switching/ex-series/ex9200/
https://www.juniper.net/us/en/products-services/switching/ex-series/ex9200/
https://www.stordis.com/products/
https://p4.org/
https://github.com/p4lang/p4c
https://github.com/p4lang/switch/tree/master/p4src
https://github.com/p4lang/switch/tree/master/p4src
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

	Abstract
	1 Introduction
	2 Ball-Larus for P4 Programs
	3 Challenges
	4 Multi-Variable Path Encoding
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

