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Abstract

Network administrators are interested in measuring the distribution of delays (the time between a request
and its response), by directly running succinct algorithms within high-speed network devices. Unfortunately,
the considerable gap between the small available memory and the huge volume of arriving traffic makes it
challenging to design an algorithm that accurately measures delays. Existing algorithms exhibit bias against
samples with higher delays.

We present fridges, a novel data structure that corrects for the survivorship bias due to hash collisions,
producing unbiased estimates of the delay distribution. The key idea is to consider a sample that was lucky
enough to survive many insertions into the data structure as a representative for other similar samples that did
not survive. We also show how to combine results from multiple fridges, each optimized for a different range
of delays, for further accuracy gains. Simulation experiments show our design outperforms prior work using
naive hash-indexed arrays, achieving 2x-4x memory saving. We implement a prototype P4 program running
on the Intel Tofino programmable switch, using only moderate hardware resources.

1 Introduction

Network administrators often want to measure fine-grained information about network delays, which directly
impacts application performance. Delay can be characterized as the time difference between a request and its
corresponding response, and can be calculated by observing the stream of network traffic packets. For example,
the two-way delay for a TCP handshake is the time between a client sending TCP SYN packet to a server and
receiving the corresponding TCP SYN/ACK packet, while the delay for a DNS lookup is the time between a
DNS query packet and its corresponding response packet. We can also measure the time between the beginning
of a TCP flow (SYN packet) and its ending (FIN or RST packet), which characterizes the duration of a flow that
corresponds to the delay an application experienced when downloading a file.

It is common for an Internet Service Provider (ISP) and its clients to specify a target delay distribution in
their Service-Level Agreements (SLAs) [27, 28]. For example, an ISP might need to determine if more than 5%
of TCP handshake delay exceeds 50ms.

However, unlike in a data-center network where the network operator can run monitoring tools on end-hosts
and collect accurate performance statistics, an ISP might not be able to deploy measurement tools directly on
customer end-hosts. Meanwhile, sending active measurement probe packets incurs overhead, and the delays
experienced by the probes may not accurately reflect the delay experienced by end-user applications. Thus, we
often need to measure delay distributions by passively observing bidirectional application traffic at an ISP vantage
point close to the customer hosts. By observing the stream of network packets, we can match an outgoing request
packet with its incoming response packet, and subsequently calculate the pairwise delay on the internet and tally
the delay distribution. It is also possible to separately calculate two legs of the delay (the round-trip delay between
the client and the vantage point, and between the vantage point and the server) and combine the measurements,
as discussed in [10], to estimate the full client-to-server round trip delay.

The emergence of programmable data planes allows us to run customized algorithms directly in the packet-
processing pipelines of high-speed network devices. Switches and network interface cards with programmable data
planes are now available off-the-shelf, and they are beginning to see commercial deployment. We no longer need to
mirror and store a large volume of traffic from the vantage point, and can instead run monitoring algorithms in the
data plane and export real-time summary statistics, such as heavy hitters [13, 5, 9] and out-of-order packets [20],
to the network control plane. This not only helps reduce computation and network overhead, but also improves
privacy by never exporting sensitive user traffic.
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However, high-speed data planes have limited memory, not enough to store per-flow, let alone per-packet,
state. Although it is possible to estimate volume-based metrics based on packet sampling [12, 22] or using
memory-efficient sketch data structures [5, 9, 19, 20], measuring delay requires matching information across pairs
of packets, which imposes significant pressure on the memory from waiting for the second packet of the pair to
arrive. This can easily be shown from a back-of-the-envelope calculation: Suppose we observe a backbone link
running at a full line rate of 400Gbps, which translates to around 229 packets per second. With an average delay
of 50ms, to store all such packets for the full time until the responses come back requires an array with 225

entries—at least an order of magnitude larger than the total data-plane register memory available in commodity
programmable switches.

The programmable data plane poses several additional constraints besides the limited memory size. To
maintain packet-processing speed at line rate, the data plane requires each packet to be processed within a
constant number of clock cycles in a pipeline. Therefore, any operations on the data structure must finish within
constant time. Meanwhile, we cannot perform arbitrary arithmetic operations, such as division or logarithm.

Due to these constraints, many earlier works rely on hash-indexed arrays [6, 23, 3]. In this work, we also
make use of hash-indexed arrays to match pairs of request and response to calculate delays. We assume each
request and its matching response share an ID, which can be derived from header fields of the network packet.
Chen et al. [6] describe a simple scheme which saves the request ID and a timestamp into an array, applying a
hash function over the ID to obtain an array index. When the corresponding response arrives, we use the hash
function again to look at the same index, and if the matching request exists, calculate this request’s delay and
update the statistics of the delay distribution.

However, not all requests eventually receive a response, and those orphaned requests without a response
create a dilemma. A new request being inserted may suffer from a hash collision with an existing request. If
we discard the new request and keep the existing one, the array will soon fill up with stale, orphaned requests.
But simply overwriting upon every hash collision is even worse: to produce a delay sample, the request must
stay in the array for long enough without being overwritten. For large-delay pairs, the request needs to survive a
large number of new insertions into the data structure without a hash collision. Consequently, more small-delay
samples are produced, while large-delay pairs are undersampled and therefore biased against. This phenomenon is
especially problematic in applications like verifying SLAs or measuring tail latency, since larger delays are exactly
the anomalies we hope to catch.

Previous efforts to mitigate the bias against larger delays include finding a middle ground between favoring
the existing entries and overwriting aggressively. Chen et al. [6] used a large expiration threshold that corresponds
to the 99th-percentile delay in the network, and only evicts upon hash collision when a record gets too old. Yet
it is hard to accurately choose such a threshold, particularly when the prior distribution is unknown. Moreover,
setting such a conservative threshold means orphaned requests stay too long in the memory, reducing the number
of valid matches.

In this paper, we propose a data-plane algorithm that produces a provably unbiased delay distribution,
specifically designed for programmable switches using the Protocol Independent Switch Architecture (PISA) [4].
Our algorithms tackle the bias by keeping track of the probability of getting each sample, and applying a correction
factor inversely proportional to this probability when computing the distribution. This helps reduce the required
memory size by 2x-4x compared with earlier work, while maintaining the same accuracy.

In what follows, § 2 describes a simple delay monitoring algorithm and why it is biased against high-delay
samples, and § 3 introduces our design for fridges, a data structure that produces unbiased samples. In § 4,
we discuss ways to extend our design beyond a single fridge. In § 5 we run simulation-based experiments for
our algorithm and show it indeed estimates the delay distribution more accurately. § 6 presents and evaluates a
prototype implementation of the fridge data structure on hardware programmable switches. We discuss related
work in Section § 7, and conclude the paper in § 8.

2 Passive Delay Monitoring Problem

In this section, we first introduce the delay monitoring problem, and a “simple” data-plane solution. Then, we
explain why the simple algorithm is biased against large delays, and define our goal of producing an unbiased
estimate of the delay distribution.
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Figure 1: Compared with the simple approach, the fridge tracks how many insertions each entry survives, and
assigns higher weights to less likely RTTs.

2.1 Simple delay monitoring. In delay monitoring, a stream of packets represents a stream of requests and
responses, where we hope to match a response with its corresponding request, to generate useful delay statistics.
Examples of request/response pairs include NTP request and response, DNS request and response over UDP,
TCP handshake pairs (between SYN and SYN-ACK packets), and TCP flow duration (between TCP SYN and
FIN/RST packets). In real-world applications, some requests never receive a response, for instance due to server
failures or cyber attacks. We assume each request and its potential response carry the same identifier (ID) unique
for the pair that allows matching, if the response exists. For example, we can extract IP addresses, port numbers,
and sequence numbers from a TCP SYN packet, and match them with that of a TCP SYN-ACK packet. After
matching a response to a request, the resulting delay sample contributes to some larger analysis of the delay
distributions.

Today’s programmable switches using the PISA pipeline architecture have tens of megabytes of register
memory that we can read or write in the data plane, while processing individual network packets. To meet
the strict speed requirements of line-rate packet processing (Terabits per second), the switch imposes several
constraints on what packet-processing logic we can implement. The pipeline has a fixed number of stages,
therefore each packet is processed within a constant number of clock cycles. To avoid memory hazard due to
concurrent memory access, all register memory arrays are allocated to a specific pipeline stage, and we can only
access one index of each register memory array when processing each packet.

Given the memory access constraints, we cannot implement traditional hash tables with sophisticated collision
resolution logic. The hash-indexed array is a good candidate data structure to implement a simple algorithm for
matching packet pairs and continuously generating delay samples, as illustrated in Figure 1(a).

1. Request: For each request, we compute hash(ID) to find an array index and write in the request ID and
current timestamp. To avoid filling the memory with orphaned requests, we favor the new request upon
hash collisions, by overwriting any existing request in the same array index.

2. Response: For each response, we again compute hash(ID) as the index. If there is a request with the
same ID, we calculate the difference t of their timestamps, report a delay sample t, and remove the request;
otherwise, there is no match and no sample is recorded.

2.2 Bias against large delays. The limited memory in the data plane poses a significant challenge. A higher
delay means the request needs to stay in memory longer while waiting for its response to arrive, which translates
to using more memory at any given point. Since we choose to always overwrite existing requests upon hash
collisions, when memory is limited a request is more vulnerable to eviction the longer it remains in memory. This
leads to a bias against larger delays.

At first glance, we could solve this problem by favoring existing requests on collisions. However, a response
may never arrive, causing orphaned requests to consume the memory. An alternative is to set an expiration
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threshold and evict a record if the request stays in the data structure longer than the threshold. This method
seemingly achieves a balance between overwriting aggressively and favoring existing requests conservatively, but
in practice it is hard to find the right threshold [6]. A large threshold leads to an array full of stale requests, while
a small threshold causes bias against larger delays, as such requests are quickly evicted before their responses
arrive.

2.3 The delay distribution. In practice, we often hope to combine individual delay reports to generate some
statistics of interest. In this work, we specify the output of our algorithms to be an approximated distribution of
delays of all request/response pairs in the stream, and in particular we can look at the Cumulative Distribution
Function (CDF) of the delay. We note that the estimation error of many real-world delay metrics commonly seen
in Service Level Agreements (SLAs) can be translated to the difference between estimated and ground truth delay
CDF curves. For example, the error in measuring 95th-percentile delay is the horizontal distance between the
CDF curves at y = 95%, while the error in measuring the fraction of RTTs above 40ms is the vertical distance
between the CDF curves at x = 40ms. We therefore formalize the problem as follows:

Definition 2.1. (Delay CDF) Given a stream of requests and responses with identifier IDi, timestamp ti,
and type ci ∈ {req, resp} differentiating requests and responses, we pair a request i with its response i′ when
IDi = IDi′ ∧ (ci, ci′) = (req, resp). Each request has a unique ID, and has at most one matching response. The
delay of a request/response pair (i, i′) is defined to be ti′ − ti. Let f(t) denote the number request/response pairs

in the stream with delay t, and F (t) =
∑
τ<t f(τ)∑
t f(t)

the ground truth CDF. On seeing the entire stream, we hope to

output a close approximation F̂ (t) of F (t).

In this work, we do not intend to distinguish between the delay CDF of all packets versus some subset of
packets, e.g., those of one particular flow or application. The algorithms presented in § 3 are general enough to
be applied in either case.

3 Unbiased Delay Estimation

Contrary to previous work [6], we do not attempt to mitigate bias by fine-tuning the frequency of overwriting
records. Instead, we overwrite aggressively to take in all new requests, and correct for bias as samples are collected.
We start this section with the idea of bias correction (§ 3.1). Next we describe the single fridge algorithm and its
mechanism of applying correction factors (§ 3.2).

3.1 Correcting for survivorship bias. The phenomenon that larger delays are undersampled traces back to
the step where any report, whether the delay is large or small, is considered as one sample. Instead, we should
cherish each sample with a high delay—it should account for not only itself, but other requests with the same
delay that are evicted before their responses arrived.

Thus, we define a correction factor to counter this survivorship bias. If a sample has a probability q to
survive without being evicted, upon seeing its report we set the correction factor to 1

q , and count it as 1
q samples.

This way, evictions from the data structure no longer lead to biases, since the collected large-delay reports can
compensate for the missing ones.

To track a sample’s survival probability, we can analyze the number of insertions between the time this
sample’s request is inserted and its response arrives. Each insertion has a small probability to evict the request
due to hash collision, thus the sample’s survival probability diminishes as there are more insertions before the
response.

3.2 Single fridge algorithm. Now we discuss the design of a single fridge data structure, inspired by humans
checking how long a grocery item has stayed in a refrigerator when taking it out. We maintain a global insertion
counter and stamp its count alongside every inserted request. Subsequently, when the response arrives we find
the number of insertions that happened between the request-response pair and calculate a correction factor,as
illustrated in Figure 1(b).

We formally compute the correction factor using the inverse of the probability of a sample being collected.
We define a data structure, fridge-(M,p), to be a hash-indexed array of size M equipped with an entering
probability p, which dictates that each new request is inserted into the array with probability p (and discarded
with probability 1− p).
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3.2.1 Probability of survival. A request’s probability of survival decreases as it stays longer in the fridge,
measured by the number of other requests being inserted between this request and its response. We track this
number by maintaining a global insertion counter. For each new request, an existing request in the fridge has a
p
M chance to suffer from a hash collision and be evicted; thus requests stay for roughly M

p insertions, which we
call the average lifetime of a fridge.

We define x as the number of insertions that happened between a request and its matching response, which
can be calculated by subtracting the recorded value of the global insertion counter (at request time) from its
current value (at response time). Consider a sample with delay t that survives x insertions between its request
and response: it must survive three independent events: (1) its request enters the fridge (with probability p),
(2) the request survives the next x insertions into the array of size M , and (3) the sample has delay t in the
underlying ground truth distribution. Denote f(t) as the true number of samples with delay t, and n the true
number of samples in the stream, we have

(3.1) Pr[getting a sample with delay t] = p ·
(

1− p

M

)x
· f(t)

n
.

Note that the first two terms indicates a sample’s survival probability q = p ·
(
1− p

M

)x
. We therefore set

a correction factor of 1
q = p−1 ·

(
1− p

M

)−x
for each report we observe. After seeing the entire stream, we

get a collection of reports, where each contains its delay ti and its correction factor, in the form of a 2-tuple:(
ti, p

−1 (1− p
M

)−xi)
, with xi being the number of insertions the sample survives. From the reports we can obtain

an estimator of f(t) for all t, denoted as f̂(t), by summing up all correction factors that correspond to t.

We show in Lemma 3.1 that f̂(t) is an unbiased estimator of f(t) with bounded variance.

Lemma 3.1. Let Yi be in indicator of sample i, Yi = 1 if sample i has delay t, and Yi = 0 otherwise, then

f̂(t) :=
∑
i∈[n]

p−1
(

1− p

M

)−xi
Yi

is an unbiased estimator of f(t), and

Var[f̂(t)] =
f(t)

n

∑
i∈[n]

(
p−11

(
1− p1

M

)−xi
− f(t)

n

)
.

Proof. Fix any t, and from Eq. 3.1,

E[Yi] = Pr[get a sample with delay t] = p
(

1− p

M

)xi f(t)

n
,

Var[Yi] = p
(

1− p

M

)xi f(t)

n

(
1− p

(
1− p

M

)xi f(t)

n

)
.

By definition, f̂(t) =
∑
i∈[n] p

−1 (1− p
M

)−xi
Yi, then

E[f̂(t)] =
∑
i∈[n]

p−1
(

1− p

M

)−xi
E[Yi] = f(t).

Since indicator Yi’s are independent,

Var[f̂(t)] =
∑
i∈[n]

p−2
(

1− p

M

)−2xi
Var[Yi]

=
f(t)

n

∑
i∈[n]

(
p−1

(
1− p

M

)−xi
− f(t)

n

)
.(3.2)
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3.2.2 Approximated CDF. We estimate the CDF F̂ by aggregating and normalizing the individual point-

wise estimate f̂ using discrete integration,

(3.3) F̂ (t) :=
∑
i,ti≤t

f̂(ti)∑
i f̂(ti)

,∀t ∈ {ti}i.

To compare F̂ with the ground truth CDF F , it is convenient to think of F̂ and F as continuous functions.
Throughout this work, we assume linear interpolation for both F̂ and F .

Though f̂(ti) is unbiased, and so is
∑
i f̂(ti) by linearity of expectation, it is important to note that the

unbiasedness is not preserved under division. Therefore, F̂ is not necessarily unbiased. Nonetheless, the single
fridge algorithm improves on the simple algorithm considerably in terms of reducing bias (§ 5.1). Later in § 5.2,
we show how the choice of p affects accuracy of the estimated CDF and how to identify a good p based on the
fridge size and the maximum delay.

3.3 Tuning the entry probability (p). Given a fixed M , the entry probability p needs to be strategically
chosen such that the (M,p)-fridge operates optimally. Recall that on average each request survives M/p insertions
(the “average lifetime” of the fridge) before being evicted.

• If delays are short such that most request-response pairs we are measuring are less than M/p insertions
apart, almost all responses will arrive before any collision happens to the request. For most samples, the
insertion counter x will be 0, therefore the correction factor is always p−1 with no effect of the survivorship
bias. In short, memory is “underutilized”.

• If the average lifetime M/p is too short (there are often more than M/p insertions between request-response
pairs), most requests cannot survive long enough until their responses arrive — a request will suffer from
hash collisions with overwhelming probability. The very lucky requests that did survive will have very large
correction factors, leading to an enormous estimation variance. Although our estimation is still unbiased in
this case, it has little practical value. Under this scenario, memory is “oversubscribed”.

• Ideally, the fridge operates in the regime with its average lifetime M/p aligning with the number of insertions
between most request-response pairs. In this case, x (the number of insertions survived by a sample) is close
to M/p.

We note that in the ideal regime, given a large M and the assumption x ≈ M/p, typical delay samples should

have a correction factor in the order of p−1
(
1− p

M

)−M/p ≈ e/p. Thus, medium-delay samples weights about e
times more than samples with very short delay.

Inferring the number of insertions (x). We further observe that, with a constant traffic rate, the number
of insertions survived by a sample (x) is proportional to the delay observed by this sample. Therefore, it is
possible to not record an insertion counter alongside each request, and use the delay to approximately recover x
and calculate the correction factor. However, in many network applications, delay is correlated with short-term
spikes in traffic rate (which cause transient congestion), which are precisely the anomalous events we want to
scrutinize. Thus, we still opt to record the exact insertion counters.

Regarding the number of table entries (M). We note that although we expect a fridge to have thousands
of entries in practice, in the extreme case we require M ≥ 2, as we estimate each survived request’s survivorship
bias using the hash collisions happened in the other M − 1 entries. A single-entry fridge with M = 1 is a
degenerative case, as we cannot observe any “survivorship bias” (all samples have x = 1). In the special case of
M = 2, the surviver’s correction factor doubles every time the other entry is replaced due to a new insertion. This
estimation clearly has a large variance, and a larger M is preferred — the estimate of survivorship bias becomes
more accurate as we observe the fate of more requests stored in other entries.

As the fridge size M is limited by the memory available under the given hardware environment, given a
fixed M it is important to provision the fridge with the appropriate entry probability p, based on the traffic rate
(number of requests per second) and the delay we expect to observe. In § 5.2 we evaluate the effect of choosing
p on a fridge’s accuracy, and demonstrate the fridge has some tolerance regarding this choice.
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4 Expanding Beyond a Single Fridge

In this section, we discuss how to extend the single fridge design to possibly achieve better measurement accuracy.
We first discuss why a simple design using multiple hardware pipeline stages to build a single fridge will,
surprisingly, hurt high-delay samples (§ 4.1). Then, we show how to build multiple fridges and combine their
output correctly (§ 4.2).

4.1 Using many pipeline stages per fridge. On a PISA programmable switch [4], we are limited to accessing
only one index per register array when processing a packet. Algorithms often span multiple pipeline stages and
allocate multiple register arrays to improve performance. For example, the delay measurement algorithm in [6]
achieves the best accuracy when the same total memory size is split into 4-6 arrays in separate pipeline stages,
each indexed with a different hash function.

An insertion checks one location per stage, and only fails when it suffers hash collisions on all these locations.
Compared with using only a single stage, the multi-stage design achieves better memory utilization and lowers
the probability of failed insertions, thanks to the “power of two choices” phenomenon.

Naturally, when running the fridge algorithm, we could also consider a multi-stage design. Similar to [6], we
could use multiple memory arrays indexed by different hash functions. However, to deal with stale requests, upon
a hash collision we must favor inserting the new request and evict the existing request. We could implement a
scheme similar to HashPipe [23], where the request evicted in the first stage is inserted again in the second stage,
and likewise for later stages. The propagation stops when an empty array slot is encountered, and a request is
finally abandoned when it is evicted from the very last pipeline stage.

To produce an unbiased delay estimator, we need to find the right correction factor under this design. We
note that a request in the first few stages is not at risk of eviction, thus its survival has probability one; only a
request appearing in the last stage needs a correction factor for its survival probability, based on xi, the number
of insertions it survived in the last stage.

Unfortunately, this design works poorly for samples with larger delay. Assume we build a D-stage fridge with
total memory M and entry probability p, we can calculate the number of insertions a request can survive in the
fridge as a probability distribution. Note that each stage has M/D entries, and for simplicity we assume the
memory is full of requests with no empty slots. For one insertion, a request currently in stage s has probability
p · D/M suffering from a collision and move to stage s + 1. Thus, the number of insertions a request survives
in stage s follows the geometric distribution ls = Geo(p · D/M). We can thus write the lifetime distribution of
the D-stage fridge, i.e., the total number of insertions survived before a request is evicted from the last stage, as
LD =

∑D
s=1 ls =

∑D
s=1 Geo(p · D/M), with expectation D · Mp·D = M/p. Meanwhile, for an ordinary fridge, we

can simply plug in D = 1: its lifetime distribution is simply Geo(p/M) with expectation M/p.
Although items in the multi-stage fridge have the same expected lifetime M

p as those in a single-stage fridge,
its lifetime distribution is the sum of D i.i.d. geometric variables, which is more concentrated and has a lighter
tail than a single geometric variable. This is to say, for a large delay T > M/p and D > 1, we have

(4.4) Pr[Geo(p/M) ≥ T ] > Pr[

D∑
s=1

Geo(p ·D/M) ≥ T ].

Therefore, requests with delay higher than the fridge’s average lifetime have a much smaller survival probability.
This phenomenon is most obvious when we consider the extreme case: with D = M stages each having

array size 1, the fridge essentially becomes a FIFO queue, and the lifetime distribution becomes very narrowly
concentrated. With every request spending almost the same time in fridge, a request whose delay is higher
than the average lifetime has almost no chance to survive. Instead, we want the exact opposite: the lifetime
distribution should be heavy-tailed, so requests have some probability of staying in the fridge for much longer
than M

p insertions, so our fridge can collect some samples for large delay. Thus, analytically the multi-staged
design performs poorly; we have also verified this phenomenon empirically.

Thus, we should never use a multi-stage fridge. When we need to utilize more memory than the capacity of
a single pipeline stage, we should simply merge the memory across multiple stages into one large logical hash-
indexed array and build a single-stage fridge. We also note that proposals like dRMT [7] would enable stateful
memory allocation across stages, so a simple one-stage algorithm can use the entire stateful memory directly.
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4.2 Using multiple fridges. Requests in one fridge have an average lifetime M
p , which can be adjusted to fit

the typical delay of the input traffic stream for higher accuracy. However, internet traffic exhibits a wide range
of delays, due to different geographic distances, server behavior, and congestion conditions. Thus, a single fridge
targeting a particular M

p may be inadequate.
To cover a wide range of delays, we split the memory into N fridges with size M1 + · · ·+MN = M . Requests

and responses are directed to one of the fridges via a hash function, while each fridge has its own entry probability
p1 + · · ·+ pN < 1 and targets a different average lifetime M1/p1, . . . ,MN/pN . When a response matches in fridge
k, we calculate the correction factor p−1k (1− pk/Mk)

−xi based on fridge k’s entering probability pk and the
probability for surviving xi insertions in this fridge.

Since different fridges have different average lifetime, they have different variance when estimating various
ranges in the delay distribution. We need to combine their output strategically to produce the final estimated
delay distribution with minimum estimation variance. In § 5.3, we demonstrate that using multiple fridges can
indeed produce more accurate estimates than a single fridge when memory size is limited.

We now describe the process of combining multiple fridge’s output using the Inversed Variance Weighting
method [8] in more detail.

Variance of each fridge. For a sample coming from fridge k (with size Mk and entry probability pk)

that survives x insertions, we set its correction factor as p−1k

(
1− pk

Mk

)−x
following Lemma 3.1. Summing up all

correction factors for a t coming out of fridge k gives an unbiased estimator f̂k(t) for f(t), the true number of
samples with delay t, where the unbiasedness follows again from Lemma 3.1. Let ki be the index of the fridge
sample i comes from, then the variance of f̂k(t) follows directly from Eq. 3.2,

(4.5) Var[f̂k(t)] =
f(t)

n

∑
i∈[n],ki=k

(
p−1k

(
1− pk

Mk

)−xi
− f(t)

n

)
.

The weighted average of estimators. Similar to classical sketching algorithms such as Count-
Min [9] and CountSketch [5], in the multi-fridge algorithm, we keep a set of N basic unbiased estimators

{f̂1(t), f̂2(t), . . . , f̂N (t)} for f(t), each coming from a fridge. Since the variance of each individual estimator
could be large, we combine them to get a better estimator. However, unlike [9, 5], our basic estimators have dif-
ferent variance, so instead of simply taking their min or the median, we leverage this fact to compute a weighted
average of the estimators.

It is well-known in statistics [8] that given N unbiased estimators with bounded variance, we can set weights
optimally so that the weighted average of these estimators has the minimum possible variance.

Theorem 4.1. Given N unbiased estimators f̂1, f̂2, . . . , f̂N with bounded variance Var[f̂1],Var[f̂2], . . . ,Var[f̂N ]

respectively, the set of N weights {w1, w2, . . . , wN} with wk =
1

Var[f̂k]∑
k

1
Var[f̂k]

, k ∈ [N ] minimizes the variance of the

combined unbiased estimator
∑
k wkf̂k.

To combine estimators using Theorem 4.1, we need to associate each sample with a weight, so as to calculate
weights {w1, w2, . . . , wN} for a fixed delay t. Therefore, the report sample i in the multi-fridge algorithm becomes
a 4-tuple that keeps the weight of the sample, to be determined next, as well as the fridge index ki, on top of the
delay ti and the correction factor as in the single fridge case.

However, Theorem 4.1 cannot be directly cast into our multi-fridge setup, since we do not know variance
Var[f̂1], Var[f̂2], . . . , Var[f̂N ] exactly. We work around this issue by approximating weights wk for each fridge k.
From Eq. 4.5, we can safely focus on estimating

(4.6)
f(t)

n

∑
i∈[n],ki=k

p−1k

(
1− pk

Mk

)−xi

in the variance, since f(t)
n << 1 << p−1k

(
1− pk

Mk

)−xi
. Yet, it would be false to assume the f(t)

n factor outside

of the summation cancels out in wk, so we can obtain the rest of (4.6) precisely from summing over correction
factors from all reports. This would have produced an underestimation, since n is the true number of samples,
and the fridges can only report fewer than n samples due to hash collisions.
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We therefore use the unbiased estimator of (4.6),

(4.7)
∑
i∈[n]

p−2k

(
1− pk

Mk

)−2xi
Zi,

where indicator Zi = 1 if sample i comes from fridge k and has delay t, and Zi = 0 otherwise. An argument
similar to that in Lemma 3.1 suffices to verify the unbiasedness of (4.7).

Putting all elements together, the report of a sample with delay t that survives x insertions in fridge k, the
4-tuple (fridge index, delay, correction factor, weight factor), has the following form(

k, t, p−1k

(
1− pk

Mk

)−x
, p−2k

(
1− pk

Mk

)−2x)
.

We obtain estimator f̂k(t) by summing over all correction factors of samples with RTT t from fridge k,

f̂k(t) :=
∑
i∈[n]

p−1k

(
1− pk

Mk

)−xi
Zi.

Denote the unbiased estimator of (4.6) as V̂k(t), by (4.7),

V̂k(t) :=
∑
i∈[n]

p−2k

(
1− pk

Mk

)−2xi
Zi.

Finally, we obtain our multi-fridge estimator f̂(t) through a weighted average of estimators from all fridges {f̂1(t),

f̂2(t), . . . , f̂N (t)},

f̂(t) :=
∑
k

ŵk(t)f̂k(t), where ŵk(t) =

1
V̂k(t)∑
k

1
V̂k(t)

.

This concludes the process of combining the output of multiple fridges. Note that despite of the approximation,
we always have

∑
k∈[N ] ŵk(t) = 1, and f̂(t) is hence unbiased for being a convex combination of unbiased

estimators.

5 Evaluation

In this section, we use real-world and synthetic traffic traces to show that the fridge algorithm can effectively
reduce bias in delay measurement, compared with prior works. To experiment with different parameter settings,
we run all tests using a Python-based simulator. We discuss and evaluate a prototype running on hardware
programmable switches in § 6.

Distance metric. We evaluate the accuracy of single- and multi-fridge algorithms by computing the distance
between the ground truth CDF F (t) and the estimated CDF F̂ (t) computed by our algorithms. As discussed
in § 2.2, the CDF is closely related to criteria specified in SLAs. For example, “95th-percentile delay” is where
the delay CDF curve crosses y = 95%. Since real-world delays vary widely, absolute error is not an effective
metric; we instead look at the relative error of percentile delay queries:

∣∣log2

(
Estimated

Ground Truth

)∣∣, which corresponds
to the horizontal distance between the estimated and ground truth CDF curve under logarithmic x-axis. We are
interested in the relative error of typical percentile queries (at 50%, 95%, and 99%), as well as the maximum
error for any percentile between [5%, 95%], i.e., the maximum horizontal gap between the CDF curves between
y ∈ [5%, 95%].

Dataset. We use both real and synthetic network traffic traces in our experiments.

• Real-world traffic (§ 5.1, 5.3): We use a bi-directional anonymized traffic trace that contains 10 million
packets across 11.4 seconds, collected from a 10Gbps border link of a local ISP network. We extract round-
trip delay samples by treating outgoing TCP data packets as requests, and looking for their matching
incoming TCP acknowledgment packets as responses. The trace includes 61% requests and 39% responses.
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Figure 2: (M=210, p=2−10.4)-fridge produces a visibly more accurate delay CDF, compared with the simple
algorithm using the same memory size M=210 and expiration threshold T=29ms. The fridge and the simple
algorithm achieves maximum relative error of 25% and 36% respectively for percentile delay queries.

Approximately 13% of all requests have a matching response, as the TCP delayed-ACK mechanism only
sends one response for every two (or more) requests, and malicious traffic such as port-scanning attacks
generates many orphan requests. The average round-trip delay across all samples is 57.8 milliseconds.

• Synthetic trace (§ 5.2): We also generated synthetic traces to explore our data structure’s performance
characteristics under other traffic distributions. We first generate request packets arriving at a constant rate
of 1 million packets per second, and randomly select a 40% subset to generate responses. Subsequently, given
a maximum delay of Tms, we randomly sample a delay from a log-uniform distribution between (0, T )ms
for each response. Finally, we combine the requests and responses and sort them by their timestamps. The
trace contains 0.5 million delay samples, with approximately 1.75 million packets in total. Although the
synthetic trace is not fully realistic, it allows us to test our data structure by changing the delay distribution.

Unless otherwise noted, we repeat each experiment ten times with different hash seeds and combine estimated
CDFs, to reduce variance from individual runs and highlight the bias. We note that our algorithm’s output
exhibits a similar variance comparable to [6]; the output distribution is almost the same across different runs,
unless memory is extremely limited.

5.1 Comparison with simple algorithm. We first show that our fridges achieve higher accuracy than the
simple algorithm described in § 2.1.

In Figure 2, we visualize the advantage of the fridge algorithm by plotting the estimated delay CDF curves
alongside the ground truth (shaded). We run the single-fridge algorithm using entry probability p = 2−10.4 and
memory size M = 210, and the simple algorithm in [6] using the same memory size on the real-world traffic trace.
The simple algorithm uses an expiry threshold T = 29ms, close to the 99%-percentile delay in the ground truth,
as suggested by the authors of [6].

As we can see from Figure 2, our unbiased fridge algorithm closely reproduces the ground truth CDF curve,
especially near the tail of the distribution. The simple algorithm produces a CDF curve biased against high
delays, underestimating percentile delay queries.

The fridge algorithm estimates 50th, 95th, and 99th percentile delay much more accurately than the simple
algorithm. We also plotted the maximum horizontal gap between estimated and ground truth CDF curves in
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Figure 3: For a fridge with M = 212 memory size processing synthetic trace with ground truth delay between
(0, 212)ms (top), error is minimized around entering probability p = 2−9; for ground truth delay in (0, 26)ms
(bottom), the best p increases to around 2−4, which leads to a shorter average lifetime in the fridge.

[5%, 95%], which corresponds to the maximum relative error when answering percentile delay queries for any
percentile between 5% and 95%. The fridge algorithm has a maximum relative error of 25%, while the simple
algorithm has a maximum relative error of 36%.

5.2 Choosing the best entry probability. Requests in a (M,p)-fridge have an average lifetime of M/p
insertions. Although the fridge algorithm’s output is guaranteed to always be unbiased, we can improve its
accuracy by choosing p carefully to reduce the estimator’s variance. In general, we want more samples to reduce
the variance of the fridge’s estimation. When memory is limited, a higher p shrinks the average lifetime, so fewer
large-delay samples can survive; however, a very small p means not many requests enter the fridge in the first
place, thus it cannot produce many samples either.

As high-delay samples are the hardest to measure, intuitively, the best p that maximizes accuracy should make
the fridge’s average lifetime (Mp insertions) roughly equal to the number of insertions between request-response
pairs that experience the maximum delays we are interested in measuring. In Figure 3, we show the error of the
fridge algorithm under different entering probabilities, under a small memory size M = 212. We use two different
synthetic traces, one with delay range (0, 212)ms and another with delay range (0, 26)ms.

In Figure 3(a), the largest delay 212ms corresponds to 4× 106 insertions between request and response. The
best choices of p indeed appear near average lifetime M/p = 4 × 106. For Figure 3(b), the largest delay 26ms
corresponds to 6.4 × 103 insertions, and we observe an increase in the best choice of p (thus decreased average
lifetime). Also, the fridge’s accuracy is not very sensitive to the exact choice of p, as we observe similar accuracy
when choosing any p within 0.5x-2x of the optimal.

We conclude that network administrators deploying the algorithm should provision p according to the expected
maximum delay to be measured in the network, by aligning the fridge’s average lifetime to the number of insertions
under this delay. It is likely not necessary to tune p continuously to adapt to the slight temporal changes in traffic
patterns, as the fridge is robust against a 0.5x-2x change in optimal p, and we only observe a 1.2x-1.3x diurnal
change in per-minute average traffic rate in our network. However, p should be re-calibrated whenever the traffic
rate or the average delay changes more than 2x.

5.3 Beyond a single fridge. We now show that using multiple fridges improves accuracy by experimenting
with a two-fridge algorithm.

The two fridges each use half of the total memory size (M1 = M2 = M
2 ), and we find the best entry probabilities
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Figure 4: Compared with the single fridge single stage variant, using two fridges provides more benefits as memory
size M decreases.

(p1, p2) using grid search; the outputs of two fridges are then combined using Inversed Variance Weighting (as
discussed in § 4.2) to produce the final estimated CDF. In Figure 4, we show the two-fridge algorithm is more
accurate than a single fridge when processing the real-world traffic trace, especially in the more challenging regime
with smaller memory size.

Finally, we compare our single- and two-fridge algorithms with both the single-stage and the four-stage simple
algorithms. We similarly tuned the simple algorithm to use the best expiration threshold for each memory size.
Figure 5 shows that the two-fridge algorithm performs consistently better than the simple algorithms, achieving
the same accuracy using 2x-4x smaller memory.

It is not yet clear how to systematically find the best entry probability for more than two fridges without
using exhaustive search, or how much further we can reduce error by using three or more fridges. We leave these
as future work.

6 Hardware Implementation

We build a prototype of the fridge data structure that runs on the Intel Tofino high-speed programmable switch,
that can measure traffic delay distribution at line-rate of 100 Gbps per port across 16 ports (1.6 Tbps aggregated
throughput). The prototype program is written in the P4 [25] language and has approximately 800 lines of code.
Its source code is available on GitHub1 .

Our prototype measures TCP handshake delay distribution by parsing handshake packets, hashing the IP
address pair, port number pair, and TCP sequence number together into a request/response ID; it is straightfor-
ward to adapt the program to measure other delays by similarly defining and calculating request/response IDs
using other information in the packets.

In this section, we briefly discuss some technical details about implementing the algorithm on hardware
programmable switches, and present evaluations of our prototype.

6.1 Implementing the fridge table. We implement the fridge using three hash-indexed arrays: IDS[·],
TS[·], and CTR[·], storing the request packet’s ID, its timestamp, and the insertion counter, respectively.

When a request arrives, we first combine the relevant packet header fields (and compress them through
a digesting hash function) to generate a 32-bit request ID, as well as generating a random array index
idx = hash(ID) ∈ [M ], which specifies a location in the fridge. Subsequently, we invoke the pseudorandom

1https://github.com/Princeton-Cabernet/p4-projects/tree/master/Fridge-tofino
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Figure 5: The single- and two-fridge algorithms exhibit much lower estimation error for 50, 95, 99th-percentile
delays, compared with the 1- and 4-stage simple algorithms, under various total memory sizes.

number generator to generate a 32-bit random number r ∈ [0, 232), and compare it against a threshold: the request
is only inserted if r < p · 232. This way, we implement the entry probability p, as the request is ignored with
probability 1−p. We also maintain an additional register as the fridge’s insertion counter, which is incremented by
one for each inserted request. Subsequently, we write this request’s ID, the current timestamp, and the insertion
counter into IDS[idx], TS[idx], and CTR[idx], respectively.

When a response arrives, we calculate the same ID and index idx = hash(ID), and check if a matching ID is
currently stored in IDS[idx]. If so, we generate a delay sample by calculating the delay (the difference between
current timestamp and TS[idx]) and the number of survived insertions (x, the difference between current insertion
counter and CTR[idx]), and also erase the current values. Otherwise, if the stored ID mismatched, the request
didn’t survive and we simply do not produce a sample.

We note that the process of generating IDs using a 32-bit hash digest might lead to mismatching request and
response sharing the same ID. However, the probability for an ID mismatch is much lower than that of a hash
collision on the shorter idx (8-16 bits), therefore a request is much more likely to be evicted by an unrelated
response than suffering from an ID mismatch and produce an incorrect delay sample.

6.2 Correcting the bias. Given the delay t and survived insertion count x in a reported sample, we can
calculate the single-fridge bias correction factor in the switch data plane.

As the programmable switch only supports basic arithmetic operations, we cannot exactly calculate

p−1
(
1− p

M

)−x
; instead, we notice p and M are known constants, and exploit P4’s match-action semantics

to match x with a list of prefixes, effectively building a lookup table with pre-computed x ranges and the
corresponding correction factor.

The prefix matching logic available on the programmable switch was originally used for routing network

packets over the internet by IP address prefixes. Given that the bias correction factor p−1
(
1− p

M

)−x
is a

monotonic function over x, it is straightforward to implement a lookup table that matches on the bit prefixes
of the binary representation of x and outputs the correction factor. To save memory, we do not implement all
possible correction factors exactly, and instead only map x approximately to several integer correction factors
starting from 1/p with 1.1x increment. The programmable switch hardware supports matching using different bit
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prefix lengths, which is very handy given that the correction factor has x in its exponent.
For example, with p = 0.5 and M = 216, the first prefix-matching rule matches x ∈ [0, 7 × 211) and outputs

correction factor 2, and the next rule matches x ∈ [7 × 211, 9 × 212) and outputs correction factor 3. We use a
python script to automatically generate these rules based on p and M .

Subsequently, we tally the delay samples and build a histogram in a register array, by adding up the correction
factors of delay samples that fall into certain delay ranges. In our prototype, we maintain a histogram with 32
bins using log(t) as the bin index, however it is straightforward to discretize the distribution differently or use
more bins.

This implementation allows the data-plane program to track the distribution of delay in real time, enabling
diverse applications such as real-time SLA monitoring and dynamic rerouting. We can either maintain an overall
delay distribution, or split the traffic into different subsets and maintain a separate delay distribution for each
subset.

Still, we note that various approximations incur additional error in the measurement. One may collect all the
produced samples and perform the bias correction outside of the data plane, using a program running on a server
(with no arithmetic constraints), to exactly calculate the correction factors and the delay distribution. This also
allows running the more complex correction operations required by the multi-fridge algorithm.

6.3 Prototype evaluation. We evaluate our prototype fridge implementation by running it on an Intel
Tofino Wedge-32X programmable switch, processing the same real-world traffic trace used in § 5. We use the
MoonGen [11] traffic generator to replay the trace to the switch at real-world speed, by reading the pcap file
from a ramdisk. The traffic generator runs on a server with two 10-core Intel Xeon 4114 CPUs and a Mellanox
ConnectX-5 100Gbps NIC, using Ubuntu 20.04 and DPDK 19.05.

We check that the fridge is producing samples correctly, by running it under various memory sizes M and
collecting all the samples reported using a server running packet capturing. Analyzing the raw samples produces
a delay distribution CDF closely matching the ground truth, unless M is set to be very small. The results closely
match what we observe under simulation. We also analyze the effect of approximating the correction factor
using a lookup table of x in the data plane, and find it only negligibly affects the resulting CDF: we observe the
maximum relative error increases by between 0.2% and 0.9%, which is at least one order of magnitude smaller
than the relative error between the fridge’s estimated distribution and the ground truth.

A fridge with M = 216 entries costs about 6.4% of the total register memory available on the programmable
switch. We only need M = 212 entries to process the real-world traffic trace used in § 5 and produce an accurate
delay CDF, and under this configuration we only consume 1.7% of the total register memory. Besides the register
memory allocated for the fridge, the prototype program also uses 23.6% of hash units (for array indexing), 7.3%
of Ternary Content Addressable Memory (TCAM, for prefix lookup tables) and less than 5%-10% of any other
hardware resource.

Given that we only use moderate hardware resources, we believe our prototype program’s performance is
sufficient to process traffic at the switch’s maximum line rate; unfortunately, our packet generator server can
only replay trace at speeds up to 8Gbps (due to single-core CPU bottleneck) and generate synthetic traffic at
approximately 80Gbps. We have validated the prototype behaved correctly under both cases. At 80Gbps, the
prototype data-plane program is processing more than 160 million requests and responses per second, which is
80 times faster than a simulator written in C++ (processing 2 million requests/responses per second on a single
CPU core).

7 Related Work

Measuring delay. PingMesh [15] and NetBouncer [24] measure round-trip delay by running active measurement
on end hosts, and calculating the time difference between outgoing probes and incoming replies. Active
measurement can generate comprehensive reports periodically, however the probe might not experience the same
delay as actual application traffic [2]. Meanwhile, Ruru [10] and [1] measure TCP handshake delay by passively
observing the three-way handshake packets. This is helpful for producing a flow-level distribution of delays. [26]
measures delay for all TCP packets, by adding a timestamp as a TCP option header. This method can produce
accurate samples, as long as intermediate firewalls do not drop the option header and the client correctly echoes
back the timestamp. Instead, [17] passively measured TCP packets by observing sequence numbers, and produced
delay estimates for many but not all packets. However, these methods all require exporting a large number of
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packets from the data plane for off-path analysis, which incurs significant networking and computational overhead
when measuring high-speed networks.

Delay measurement in the data plane. [14] and [6] both measure delay directly in the switch data plane.
Dapper tracks TCP flows individually, and produces one delay sample per round-trip for each TCP flow; this
requires pre-allocating memory for every TCP flow being tracked. Meanwhile, [6] works directly with packets
from all flows. This allows better memory utilization (almost the entire memory is used at all times) and does
not require per-flow state, however it leads to the bias issue against long delays, which we addressed in this work.

Quantile sketch. KLL [18] and DDSketch [21] are quantile sketches that approximately measure samples
in a distribution and produce an estimate of certain quantiles using only small memory. QPipe [16] implements a
quantile sketch that runs fully within the programmable switch data plane. Our work does not measure quantiles
directly as we only re-weight the produced samples to ensure the resulting distribution is unbiased, and we rely
on subsequent post-processing to aggregate the samples and produce statistics such as quantiles. It is possible
to feed the samples and their weights output by a fridge into a quantile sketch, such that we can approximately
answer queries about percentile delay without the need to save the entire distribution.

8 Conclusion

In this paper, we show how to compute unbiased estimates of delay in the data plane, using the fridge data
structure that tracks the number of evictions while the request remains in the fridge. By correcting for the
probability of eviction due to hash collisions, we can produce accurate delay distributions that closely match the
ground truth. Evaluation shows that our algorithm is indeed much more accurate at estimating delay percentiles,
compared with prior works using the same amount memory. The two-fridge algorithm achieved the same accuracy
while saving 2x-4x memory. We also build and validate a prototype implementation of the fridge running on high-
speed programmable switches, that measures the unbiased delay distribution accurately and efficiently within the
data plane.

There are still many network performance metrics we struggle to measure in the data plane due to the limited
memory size. The fridge design opened up many possibilities measuring unbiased statistics for sophisticated
“join-over-time” queries, where two or more packets across the traffic stream need to be joined together. One
question that remains unsolved by this paper is whether our fridge design is applicable to statistics beyond the
distribution of delays between request-response pairs, allowing us to estimate distributions of other more complex
metrics such as the total number of bytes or packets in a completed flow. It is straightforward to accumulate the
counts in the fridge and produce a correction factor for each sample, and we can obtain an unbiased estimate
for the frequency of each count using the same correction factor. However, further empirical analysis are needed
when we start to aggregate these counts into more complex metrics, such as their quantiles and skewness, as
the unbiased property cannot be carried over automatically. We are also excited to apply the idea of correcting
survivorship bias in other randomized data structures in our future work.
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