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ABSTRACT
In enterprise networks, policies (e.g., QoS or security) are
often defined based on the categorization of hosts along di-
mensions such as the organizational role of the host (faculty
vs. student), and department (engineering vs. sales). While
current best practices (VLANs) help when hosts are cate-
gorized along a single dimension, policy may often need
to be expressed along multiple orthogonal dimensions. In
this paper, we make three contributions. First, we argue for
Attribute-Carrying IPs (ACIPs), where the IP address allo-
cation process in enterprises considers attributes of a host
along all policy dimensions. ACIPs enable flexible policy
specification in a manner that may not otherwise be feasible
owing to the limited size of switch rule-tables. Second, we
present Alpaca, algorithms for realizing ACIPs under prac-
tical constraints of limited-length IP addresses. Our algo-
rithms can be applied to different switch architectures, and
we provide bounds on their performance. Third, we demon-
strate the importance and viability of ACIPs on data col-
lected from real campus networks.

1. INTRODUCTION
Managing large enterprise networks is challenging. A typ-

ical enterprise has many users who belong to different de-
partments (e.g., sales and engineering, or computer science
and history), and play different roles (e.g., faculty, staff, ad-
ministrators, and students). In addition, the network supports
diverse end-hosts running different operating systems and
offering different services. In response, network administra-
tors want to enforce policies—such as access control and
quality of service—that group hosts along multiple different
dimensions. For instance, one policy may restrict access to a
database to all employees in the sales department, while an-
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other may offer a higher bandwidth limit to senior managers
across all departments, and yet another may restrict access
for old hosts running a less secure operating system.

1.1 Enforcing Policies in Today’s Enter-
prises

To enforce policies in today’s enterprises, network ad-
ministrators typically rely on virtual local area networks
(VLANs) [1]. A host joining the network is assigned to a
VLAN based on its MAC address or the physical port of
the access switch. Hosts in the same VLAN are assigned
an IP address in the same IP prefix, even if they are not
located near each other. Traffic flows freely between hosts
in the same VLAN, while traffic between different VLANs
traverses an IP router that can enforce policy. Since a host
can only belong to a single VLAN, administrators typically
assign hosts to VLANs based on a single dimension (e.g.,
department or role), which has several major limitations:

• The routers interconnecting VLANs need long lists of
data-plane “rules” to classify traffic along all relevant
“dimensions” of the source and destination hosts.

• No security or QoS policies can be imposed on intra-
VLAN traffic, forcing administrators to use a VLAN
only to group hosts that should “trust” each other.

• Since VLAN tags are removed from traffic destined to
the Internet, the border router must classify all return
traffic from the Internet to assign VLAN tags.

For instance, suppose a security policy depends on both user
role and department. If VLANs were created based on the
user’s department, then expressing a policy based on role in
a concise fashion is challenging. And, if two users in the dif-
ferent department are close to each other, the traffic follows
inefficient paths through intermediate routers to go between
VLANs.

The rise of more flexible network switches, with open in-
terfaces to separate control software, enables an attractive
alternative. In recent years, switches built with commodity
chipsets expose a pipeline of rule-tables that perform match-
action processing on packet headers. While the rule tables
are relatively small (with small thousands of rules per stage,
to limit power and cost), the switches support programmatic



interfaces (e.g., OpenFlow, OF-Config, and OVSDB [2]) that
enable new ways of controlling the network by installing
the rules in support of higher-level policies. One natural ap-
proach, adopted in the early Ethane system [3], directs the
first packet of each flow to a central controller, which con-
sults a database—containing all the relevant host attributes
and high-level policies—and reactively install rules for for-
warding the remaining packets of the flow. However, reac-
tive, fine-grained solutions like Ethane have high overhead
and do not scale to large enterprises. FlowTags [4] tags pack-
ets and uses the tags to enforce network policies. Yet, this
approach, when applied to enterprise networks, requires in-
stalling many extra tagging rules at the edge switches to clas-
sify hosts along all dimensions. Instead, we need a proac-
tive design that can aggregate hosts along many dimensions,
while keeping switch rule tables small.

1.2 Attribute-Carrying IP Addresses
In the current enterprise networks, although IP addresses

are assigned based on attributes (e.g., a separate IP pre-
fix per VLAN), it is just on a single dimension. We argue
that a complete IP address management scheme should con-
sider all dimensions and enable compact representation of
policies. Our key idea is to assign each host an IP address
based on all dimensions of the policy—that is, an attribute-
carrying IP address (ACIP). Our solution, Alpaca (algo-
rithms for policies on attribute-carrying addresses), com-
putes an efficient address assignment, based on the policy
dimensions and the attributes of individual hosts, and a com-
pact list of switch rules that realize a specific network policy.

Alpaca proactively generates a small number of coarse-
grained rules in the switches, without using VLANs. Alpaca
greatly simplifies enterprise management by (i) enabling ad-
ministrators to specify policies on many orthogonal dimen-
sions while achieving an order of magnitude reduction in
rules; (ii) allowing policy to be correctly maintained even
when a host connects to the network at a new location;
and (iii) simplifying federated management, where different
teams manage different parts of the enterprise network.

While Alpaca has many potential advantages, several
practical issues must be considered:

Limited IP address space: Since most enterprises have
limited IP address space, a naive ACIP assignment can easily
exhaust all the available bits.

Heterogenous group sizes: Some combinations of policy
attributes are much more common than others. As such, an
efficient address assignment cannot simply devote a portion
of the bits to representing group size.

Minimizing churn: It is important to support changes in
the policy attributes associated with a host (e.g., due to a user
moving to a different role or department), or changes in the
set of attributes themselves (e.g., due to the creation of a new
department).

Multi-stage switch pipelines: Rather than assuming
switches have a single rule table (as in OpenFlow 1.0 [5]),
a practical solution should capitalize on the multi-stage
pipelines in modern switch chipsets [6–8].

We propose a family of algorithms to generate ACIPs and

the associated rule tables, starting with a simple strawman
that devotes a separate set of address bits to each policy di-
mension. This solution minimizes the number of rules but
consumes too much IP address space, making it infeasible
in most practical settings. We then propose two other al-
gorithms that can keep the number of rules small, while
respecting constraints on the number of bits in the IP ad-
dress space. Our algorithms optimize based on the charac-
teristics of modern switch chipsets. Conventionally, switch
chip-sets have a single TCAM rule-table that supports a few
thousands of wildcard rules matching on multiple header
fields [5, 9, 10]. More recently, we are seeing the emergence
of switch chip-sets with a pipeline of multiple tables, where
each table could be a TCAM or a larger SRAM that supports
prefix matching on source IP or destination IP [6–8]. As
such, our first algorithm generates ACIPs that enable poli-
cies to be expressed by solely IP prefixes, useful for rule ta-
bles that support IP prefix matching. Our second algorithm
targets both single-table switches and multi-table switches,
generating rules that perform arbitrary wildcard matching on
IP addresses, in exchange for a reduction in the number of
rules. Together, these algorithms can capitalize on the unique
capabilities of a variety of commodity switch architectures.

In the next section, we present a case study of multiple
campus networks, to underscore the need for policies along
multiple dimensions. Section 3 introduces ACIPs and formu-
lates the optimization problem Alpaca must solve, followed
by Section 4 that presents our two algorithms. Using access
control data from two large campuses, the experiments in
Section 5 show that Alpaca can reduce the number of ACL
rules on existing networks by 60%−68% for switches with
multiple tables and by 40%−96% for switches with a single
table, while requiring only 1 more bit of the IP address space
than needed to represent the number of hosts in the network.
Further, Alpaca can support futuristic scenarios with poli-
cies based on multiple dimensions, while requiring an order
of magnitude fewer rules than VLAN-based configurations
optimized for a single dimension. Section 6 presents related
work, and Section 7 concludes the paper.

2. CASE STUDY: DIVERSE ENTER-
PRISE POLICIES

In this section, we present a case study of 25 enterprise
networks, to identify the challenges in representing sophisti-
cated policies, and the implications for Alpaca. Specifically:
• We present a qualitative analysis of the security and
quality-of-service policies employed by 22 universities, plus
one individual department that runs its network separately
from the campus IT group. The analysis indicates that net-
works must often apply policy along several logical dimen-
sions, with multiple attributes as possible categories in each
dimension. However, the analysis also points to policies that
are desirable but difficult to realize in practice.
•We analyze router configuration data from two other large
campuses. The analysis provides further confirmation that
there is significant commonality in policy across hosts, but



also points to how an inefficient assignment of IP addresses
can lead to an unnecessary “blow-up” in rule-table size.
• We study host-registration data for one department-level
network, to understand the dimensions of network policies
and the number and size of host “groups” with these at-
tributes. The analysis has important implications for the de-
sign of Alpaca.

2.1 Policies on Multiple Dimensions
Many universities make descriptions of their high-level

network policies available online (see http://tinyurl.com/
pwvlygx for a summary). Most schools classify hosts by
the owner’s role (e.g., faculty, students, staff, visitors), de-
partment, residence (e.g., a particular dormitory), and us-
age (e.g., research vs. education). In addition, many schools
associate each host with a security level (with around ten
different integer values) and whether the host is currently
viewed as compromised (with a “yes” or “no” value). Some
schools also classify hosts by bandwidth quota and past us-
age, to inform rate-limiting policies, and by whether they
offer core services (e.g., email and web servers). Based on
these documents, and our discussions with the administra-
tors of the computer-science department’s network of one
university (University A), we learned about the following
example policies.

Security: Schools use the security level to limit which ex-
ternal users can access a given host (and in what way). For
example, hosts at the lowest security level might be blocked
from receiving unsolicited traffic from external hosts; that is,
these hosts cannot run public services. Other security levels
correspond to different restrictions on which transport port
numbers are allowed (e.g., port 80 for HTTP, but not port 22
for SSH or 109, 110, and 195 for POP3). Some schools al-
low individual departments to state their own access-control
lists, applicable only to hosts with IP addresses in that de-
partment’s address block. When administrators identify an
internal host as compromised, they change the compromised
attribute and significantly restrict the host’s access to net-
work services. In addition, users in the visitor category typ-
ically have access to a limited set of services on the campus
(e.g., no access to the printers or campus email servers and
compute clusters). One school restricts access to compute
clusters in dormitories to the students residing in that partic-
ular dorm.

Quality of Service: Some universities impose a differ-
ent default bandwidth quota based on the host’s role, but al-
low students and postdocs to purchase a higher quota. Some
universities employ rate-limiting policies that depend on the
user’s bandwidth usage on previous days (e.g., users whose
bandwidth usage exceeded a certain level were rate-limited
to a lower level). Hosts offering core services are excluded
from bandwidth usage calculations for both the users respon-
sible for the service machines and the owners of the access
machines, to avoid that traffic counting against their usage
caps. Also, some schools offer higher quality-of-service for
hosts assigned for educational use (e.g., for streaming high-
quality media in a classroom). The administrators of Univer-
sity A also expressed a desire to perform server load balanc-

ing for internal Web services based on user role, to prevent
heavy load from one group of users from compromising the
performance of other users.

Administrator “wish-lists”: Our discussions with the ad-
ministrators of University A also indicated that there were
many additional policies that they would ideally like to im-
plement in the network, but did not do so since they were
hard to realize in practice. University A assigns hosts to
VLANs based on role (e.g., faculty, staff, and students),
for traffic isolation, to prevent packet sniffing and exces-
sive broadcast traffic. The administrators would like to apply
access-control policies based on device usage, device owner-
ship, and OS, but do not do so today, since this would require
exhaustive enumeration of IP addresses in the switch config-
uration. Likewise, the administrators expressed a desire to
apply flexible QoS policies based on (i) the way a device
is used (e.g., research vs. infrastructure machines) and (ii)
whether the host is owned by the department (as opposed to
a personal “Bring Your Own Device” host).

Our discussions also revealed additional challenges with
federated network management. The campus network as-
signs IP addresses in blocks based on location (e.g., build-
ing). This raises challenges in applying security policies that
restrict access to users affiliated with computer science de-
partment. Currently, the policy works correctly for hosts that
are physically in the CS building, since these hosts are as-
signed a prefix from the CS subnet. However, when a CS
user works in another building (common for faculty with
dual appointments in other departments), the host receives a
different IP address outside the CS subnet and the user is no
longer able to access the CS resources. While the adminis-
trators could conceivably update network configurations dy-
namically to reflect the IP addresses that should have access,
the management complexity is a deterrent. More generally,
federated management would be much easier if network ad-
ministrators had concise ways to represent security and QoS
policies based on host attributes.

2.2 Potential for Concise Rules with
ACIPs

Existing techniques for assigning IP addresses to hosts
can lead to a large numbers of rules in the switches. To quan-
tify this problem, we analyzed the access-control policies in
router configuration files for two university networks (Uni-
versity B and University C). Prior work shows that hosts in
a network may be partitioned into a small number of policy
units [11]—i.e., a set of hosts that have identical reachabil-
ity policies in terms of their communication with the rest of
the network. Though the number of policy units is small, the
number of ACL rules to express policy could still be as large
as the square of the number of policy units. Thus, we go
beyond [11], and not only identify policy units, but also cal-
culate the number of rules required if ACLs were written in
terms of policy units rather than the existing IP assignment.

Specifically, we consider two hosts as belonging to the
same source policy unit (SPU) if and only if packets sent by
these hosts to all destinations are treated identically in every
ACL across all routers. Likewise, we consider two hosts as



Dimensions #Attributes Example Attributes
Role 8 Faculty, Students
Security Level 16 1, 2, ..., 16
Status 6 In service, In testing
Location 7 –
Usage 3 Research, Infrastructure, ...
CS_owned 2 Yes, No
OS 5 MacOS, Windows, Linux, ...

Table 1: Host data for CS department (University A)
belonging to the same destination policy unit (DPU) if and
only if packets from all sources to these hosts are treated
identically in every ACL across all routers. We then compute
the total number of rules needed to represent each ACL if it
were more compactly expressed in terms of its source and
destination policy units. Our results show that the number of
ACL rules required is much smaller than the product of the
source and destination policy units, and indicates that a smart
ACIP allocation, which classifies hosts into their SPUs and
DPUs efficiently, can potentially offer significant reduction
ranging from 48% to 98% for ACLs of the two universities
(Section 5).

2.3 Diverse Attributes and Group Sizes
To better understand the attributes of hosts, we collected

data about the 1491 registered hosts of the CS department of
one university (University A). Each host is associated with
seven dimensions of information, as summarized in Table 1.
In this network, (i) hosts are assigned to separate VLANs
based on role and (ii) role, security level, and status are con-
sidered in access-control policy.

Given the number of attributes in each dimension, hosts
could theoretically have 161,280 (i.e., 8× 16× 6× 7×
3× 2× 5) combinations of attributes. In practice, only 287
unique combinations exist; for example, no visitor has a
CS_owned host. In addition, some combinations are much
more popular than others. One group of hosts—belonging to
one Linux-based compute cluster—has 109 members (more
than 7% of all hosts). The large number of attributes and the
diversity of group sizes have important implications for ad-
dress assignment in Alpaca, which encodes host attributes
in the IP address to enable more compact representations of
policies.

Consider a naive address allocation scheme that performs
BitSegmentation, by (1) concatenating a binary encoding of
the host attributes along each dimension, where dimension
i with a set of attributes Di requires dlog‖Di‖e bits, and (2)
using the remaining bits to distinguish hosts with the same
attributes along all dimensions, requiring dlogXe bits, where
X is the size of the largest group.

The resulting encoding would enable very compact rules
in the switches, using wildcard patterns to match on any at-
tribute. However, this solution is impractical, even for this
small network. Representing the seven dimensions would re-
quire 19 bits, and representing the largest group (with 109
members) would requires 7 bits, for a total of 26 bits—a
highly inefficient allocation of IP address space.

3. ALPACA OVERVIEW
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Figure 1: Use Alpaca in a network.

3.1 ACIP allocation with Alpaca
We present Alpaca, a system that embeds host attributes in

IP addresses to enable compact policies. Figure 1 shows an
overview of the system. Alpaca takes as inputs from the net-
work operator the set of policy dimensions, and a database
that lists the attributes associated with each host. It instructs
DHCP servers how to assign IP addresses to hosts based on
the results of Alpaca algorithm. If a host needs to be assigned
a new address (e.g., it moves to a new location), the original
attributes along with the new location are used in determin-
ing the new IP address. Meanwhile, the switch driver instan-
tiates the network policies, which are defined on attributes,
by installing match-action processing rules on switches. Al-
paca coordinates with the switch driver such that rules can
correctly classify the IP addresses of hosts to the correspond-
ing attributes along different dimensions.

While ACIP allocation enables operators to express poli-
cies defined on multiple dimensions with switch rules, Al-
paca must adapt to the following constraints:

Switch rule-table sizes: Switches impose hard con-
straints on the maximum number of rules to be installed.
Therefore, Alpaca should optimize the classification of hosts
for different switch architectures so that the attribute-based
policies can be compactly expressed with switch rules that
stay within the rule-table sizes.

Adddress space: IPv4 is widely deployed and likely to
remain for the foreseeable future. Many enterprises have 16
or fewer bits for public IPv4 address space, or up to 24 bits
for private IPv4 address space (i.e., 10.0.0.0/8). The lim-
ited address space calls for an efficient ACIP allocation that
encodes attributes without wasting IPs. Though the address
space constraint may be relaxed if IPv6 is fully deployed in a
network, the allocation still needs to take the size of address
space into account to correctly represent attributes.

Dynamics: Attributes of a host along any dimension may
change. Alpaca must be able to handle changes in the at-
tributes of a host while ensuring that only the IP address of
that host changes, and that IP addresses of other hosts are
not impacted. Alpaca should also handle (1) addition or re-
moval of new attributes in existing dimensions without im-
pacting the existing IP address allocation, and (2) addition
or removal of dimensions, which is however relatively rare
and may require significant changes.



3.2 Problem Formulation
Given an IP address space of W bits, a set U of N hosts

(N ≤ 2W ), a set of M dimensions and the attributes for the
hosts along each dimension, an Alpaca algorithm computes
an assignment of IPs to individual hosts and M sets of clas-
sification rules. Each rule-set corresponds to a dimension. A
classification rule consists of an address pattern p and an at-
tribute a; rule (p,a) means that any host with IP matching
p has attribute a. The classification rules in the same rule-
set have disjoint address patterns. An example is shown in
Figure 2(a)(b).

The classification rule-sets must be optimized. Consider
a multi-table switch architecture. We install the rule-sets to
classify source or destination (or both) to the corresponding
attributes for the use by following tables. Figure 2(c) shows
an example, where the first two tables decide the attributes of
“department”and “role” of the source by appending values to
metadata, the last table decides to permit or deny the source
based on attributes.

Our primary optimization goal is to minimize the total
sizes of M rule-sets, i.e., the number of classification rules
that decide the attributes of all hosts along all dimensions in
a multi-table switch architecture. We also extend our algo-
rithms (Section 4.2) to optimize the rules for a single-table
switch architecture, where the installed rule-set is the prod-
uct of all rule-sets in a multi-table architecture (e.g., the three
tables in the example) and the total number of installed rules
heavily depends on how frequent attributes (or the combina-
tion of attributes) are used in the network policies.

3.3 Overview of Alpaca algorithms
Alpaca consists of a series of algorithms targeted at dif-

ferent scenarios.
The Prefix algorithm computes prefix classification rules

with a proven approximation ratio to the optimal case. It uses
address space efficiently, requiring exactly dlog2Ne bits. It is
specially designed for multi-table switches with SRAMs that
support a large number of prefix rules.

The Wildcard algorithm computes wildcard classifica-
tion rules. It uses a small address space and can be applied
to single-table and multi-table switch architectures.

Both prefix and wildcard algorithms by themselves do not
handle dynamics and host attribute changes.

The Slack algorithm refines the prefix and wildcard algo-
rithms by taking advantage of one more bit in the address
space for an allocation that works well under dynamics in
host attributes.

4. ALPACA ALGORITHMS
In this section we describe Alpaca algorithms for assign-

ing IPs to individual hosts. The first algorithm is designed
for switch chipsets that allow prefix rules while the second
solution applies for more general chipsets with tables allow-
ing wildcard rules.

4.1 Prefix Solution
This section presents an address allocation algorithm that
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Input Output
Hosts Dept Role Addresses

h1 �h5 CS Faculty 0000, 0001,
0010, 0011

0111
h6 �h7 CS Students 1010, 1011
h8 �h10 EE Faculty 0100, 0101

0110
h11 �h16 EE Students 1000, 1001

1100, 1101
1110, 1111

(a) Address assignment.

Output
Dept

p a
0111 CS
101* CS
00** CS
0110 EE
010* EE
100* EE
11** EE

Role
p a

0*** Faculty
1*** Students
(b) Prefix rules.

Dept
Match Action

src append
0111 1
101* 1
00** 1
0110 2
010* 2
100* 2
11** 2

!

Role
Match Action

src append
0*** 1
1*** 2

!

Match Action
metadata

1,2 permit
2,1 permit
* deny

(c) Rules on multiple tables to permit CS Students and EE Faculty

Figure 2: Example allocation: W = 4,N = 16,M = 2.

4.1 Prefix Solution
This section presents an address allocation algorithm that

optimizes the number of prefix rules to represent attributes
along multiple dimensions. It targets at multi-table switch ar-
chitectures with IP prefix matching tables. We first introduce
the notation, then discuss the optimal solution for a single di-
mension and the generalization to multiple dimensions.

We use the following notations when illustrating the algo-
rithms. Let a be a dimension and A = {a1,a2, ...} be the set
of associated attributes. We view a as a function that maps
every host to an attribute, i.e., a(x)2A is the attribute of host
x. Let T be an ACIP allocation. We use Ca(T ) to denote the
minimum number of rules to represent dimension a . Like-
wise, for a set of dimensions D = {a,b , . . .}, CD (T ) repre-
sents the total number of rules to present all the dimensions
in D using the allocation T , i.e., CD (T ) = Âf2D Cf (T ). We
define opta = minT Ca(T ) and optD = minT CD (T ) to be
the minimum number of rules to represent dimension a and
the set of dimensions, respectively.

A single dimension: We start with the simplest case: as-
signing addresses to represent exactly one dimension. Con-
sider the dimension Role: each attribute of Role, such as Fac-
ulty, Students or Visitors, should have its own set of rules for
the hosts. As a prefix pattern matches a power-of-two num-
ber of hosts (e.g., 0*** stands for 8 hosts and 111* stands for
2 hosts), one attribute might need several rules. The rules of
different attributes do not overlap, i.e., matches are disjoint.
Below, we describe a simple algorithm that finds an optimal
address allocation to represent one dimension.

Given the dimension function a : U ! A, the algorithm
returns the address allocation function T : U ! {0,1}W .

5
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optimizes the number of prefix rules to represent attributes
along multiple dimensions. It targets at multi-table switch ar-
chitectures with IP prefix matching tables. We first introduce
the notation, then discuss the optimal solution for a single di-
mension and the generalization to multiple dimensions.

We use the following notations when illustrating the algo-
rithms. Let α be a dimension and A = {a1,a2, ...} be the set
of associated attributes. We view α as a function that maps
every host to an attribute, i.e., α(x)∈A is the attribute of host
x. Let T be an ACIP allocation. We use Cα(T ) to denote the
minimum number of rules to represent dimension α . Like-
wise, for a set of dimensions D = {α,β , . . .}, CD (T ) repre-
sents the total number of rules to present all the dimensions
in D using the allocation T , i.e., CD (T ) = ∑φ∈D Cφ (T ). We
define optα = minT Cα(T ) and optD = minT CD (T ) to be
the minimum number of rules to represent dimension α and
the set of dimensions, respectively.

A single dimension: We start with the simplest case: as-
signing addresses to represent exactly one dimension. Con-
sider the dimension Role: each attribute of Role, such as Fac-
ulty, Students or Visitors, should have its own set of rules for
the hosts. As a prefix pattern matches a power-of-two num-
ber of hosts (e.g., 0*** stands for 8 hosts and 111* stands for
2 hosts), one attribute might need several rules. The rules of
different attributes do not overlap, i.e., matches are disjoint.
Below, we describe a simple algorithm that finds an optimal
address allocation to represent one dimension.

Given the dimension function α :U→A, the algorithm re-
turns the address allocation function T : U → {0,1}W . The
core idea is to treat the number of hosts for each attribute
as the sum of power-of-twos and use a prefix rule for each
power-of-two. Specifically, we first partition hosts into |A|
sets based on their attributes. Let ni be the number of hosts
with attribute ai (i = 1, , |A|) and bin(ni) be the binary repre-



sentation of ni. We represent ni as the sum of distinct power-
of-twos based on bin(ni). For example, bin(14) = b1110 and
14 is represented as 8+ 4+ 2. Next, for each attribute ai,
we further partition the set of hosts into subsets according
to sum representation of ni. For example, if ni = 14, we will
partition the set of hosts into 3 subsets with size 2,4 and 8 re-
spectively. The last step is to sort all the subsets for different
attributes in non-increasing sizes. Hosts are ordered based
on the subsets they belong to. The resulting address alloca-
tion gives the k-th host address bin(k). The pseudo-code of
the algorithm is shown in Algorithm 1.

Algorithm 1 Optimal algorithm for a single dimension α
for all attribute ai ∈ A do

Ui = {x ∈U , where α(x) = ai}
ni = |Ui|
for j = 0 to W do

if 2 j & ni > 0 then
Create a subset of 2 j hosts selected from Ui
Remove these 2 j hosts from Ui

end if
end for

end for
Sort all subsets by their sizes in a non-increasing order
Sort hosts according to the order of subsets
Assign k-th host an address of bin(k), k = 0,1, ...,N
return the address allocation of hosts

Let ‖bin(ni)‖ be the number of 1s in the binary represen-
tation of ni, e.g., ‖bin(14)‖ = 3. The above algorithm con-
structs ∑|A|i=1 ‖bin(ni)‖ subsets. We show that the resulting
address allocation needs exactly ∑|A|i=1 ‖bin(ni)‖ rules for α .
In other words, each subset takes a single rule to represent.
To prove it, we consider a subset of size 2i. Since subsets
are sorted in non-increasing sizes, any previous subset must
have a size of 2 j for some j ≥ i. Hence, the sum of the sizes
of all previous subsets are multiples of 2i. This guarantees
that all 2i hosts in the current set can be all represented by a
single prefix rule with exactly i wildcards. To prove the op-
timality of the algorithm, we further show that an attribute
shared by ni hosts requires at least ‖bin(ni)‖ rules.

PROPERTY 1. For a dimension α , let ni = |{x ∈
U |α(x)= ai}| be the number of hosts that have to be mapped
to an attribute ai, i = 1,2, · · · , |A|. The minimal number of
rules that can represent α in any ACIP allocation satisfies
optα = minT Cα(T ) = ∑|A|i=1 ‖bin(ni)‖.

Two dimensions: Let α : U → A,β : U → B be the di-
mensions under consideration, where B = {b1, · · · ,b|B|} is
the set of attributes in the second dimension. We observe a
clear tradeoff between shortening the representation of these
two dimensions. While we could choose the address alloca-
tion to be the optimal for α and use the minimal number of
rules for α , we may have to use many more rules to represent
β . Since the address allocation is shared by both dimensions,
in most cases we cannot find an allocation that favors both

dimensions. Below, we show the property on the relation-
ship between the optimal allocation for two dimensions and
the optimal allocation for each dimension. We recall that the
optimal allocation minimizes the sum of the number of rules
to represent each dimension.

PROPERTY 2. The optimal allocation for the dimensions
α , β satisfies optα,β ≥ optα + optβ . An equality optα,β =
optα + optβ is achieved if there exists an allocation that is
optimal for the dimension α as well as for the dimension β .

To obtain an upper bound on the optimal number of rules,
we construct a special allocation below. Let γ be a new di-
mension, which is the product of α and β . The correspond-
ing set of attributes C = {c1, . . . ,c|A|·|B|}. For a host x ∈U , if
α(x) = ai,β (x) = b j then γ(x) = c(i−1)·|B|+ j. The dimension
γ , denoted by γ = α × β , has the property that γ(x) deter-
mines the attributes α(x),β (x) for the same host x. Consider
the representation of γ under some allocation T with Cγ(T )
rules. We can obtain a representation of the dimension α (or
of β ) with the same number of rules by only modifying the
attribute of each rule, i.e., replacing attribute in C with the
corresponding attribute in A (respectively in B). Therefore,
Cα(T )≤Cγ(T ), Cβ (T )≤Cγ(T ). Finally,

Cα(T )+Cβ (T ) =Cα,β (T )≤ 2Cγ(T ) (1)

We remark here that these are not necessarily the minimum
representations of α,β with the address allocation T : we can
further compress rules for each dimension.

Next we show that an optimal allocation for γ is a 2-
approximation of the optimal allocation for α,β , i.e., the
number of rules it generates is at most twice of the mini-
mum. Consider some allocation T , it must satisfy

Cγ(T )≤Cα(T )+Cβ (T ) =Cα,β (T ) (2)

This is because a group of hosts that cannot be represented
using a single rule in γ must have different attributes in at
least one of α and β , thus requiring a minimum of two rules
to represent in that dimension. Let Tγ be the optimal solu-
tion of γ and Tα,β be the optimal solution for α,β together.
Substituting T with Tα,β in Equation 1 and 2, we obtain

Cγ(Tα,β )≤Cα(Tα,β )+Cβ (Tα,β ) =Cα,β (Tα,β )≤ 2Cγ(Tα,β )

Meanwhile, since Cα,β (Tα,β ) = optα,β and Cγ(Tα,β ) ≤
Cγ(Tγ) = optγ , we conclude the following property:

PROPERTY 3. Let Tγ be an optimal allocation for γ =
α×β . Then, Cα,β (Tγ)≤ 2 ·optα,β .

To summarize, for two given dimensions α,β , we calcu-
late γ = α×β and find its optimal allocation Tγ by the algo-
rithm for a single dimension. We then use this allocation to
represent each of the dimensions α,β .

General number of dimensions: We can generalize the
above solution for two dimensions to handle a set D of an
arbitrary number of dimensions M = |D |. Similar to com-
puting γ for the two dimensions, we introduce a dimen-
sion ΠD , whose attributes for a host x ∈ U is a vector of
length |D | with the attributes of all dimensions in D for that



CS EE
Faculty 5 3
Student 2 6

(a) Group sizes

⇒

Id (Dept, Role, Value)
1 CS, F, 1
2 EE, F ,1
3 EE, S, 2
4 CS, S, 2
5 EE, F, 2
6 EE, S, 4
7 CS, F, 4

(b) Initial nodes

Figure 3: Create nodes from input of Figure 2(a).

host. We show that the optimal allocation for ΠD is an M-
approximation to the optimal allocation for D . We omit the
proof for brevity.

4.2 Wildcard Solution
In this section, we present an algorithm that generates

wildcard rules by optimizing the output of the prefix solu-
tion. To illustrate the algorithm, we use the same example
in Figure 2. For clarity, we use host group to refer the set
of hosts with the same attributes along all dimensions; we
use rules and patterns interchangeably to refer the compact
ACIP representation of host groups and attributes.

We revisit our example. The prefix solution uses 1 pat-
tern for the CS Students group and 2 patterns for each of the
rest groups, because it views the size of a host group as the
sum of powers-of-twos (e.g., 5 = 1+4), each of which cor-
responds to a prefix pattern. Hence, it uses 2+ 2 = 4 prefix
rules to represent Faculty attribute. But if we assign {0111,
010*} to EE Faculty and {0110, 11**} to CS Faculty, then
we can compress these patterns to a single pattern *1** to
represent Faculty attribute. The key observation is that if two
host groups share common attribute(s), it is beneficial to as-
sign them similar patterns that can be compressed to reduce
the number of rules for the common attribute.

Potential compression. Our first task is to find out all the
potential compression of patterns among host groups. Start-
ing with the output of prefix solution, which uses the sum of
power-of-two terms to denote the size of a host group, we
map every power-of-two term to a node. The node saves the
value of the term and copies the attributes of the host group.
For example, we can create two nodes for the CS Faculty
group: (CS, Faculty, 1) and (CS, Faculty, 4), as the group
size 5 = 1+4. Figure 3(b) shows the full list of nodes.

Two nodes can be compressed if their values are equal and
they share some common attribute(s). The result of compres-
sion is a new node that (1) has a value equal the sum of the
values of the two nodes, (2) “inherits” the shared attributes
and (3) has /0 attributes for other dimensions. For example,
(CS, Faculty, 1) and (EE, Faculty, 1) can be compressed into
a new node ( /0, Faculty, 2). We call the new node a super-
node and the two original nodes sub-nodes. The compres-
sion suggests that we could use the super-node instead of
listing two sub-nodes individually to represent their common
attributes.

A super-node can be compressed with other nodes, as long
as they share the same attributes (except /0). But a node can-
not be compressed twice on the same dimension, i.e., once
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Figure 4: The compression graph: a node has an id, at-
tributes and a value. Colored nodes are super-nodes.
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Figure 5: Flip bits to compress nodes

(CS, Faculty, 1) and (EE, Faculty, 1) are compressed, nei-
ther of them can be compressed with other nodes that have
Faculty attribute. We repeat the compression until no new
super-nodes can be produced. We plot graphs to denote the
compression relationship by creating edges from sub-nodes
to their super-nodes (Figure 4).

In the graph, a node with value 2k can be assigned a wild-
card pattern with exactly k wildcards, which represent 2k

hosts. As we work on the output of the prefix solution, the
initial nodes (Figure 3(b)) should be assigned prefix patterns.

Compressible patterns. Two patterns are compressible if
they negate at exactly one bit, e.g., *00* and *10* are com-
pressed into **0*. When two sub-nodes (of a super-node)
are assigned compressible patterns (e.g., *00* and *10*), the
resulting pattern (e.g., **0*) can be assigned to the super-
node to achieve a reduction of one rule in representing the
common attribute, where we can use the compressed pattern
instead of listing two patterns independently. In the exam-
ple, we can use the pattern for ( /0, Faculty, 2) to represent
CS attribute rather than two patterns for (CS, Faculty, 1) and
(EE, Faculty, 1). Therefore, our goal is to assign patterns to
nodes to maximize the number of pairs of sub-nodes with
compressible patterns, i.e., the total reduction in the number
of rules to represent attributes.

Key idea: flip one bit. Let aibicidi be the pattern as-
signed to the i-th node, where ai,bi,ci,di ∈ {0,1,∗}. Con-
sider Node 1 (CS, Faculty, 1) and Node 2 (EE, Faculty, 1).
a1b1c1d1 and a2b2c2d2 are compressible if they negate at one
bit, i.e., a1b1c1d1 = a2b2c2d2, or a2b2c2d2, or a2b2c2d2, or
a2b2c2d2. Our key idea to enable compression is to choose a
bit (e.g., a,b,c or d) to flip. If we flip d, the compressed pat-
tern a1b1c1∗ (or a2b2c2∗) can be assigned to the super-node
( /0, Faculty, 2), i.e., Node 8. As a result, a8b8c8d8 = a1b1c1∗.
We plot the equality in Figure 5(a).



Dept
p a

0110 CS
001* CS
11** CS
0111 EE
10** EE
0*0* EE

Role
p a

*1** Faculty
*0** Students

Figure 6: Wildcard rule-sets.

Similarly, we can compress patterns of Node 3 and Node
4 by flipping c (d3 = d4 = ∗) as shown in Figure 5(b). We can
further compress (1) Node 5 and Node 3 by flipping b (as c3
is flipped before) and (2) Node 5 and Node 8 by flipping c
(shown in Figure 5(c)). However, we are unable to compress
Node 6 (a6b6c6d6 = a3b3 ∗∗) and Node 10 (a10b10c10d10 =
a3 ∗ c3∗), because their patterns do not match. We finish the
procedure by compressing Node 6 and Node 9, Node 7 and
Node 10 (Figure 5(e)). To translate the results to patterns, we
set all variables, i.e., a3,b3,c3,d1, to 0.

To summarize, with the idea of bit flipping, we construct
equality and inequality between the bits of patterns, i.e.,
a,b,c,d, assigned to nodes. For the patterns of each pair of
sub-nodes, if the equality (or inequality) is not determined
before, we choose the last possible bit to flip. When there
is no such a bit (i.e., all the patterns negating at one bit are
already used), then we choose to flip more than one bit un-
til the resulting patterns do not overlap with any used ones.
After checking all the pairs of sub-nodes, we obtain the full
equality and inequality. The final step is to set all free bit
variables to 0.

We can represent each attribute with rules given the pat-
tern assignment (Figure 6). For example, to represent Stu-
dent, we can use *0** for super-node ( /0, Student, 8), i.e.,
Node 12. Similarly, we use 10**, 0*0* and 0111 to repre-
sent EE. In total, we need 3+ 3+ 1+ 1 = 8 rules to repre-
sent all the attributes, whereas prefix solution needs 9 rules
(Figure 2(b)).

In what follows, we discuss the order to process pairs of
sub-nodes (or super-nodes) to achieve the optimization goal,
extend the solution to generate prefix rules and how to han-
dle weighted attributes to support the single-table switch ar-
chitecture (Section 3).

Processing order of sub-nodes. The order we use to pro-
cess sub-nodes matters, as the compression of one pair of
sub-nodes may restrict the compression of another (due to
the equality and inequality between bits). The algorithm cal-
culates the order values for super-node n as the total num-
ber of super-nodes in the tree rooted at n in the graph. For
example, the tree rooted at ( /0, S, 4) only contains one super-
node (i.e., itself); the tree rooted at ( /0, F, 8) contains three.
Super-nodes are sorted according to their order values and
examined one by one. When examining one super-node, we
process all the pairs of sub-nodes in its tree. If the compres-
sion failed for one pair (i.e., we cannot find a bit to flip),
we roll back all the previous compressions of sub-node pairs
in the tree and continue to examine the next super-node in
the sorted list; if the compressions of all pairs of sub-nodes
succeed, we remove these sub-nodes from the trees of other

super-nodes, re-calculate order values of the affected super-
nodes and sort again.

Extension: minimize prefix rules. Although the above
algorithm is designed to generate wildcard rules, with a sim-
ple trick we could use it to minimize prefix rules as well.
The key observation is that wildcard patterns are produced
when we choose to flip non-trailing bits to compress pat-
terns. For example, when compressing nodes a1b1c1∗ and
a2b2c2∗, if we choose c1 then the result a1b1 ∗ ∗ is a pre-
fix pattern, otherwise the pattern (e.g., a1 ∗ c1∗ or ∗b1c1∗) is
a wildcard pattern. Hence, to generate prefix rules, we only
need to constrain the algorithm to flip the last non-wildcard
bit (e.g., c1 in the pattern a1b1c1∗).

Extension: weighted attributes. The basic algorithm
minimizes the total number of rules to represent all the at-
tributes. But attributes may not be equally important in the
single-table switch architecture. For example, Students may
be used more often than Faculty. It is preferred to use fewer
rules to represent Students despite the increased number of
rules to represent Faculty. We can extend the wildcard algo-
rithm to minimize the total number of rules when attributes
are weighted. The intuition is to change how the order values
of super-nodes are calculated. We introduce the weight of a
super-node as the sum of weights of its non- /0 attributes. To
calculate the order value of a super-node, instead of counting
the number of super-nodes in its tree, we sum up the weights
of the super-nodes in the tree. The sorting and compression
procedure remains the same. We can also handle weighted
combinations of attributes (e.g., CS Faculty) with a similar
modification to the calculation of weights and order values
of super-nodes.

4.3 Handle Changes in Host Attributes
Our algorithms proposed so far support address alloca-

tion given the attributes of each host. In practice, attributes
of a host may change over time (e.g., the department of the
corresponding user might change), or new attributes may be
added (e.g., a new department may be created). In handling
changes, a key consideration is ensuring that only the IP ad-
dresses of impacted hosts are modified to the extent possible.

We employ two techniques to handle changes in attributes.
First, to handle growth in the number of hosts that have a cer-
tain attribute, we introduce slack, and budget for more hosts
than actually exist. A straight-forward solution is to provi-
sion for a growth in the number of hosts corresponding to a
given attribute by a fixed percentage (e.g., 10%), though in-
formation about projected trends could be used when avail-
able. For example, a university can estimate the number of
hosts in the coming semester based on the number of newly
admitted students.

Second, to handle growth in the number of attributes along
each dimension, we introduce a “ghost” attribute for each
dimension (an additional attributes with which no host is
currently associated) and decide the group sizes for combi-
nations of ghost and real attributes (e.g., the number of hosts
with ghost department and Students, or the number of hosts
with ghost department and ghost role).

Given the input with slacked group sizes and ghost at-



CS (9) EE (8) Ghost_dept (6)
Faculty (6) 3 1 2

Students (11) 4 5 2
Ghost_role (6) 2 2 2

↓
CS (16) EE (8) Ghost_dept (6)

Faculty (8) 5 1 2
Students (16) 9 5 2
Ghost_role (6) 2 2 2

Table 2: An example of slack
tributes, Alpaca algorithms compute ACIP allocation. When
the updates only occur for the existing attributes, we change
the addresses of the affected hosts to unused ACIP from the
patterns computed for their new attribute. In the case that
the provisioned slack of a group is exhausted, we partition
the address space of the associated ghost groups, whose at-
tributes are either ghost attributes or attributes of the ex-
hausted group, and allocate part of the space to the exhausted
one. For example, if the ACIPs of (Student, CS) are used
up, we could partition the address space of (Student, Ghost-
Dept), (GhostRole, CS) or (GhostRole, GhostDept) and as-
sign new space to (Student, CS). When the updates involve a
new attribute in one dimension, e.g., Department, we run Al-
paca algorithms on the address space for the ghost attribute
to split the space into two parts: one for the new attribute and
the other for the ghost attribute. Afterwards, the addresses of
affected hosts are changed accordingly.

Benefits of slack and ghost attributes. The above two
techniques offer another important advantage: further com-
pacting network policies beyond the optimal solution. Con-
sider an example where there are 7 CS hosts and 7 EE
hosts. Alpaca needs at least 3 rules for each attribute, as
7 = 4+2+1 (Section 4.1). With slack, we can round 7 to 8,
thus allowing Alpaca to use only 1 rule per attribute. In fact,
if we round the group size for every attribute to the nearest
power-of-two upper bound, we at most double the number
of addresses to use. Namely, we use at most one extra bit to
encode attributes given the slacked group sizes.

We create extra hosts with “mix-matched” attributes such
that the number of hosts for every attribute is power-of-two
(Algorithm 2). Let pa be the target power-of-two and ga be
the number of hosts for the attribute a. We choose attribute vi
from i-th dimension such that pvi > gvi ,∀i ∈ [1,M], and cre-
ate h = mini{pvi − gvi} hosts with attribute v1, ..,vM . When
all attributes in a dimension reach their target power-of-two
(i.e., pa = ga), we use the ghost attribute as default, assum-
ing its target power-of-two is infinite. We repeat the proce-
dure until all attributes reach their target power-of-two (ex-
cept ghost attributes). Consider the example in Table 2. The
numbers of hosts for CS, Faculty and Students should be
rounded to 16,8 and 16. We create 2 CS Faculty hosts in the
first iteration and create 5 CS Students afterwards.

For more complex updates that involve additions of new
dimensions, it may be desirable to recompute IP allocations
from scratch. However, we make several points. First, such
scenarios are relatively infrequent. We envision that Alpaca
algorithms are run with a conservative set of dimensions,
even if some of these dimensions are not currently used as

Algorithm 2 Slack algorithm
while true do

for all Dimension di do
vi = ghost attribute
for all Attribute a ∈ di do

if pa > ga then
vi = a

end if
end for

end for
if ∀i,vi is ghost attribute then

break
end if
h = min pvi −gvi
gvi = gvi +h,∀i
Create h hosts with attribute v1, ...,vM

end while

part of network policy. Addition of new dimensions is likely
to happen over long time-scales — operators typically col-
lect host attribute information using device registration in-
formation filled by owners, and introducing new dimensions
would require new data collection for registered devices.
Second, when such scenarios do occur, it is feasible to tem-
porarily deal with it by splitting the unused address space of
other dimensions and introducing less compact classification
rules to identify a given set of hosts. Finally, changes in ad-
dress allocation can be incrementally handled using DHCP.

4.4 Practical Issues
Layer-3 routing. In Alpaca, we consider L3 routing as

a policy that forwards packets based on the “location” of
their destinations (e.g., the edge switches of the L3 network).
Hence, Location is regarded as one dimension in the ACIP
allocation. We can run Alpaca to generate classification rules
for location dimension, i.e., the rule-set for routing. In some
cases, operators may want to pre-assign subnets to the edge
switches, i.e., the classification rules for Location are pre-
determined. Alpaca can work with the requirement as well.
The prefix solution naturally decides the prefix patterns for
one dimension after another, it can compute the rules given
the pre-assigned prefixes for Location; the wildcard solution
can construct the equality and inequality of bits in the pat-
terns for nodes based on the Location prefixes first, and make
the later ACIP allocation to comply the prefixes.

Mobility. There are two common solutions to ensure con-
nection affinity when hosts move. One approach is to keep
the IPs of end-hosts unchanged and update routing rules
instead [12]; the other proposes protocols for end-hosts to
maintain connections when both IPs can change [13, 14].
While seamless migration is orthogonal to our work, Alpaca
can work well with either approach. In the former case, we
do not update Alpaca’s classification results, as the attributes
of the host is unchanged except location, and the change of
location (used by the routing policy) is handled by the pro-
posed solution; in the latter case, we can freely assign a new
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Figure 7: Optimize network policies.

#ACLs Total #Rules #SPU #DPU
University B 13 17868 577 624
University C 5027 32401 523 87

Table 3: Network policies of two universities.

ACIP to the host based on its updated attributes (including
location).

5. EVALUATION
In this section, we evaluate Alpaca’s effectiveness in pro-

ducing concise rules under two scenarios: (i) actual policies
in existing networks and (ii) futuristic scenarios where op-
erators may express policy along many orthogonal dimen-
sions. For existing settings, we evaluate Alpaca using the
network configuration files of University B and University
C (Section 5.1). For futuristic settings, we use the host at-
tribute data obtained from University A (Section 5.2). De-
tails of both data-sets were presented in Section 2.

Overall, our results show that Alpaca can reduce the num-
ber of rules by 60%−68% and 40%−96% as compared to
the current IP address allocation for multi-table switches and
single-table switches, respectively. Meanwhile, it has the po-
tential to reduce the total number of rules by over an order of
magnitude as compared to the traditional single dimensional
approaches (e.g.,VLAN) in futuristic scenario where the pol-
icy is expressed on many dimensions. Our experiments fur-
ther demonstrate that Alpaca can handle changes in hosts
gracefully, with only a small extra number of rules.

Our evaluations explore the performance of both Alpaca
variants: Prefix (ALP_PFX) and Wildcard (ALP_WC), and
for comparison purposes we also consider the BitSegmenta-
tion scheme (BitSeg). Unless otherwise mentioned, both our
prefix and wildcard algorithms use the algorithm (with pre-
fix extension) in Section 4.2 and the extension with slack in
Section 4.3 by default. We evaluate the schemes for multi-
table and single-table switches. However, our evaluations
with single-table switches is limited to the wildcard algo-
rithm, since the prefix algorithm can only be applied to the
multi-table architectures with prefix matching tables.

5.1 Benefits with Existing Policies

5.1.1 Alpaca for multi-table switches
We extract the source and destination policy units (SPUs

and DPUs) from the low-level configuration files for both
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Figure 8: Benefits of slack. BS, WC and PFX denote
Wildcard, Prefix and BitSegmentation schemes. NS in-
dicates variant without slack.
University B and University C, as discussed in Section 2.
Table 3 shows the total number of ACL rule-sets, ACL rules
across rule-sets, and the number of SPUs and DPUs for both
universities. Given a pipeline of tables, we install the clas-
sification rules that associate a given IP with its appropriate
SPU and DPU in the first two tables, and the actual policy
action (e.g., permit or deny) based on the SPUs and DPUs in
the last table. We focus on the number of classification rules
in the first two tables for a given policy, since the last table
is the same in all approaches.

Figure 7(a) compares the number of rules used by (1) the
original IP allocation (Orig), (2) BitSeg, (3) ALP_PFX and
(4) ALP_WC for University B and University C, respec-
tively. The original IP allocation needs the most rules. Bit-
Seg takes the least, as it uses one rule for each policy unit.
Specifically, the number of rules used by BitSeg equals the
number of SPUs and DPUs. Both ALP_PFX and ALP_WC
perform closely to BitSeg, achieving 68% reduction in rule
consumption as compared to the original. It confirms that
Alpaca can efficiently encode policy units.

Benefits of slack. We compare the case with and with-
out slack operations to show the benefits of trading an ex-
tra bit for significant reduction in number of rules. Fig-
ure 8(a) presents the reduction in the number of rules for
University B. We use NS to indicate running Alpaca with-
out slack. While WC_NS (3rd bar) is competitive with other
approaches, PFX_NS (5th bar) performs slightly worse, giv-
ing a reduction of 35.4%. The reasons are two-fold: for one
thing, prefix patterns fundamentally restrict the potential of
using fewer rules (as compared to wildcard patterns); for the
other, PFX_NS solutions represent the exact group size of
every combination (i.e., each SPU and DPU pair) without
any slack. If the group size is not power-of-two, PFX_NS so-
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Figure 9: Encode attributes in addresses.

lutions need many more rules. We bridge the gap by adding
slack and rounding group sizes. As a result, PFX offers sim-
ilar performance to the optimal (i.e., BitSeg). In the remain-
der of the evaluation, we run slack algorithm before IP allo-
cation by default.

Moving to the number of bits for encoding (Figure 8(b)),
we find BitSeg performs the worst, using as many as 34 bits
(more than IPv4!). We calculate the least number of bits that
can sufficiently number all the hosts (13 for University B).
While the original allocation uses the least bits, PFX_NS
takes exactly one bit more as the slack algorithm makes use
of an extra bit to round group sizes (Section 4.3). Alpaca
strikes a balance in both the number of rules and bits, using
almost as few rules as BitSeg and one extra bit than the least
number of bits.

5.1.2 Alpaca for single-table switches
Generally, a switch with a single table takes more rule

space than the one with multiple tables to implement the
same policy, because the rules installed in the former case
are the cross-product of rules in the multiple tables in the
latter case. Alpaca uses the frequency of attributes (i.e., SPU
or DPU) used in ACLs to minimize the resulting rules. We
compare three approaches: ALP_WC, BitSeg and the orig-
inal IP allocation. Figure 7(b)(c) demonstrate the effective-
ness of Alpaca in compacting large ACL rule-set. Alpaca
wildcard compacts the original policies by 40%−96%, com-
petitive with BitSeg. We would like to point out that the orig-
inal ACLs are written with respect to the resource constraints
of the deployed switches in the networks. As a result, all the
original ACLs could fit into the switches. But even so, the
reduction by Alpaca is significant. It suggests that with Al-
paca, the network operators can use cheaper switches with
smaller rule-tables to support today’s policies, or plan for
larger policies in the future with the current switches.

5.2 Benefits with Futuristic Policies
We demonstrate Alpaca’s capability to support flexible

attribute-based policies with a series of experiments on the
host information at the CS department of University A (Ta-
ble 1). In the current CS network, operators deploy VLANs
to group hosts with the same Role, which is used in most
network policies. But they would like to use Security Level,
Status and Operating System for access control and have
flexible QoS policies defined on Usage, CS_owned as well.

Hence, we examine the cost in terms of rules and address
space to support the futuristic scenarios, where policies are
defined on attributes along multiple dimensions.

We compare Alpaca with three approaches:
(1) SingleDim (e.g., VLAN), which assigns addresses

based on a single dimension. SingleDim uses a few rules to
represent attributes for one dimension: VLAN uses one rule
(the subnet) for each Role attribute; a host is assigned a ran-
dom address in the subnet corresponding to its Role attribute.
However, given a second dimension or more, SingleDim has
to enumerate every single host and list their attributes.

(2) SD_PFX, which applies an optimal algorithm [15] to
minimize the number of prefix rules for attributes, given the
SingleDim address assignment.

(3) SD_WC, which uses an efficient heuristic [16] to
compute the wildcard rules to represent attributes based on
the SingleDim address assignment, as minimizing wildcard
rules is NP-hard [17].

We remark that SD_PFX and SD_WC minimize the num-
ber of rules by assuming rule priority. Both methods gener-
ate overlapping rules for different attributes. In contrast, Al-
paca generates non-overlapping rules for different attributes,
i.e., does not apply rule priority. Below, we show that even
without using rule priority, Alpaca significantly outperforms
the two compression methods.

Scale with more dimensions. We evaluate Alpaca’s en-
coding efficiency and scalability with increasing number of
dimensions. Six dimensions are chosen (in order): Role, Se-
curity Level, Location, Status, CS_owned and Usage. The
initial set of dimensions only contains Role. Then, in each
iteration, we add one more dimension to the current set and
run Alpaca algorithms to generate classification rules. Fig-
ure 9(a) plots the number of rules generated by SingleDim,
SD_PFX and SD_WC and Alpaca over the six iterations.
Given one dimension, all approaches generate a small num-
ber of rules. Moving to two dimensions (i.e., Role and Se-
curity Level), SingleDim has to potentially enumerate hosts
and their attributes, taking as many rules as the number of
hosts in the data. The number of rules used by SingleDim
is unchanged over the iterations then. SD_PFX and SD_WC
generates less rules than SingleDim, as they apply compres-
sion algorithms for a smaller rule set to represent attributes.
Yet, when there are six dimensions, the number of rules
(1130 wildcard rules and 1363 prefix rules) is very close
to the number of hosts. In contrast, both Alpaca prefix and
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wildcard scales well with increasing number of dimensions.
Alpaca uses 376 wildcard rules or 456 prefix rules for six
dimensions, which are significantly smaller. We show the
number of bits in Figure 9(b). Both Alpaca and SingleDim
approaches use 12 bits, while the least number of bits (de-
noted as Opt) is 11 (1491 < 211). BitSeg is infeasible in
practice after two dimensions, as it takes more than 16 bits
to encode attributes.

Scale with more hosts. Our data only covers a single de-
partment, but an entire university (with dozens of depart-
ments) has more hosts and enterprises can be even larger in
sizes. We examine Alpaca’s scalability with more hosts, by
synthesizing the host information. We copy each host 2 to 10
times and obtain the scaled-up host data. Figure 9(c) com-
pares several approaches to classify hosts in 6 dimensions.
Alpaca scales well, using 436 wildcard rules or 528 prefix
rules for around 15000 hosts. Its performance is very stable,
due to the use of aggregated patterns (e.g., wildcard or pre-
fix matches) to classify groups of hosts. The number of hosts
does not impact its performance. In contrast, SingleDim po-
tentially needs 15000 rules to enumerate every host; it does
not scale to larger networks. The compression algorithms do
not help much: SD_PFX and SD_WC need 13589 and 10821
rules, respectively, because the single dimension based allo-
cation does not help the aggregation on other dimensions.

Encode different sets of dimensions. While Alpaca per-
forms well for three dimensions: Role, Security Level and
Location (as shown above), we are curious about its perfor-
mance on a different set of three dimensions, such as Role,
CS_owned and Operating System. Hence, we fix the num-
ber of dimensions to encode and run the algorithm on vari-
ous sets of dimensions. Figure 10(a) shows the performance
of Alpaca to encode seven sets of three dimensions. We do
observe the fluctuation: the number of rules generated by Al-
paca ranges from 36 to 117 for wildcard case and 44 to 135
for prefix case. Upon closer examination, we find out that
the performance is highly correlated with the possible com-
binations of attributes. Specifically, for the set of dimension
{Role, Security Level, Location}, there are 80 combinations
of attributes which at least one host is associated with; for
the set {Status, CS_owned, OS}, there are only 22 combi-
nations. Given increasing numbers of combinations of at-
tributes, Alpaca is more likely to generate many rules.

Update the assignment for new hosts. We divide hosts
into two equal-sized sets based on their created time and
run Alpaca to encode four dimensions: Role, Security Level,
Status and Usage. We use the first set for the initial hosts

and the second set for the newly added hosts. For the first
set, Alpaca provisions slack and creates ghost attributes for
all dimensions. The second set not only inserts more hosts
with the existing attributes but also introduces 4 more new
attributes in Security Level. To assign addresses to new hosts
with existing attributes, Alpaca uses the slack in the cor-
responding group. But if the group size is insufficient, Al-
paca has to “stealâĂŹâĂŹ flow space from the related ghost
groups (Section 4.3). To handle the new attributes, Alpaca
splits the address space of ghost attributes in the same di-
mension as well. In our evaluation (Figure 10(b)), the first
set (left red bar) uses 139 prefix rules or 119 wildcard rules
to represent the four dimensions. Fixing the assignment for
the first set, we calculate the extra rules needed to handle the
second set. The extra rules come from two parts: (1) hosts
with new attributes and (2) overflowed group sizes. As a re-
sult, we need an extra 6 rules for the new attributes and 24
rules for the overflowed groups. The overhead is very small
compared to 153 prefix rules or 130 wildcard rules for the
union of the two sets, where the assignment is computed
from scratch without any incremental updates.

6. RELATED WORK
Rule optimization: Minimizing prefix rules matching one

header field is easy [18], but minimizing prefix rules or wild-
card rules in general cases is NP-hard [15, 17]. Optimal so-
lutions are developed to minimize prefix rules in special
cases [18–22]. Heuristics [15, 23, 24] are presented to com-
press rules in general cases. In particular, [25] suggests to
decompose a single rule list into a pipeline of rule lists to
minimize the total number of rules. All of these works take
the rule-set as an input and explore the potential for mini-
mization, which, in fact, is limited by the original (unopti-
mized) address allocation. In comparison, Alpaca generates
the rule list as an output through a smart address allocation
process to minimize the number of rules.

Address permutation: Wei et al. propose to swap ad-
dresses between two blocks of users to reduce the number
of rules [26], but the algorithm can only handle up to two
dimensions. Meiners et al. use permutation of the bits in ad-
dresses to create prefix patterns so compression algorithms
can apply [16]. But it only discovers the optimization poten-
tial within the original address allocation.

Information encoding: Huffman coding encodes at-
tributes of a single dimension using prefixes, but its goal is
to minimize the weighted sum of the prefix lengths of all
attributes. Hence the prefixes do not match the group sizes.
SoftCell [12] embeds two dimensional information, i.e., lo-
cation and middlebox service chain, in the NAT-ed IP ad-
dresses. Its encoding mechanism is a special case of BitSeg-
mentation. Algorithms to encode forwarding rules with min-
imum bits are proposed in [27, 28].

Attribute-based policy enforcement: Ethane [3] pro-
poses to implement access control at the network edge by
directing the first packet of every flow to a controller, which
consults the attributes of hosts and install microflow rules
on the switch. FlowTags [4] tag packets based on host at-



tributes and match tags to enforce network policies. Another
approach, NetAssay [29], supports network traffic monitor-
ing policies by pushing specific switch-rules for each host
given their current IPs. All these work do not optimize IP
allocation and install many host-specific rules.

7. CONCLUSION
In this paper, we have made three contributions. First, we

show the importance and feasibility of considering attributes
in IP address allocation. Second, we present the Alpaca sys-
tem, and two algorithms which cope well with constraints
on the IP address space, enterprise churn, and heterogeneity
in group sizes. When evaluated with configuration data from
two universities, ALP_WC and ALP_PFX reduce the num-
ber of rules by 50%−68% and 60%−68% respectively for
multi-table switches. Further, the algorithms have the poten-
tial to reduce the total number of rules by over an order of
magnitude compared to single dimension based IP address
allocation schemes. This can in turn lower the barriers for
network administrators to express richer policies involving
multiple dimensions. While promising, our results are only
a first step. In the future, we hope to build and deploy an
actual prototype, as well as evaluate the system with more
networks and richer data-sets.
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