
1

Alpaca: Compact Network Policies
with Attribute-Encoded Addresses
Nanxi Kang, Ori Rottenstreich, Sanjay G. Rao and Jennifer Rexford

Abstract—In enterprise networks, policies (e.g., QoS or secu-
rity) are often defined based on the categorization of hosts along
dimensions such as the organizational role of the host (faculty vs.
student), and department (engineering vs. sales). While current
best practices (VLANs) help when hosts are categorized along a
single dimension, policy may often need to be expressed along
multiple orthogonal dimensions. In this paper, we make three
contributions. First, we argue for Attribute-enCoded IPs (ACIPs),
where the IP address allocation process in enterprises considers
attributes of a host along all policy dimensions. ACIPs enable
flexible policy specification in a manner that may not otherwise be
feasible owing to the limited size of switch rule-tables. Second, we
present Alpaca, algorithms for realizing ACIPs under practical
constraints of limited-length IP addresses. Our algorithms can be
applied to different switch architectures, and we provide bounds
on their performance. Third, we demonstrate the importance and
viability of ACIPs on data collected from real campus networks.

I. INTRODUCTION

Managing large enterprise networks is challenging. A typ-
ical enterprise has many users who belong to different de-
partments (e.g., sales and engineering, or computer science
and history), and play different roles (e.g., faculty, staff,
administrators, and students). In addition, the network supports
diverse end-hosts running different operating systems and
offering different services. In response, network administrators
want to enforce policies—such as access control and quality of
service—that group hosts along multiple different dimensions.
For instance, one policy may restrict access to a database
to all employees in the sales department, while another may
offer a higher bandwidth limit to senior managers across all
departments, and yet another may restrict access for old hosts
running a less secure operating system.

A. Enforcing Policies in Today’s Enterprises

To enforce policies in today’s enterprises, network ad-
ministrators typically rely on virtual local area networks
(VLANs) [2]. A host joining the network is assigned to a
VLAN based on its MAC address or the physical port of the
access switch. Hosts in the same VLAN are assigned an IP
address in the same IP prefix, even if they are not located
near each other. Traffic flows freely between hosts in the same
VLAN, while traffic between different VLANs traverses an IP
router that can enforce policy. Since a host can only belong to a

A preliminary version of the paper appeared in ACM CoNEXT 2015 [1]. N.
Kang is with Databricks (email: knx1029@gmail.com). O. Rottenstreich and J.
Rexford are with the Department of Computer Science, Princeton University,
NJ, USA (e-mails:{orir, jrex}@cs.princeton.edu). S. Rao is with the School
of Electrical and Computer Engineering, Purdue University, IN, USA (email:
sanjay@ecn.purdue.edu).

single VLAN, administrators typically assign hosts to VLANs
based on a single dimension (e.g., department or role), which
has several major limitations:
• The routers interconnecting VLANs need long lists of

data-plane “rules” to classify traffic along all relevant
“dimensions” of the source and destination hosts.

• No security or QoS policies can be imposed on intra-
VLAN traffic, forcing administrators to use a VLAN only
to group hosts that should “trust” each other.

• Since VLAN tags are removed from traffic destined to the
Internet, the border router must classify all return traffic
from the Internet to assign VLAN tags.

For instance, suppose a security policy depends on both user
role and department. If VLANs were created based on the
user’s department, then expressing a policy based on role in
a concise fashion is challenging. And, if two users in the
different department are close to each other, the traffic follows
inefficient paths through intermediate routers to go between
VLANs.

The rise of more flexible network switches, with open
interfaces to separate control software, enables an attractive
alternative. In recent years, switches built with commodity
chipsets expose a pipeline of rule-tables that perform match-
action processing on packet headers. While the rule tables
are relatively small (with small thousands of rules per stage,
to limit power and cost), the switches support programmatic
interfaces (e.g., OpenFlow, OF-Config, and OVSDB [3]) that
enable new ways of controlling the network by installing the
rules in support of higher-level policies. One natural approach,
adopted in the early Ethane system [4], directs the first
packet of each flow to a central controller, which consults a
database—containing all the relevant host attributes and high-
level policies—and reactively install rules for forwarding the
remaining packets of the flow. However, reactive, fine-grained
solutions like Ethane have high overhead and do not scale
to large enterprises. FlowTags [5] tags packets and uses the
tags to enforce network policies. Yet, this approach, when
applied to enterprise networks, requires installing many extra
tagging rules at the edge switches to classify hosts along all
dimensions. Moreover, these tags can confound middleboxes
that don’t understand the tag. Instead, we need a proactive
design that can aggregate hosts along many dimensions, while
keeping switch rule tables small.

B. Attribute-encoded IP Addresses

In the current enterprise networks, although IP addresses
are assigned based on attributes (e.g., a separate IP prefix

2

per VLAN), it is just on a single dimension. We argue that
a complete IP address management scheme should consider
all dimensions and enable compact representation of policies.
Our key idea is to assign each host an IP address based on
all dimensions of the policy—that is, an attribute-encoded IP
address (ACIP). Our solution, Alpaca (algorithms for policies
on attribute-encoded addresses), computes an efficient address
assignment, based on the policy dimensions and the attributes
of individual hosts, and a compact list of switch rules that
realize a specific network policy.

Alpaca proactively generates a small number of coarse-
grained rules in the switches, without using VLANs. Alpaca
greatly simplifies enterprise management by (i) enabling ad-
ministrators to specify policies on many orthogonal dimen-
sions while achieving an order of magnitude reduction in
rules; (ii) allowing policy to be correctly maintained even
when a host connects to the network at a new location; and
(iii) simplifying federated management, where different teams
manage different parts of the enterprise network.

Alpaca is unique in gaining from the flexibility in the
address allocation and the possibility to consider multiple
dimensions of all hosts in the allocation process. Through
extensive experiments we demonstrate that even while using
efficient existing rule compression schemes not doing so can
result in a potentially large memory increase.

While Alpaca has many potential advantages, several prac-
tical issues must be considered:

Limited IP address space: Since most enterprises have
limited IP address space, a naive ACIP assignment can easily
exhaust all the available bits.

Heterogenous group sizes: Some combinations of policy
attributes are much more common than others. As such, an
efficient address assignment cannot simply devote a portion
of the bits to representing group size.

Minimizing churn: It is important to support changes in
the policy attributes associated with a host (e.g., due to a user
moving to a different role or epartment), or changes in the
set of attributes themselves (e.g., due to the creation of a new
department).

Multi-stage switch pipelines: Rather than assuming
switches have a single rule table (as in OpenFlow 1.0 [6]), a
practical solution should capitalize on the multi-stage pipelines
in modern switch chipsets [7]–[9].

We propose a family of algorithms to generate ACIPs and
the associated rule tables, starting with a simple strawman
that devotes a separate set of address bits to each policy
dimension. This solution minimizes the number of rules but
consumes too much IP address space, making it infeasible in
most practical settings. We then propose two other algorithms
that can keep the number of rules small, while respecting
constraints on the number of bits in the IP address space. Our
algorithms optimize based on the characteristics of modern
switch chipsets. Conventionally, switch chip-sets have a single
TCAM rule-table that supports a few thousands of wildcard
rules matching on multiple header fields [6], [10], [11]. More
recently, we have seen the emergence of switch chip-sets
with a pipeline of multiple tables, where each table could be
a TCAM or a larger SRAM that supports prefix matching

on source IP or destination IP [7]–[9]. As such, our first
algorithm generates ACIPs that enable policies to be expressed
by solely IP prefixes, useful for rule tables that support IP
prefix matching. Our second algorithm targets generating rules
that perform arbitrary wildcard matching on IP addresses, in
exchange for a reduction in the number of rules. Together,
these algorithms can capitalize on the unique capabilities of a
variety of commodity switch architectures.

While assigning IP addresses to hosts, we make sure any
pair of hosts are always allocated distinct addresses. This
property is maintained even for two hosts that share the same
attributes along all dimensions.

Section II presents related work. Next, in Section III,
we present a case study of multiple campus networks, to
underscore the need for policies along multiple dimensions.
Section IV introduces ACIPs and formulates the optimization
problem Alpaca must solve, followed by Sections V, VI and
VII that present our algorithms. Using access control data
from two large campuses, the experiments in Section VIII
show that Alpaca can reduce the number of ACL rules on
existing networks by 60%− 68% for switches with multiple
tables, while requiring only 1 more bit of the IP address space
than needed to represent the number of hosts in the network.
Further, Alpaca can support futuristic scenarios with policies
based on multiple dimensions, while requiring an order of
magnitude fewer rules than VLAN-based configurations op-
timized for a single dimension. We also compare Alpaca with
known rule minimization techniques such as ORTC, TCAM
Razor and BitWeaving [12]–[14]. In particular, ORTC finds
for a given address allocation the optimal representation of a
dimension with a minimal number of prefix rules [12]. We
demonstrate that taking into account multiple dimensions is
crucial to achieve efficient representations. Our results also
show the advantages of a flexibility in the address allocation
process. Section IX concludes the paper.

II. RELATED WORK

Various approaches have been described to deal with the
limited memory size of rule matching tables. Alpaca is unique
in representing an arbitrary number of dimensions with a
complete freedom in the address allocation process. It relies
on new developed algebra for the performance analysis.

Address permutation: Wei et al. propose to swap ad-
dresses between two blocks of users to reduce the number
of rules [15], but the algorithm can only handle up to two
dimensions. Meiners et al. use permutation of the bits in
addresses to create prefix patterns so compression algorithms
can apply [14]. But it only discovers the optimization potential
within the original address allocation. Liu et al. [16] suggested
a novel approach of topological transformation to reduce the
representation memory size of classifier. Earlier to the lookup
that determines the classification value, a transformation is
applied to the header fields. This transformation, operated in
small lookup tables, enables to minimize the total memory
for all tables by taking advantage of the semantics of the
specific represented function. While this approach assumes
a single classifier, Alpaca considers the representation of an

3

arbitrary number of dimensions. Another important difference
is that in topological transformation, the representation of the
transformation is implemented through matching rules and re-
quires memory whose amount is affected by the identity of the
selected transformation. In Alpaca addresses are assigned by
DHCP servers and it is always better to select an assignment
that enables minimal representation of the dimensions.

Rule optimization: Minimizing prefix rules matching one
header field is easy [12], but minimizing prefix rules or
wildcard rules in general cases is NP-hard [13], [17]. Optimal
solutions are developed to minimize prefix rules in special
cases [12], [18]–[21]. Additional approaches [13], [22], [23]
are presented to compress rules in general cases. In particular,
[24] suggests to decompose a single rule list into a pipeline
of rule lists to minimize the total number of rules. All
of these works take the rule-set as an input and explore
the potential for minimization, which, in fact, is limited by
the original (unoptimized) address allocation. In comparison,
Alpaca generates the rule list as an output through a smart
address allocation process to minimize the number of rules.

Information encoding: Huffman coding encodes attributes
of a single dimension using prefixes, but its goal is to minimize
the weighted sum of the prefix lengths of all attributes. Hence
the prefixes do not match the group sizes. SoftCell [25]
embeds two dimensional information, i.e., location and mid-
dlebox service chain, in the NAT-ed IP addresses. Its encoding
mechanism is a special case of BitSegmentation. Concise
representation of small sets has been shown useful for the
encoding of attributes in SDN [26].

Attribute-based policy enforcement: Ethane [4] proposes
to implement access control at the network edge by directing
the first packet of every flow to a controller, which consults
the attributes of hosts and install microflow rules on the
switch. FlowTags [5] tag packets based on host attributes and
match tags to enforce network policies. Another approach,
NetAssay [27], supports network traffic monitoring policies by
pushing specific switch-rules for each host given their current
IPs. All these work do not optimize IP allocation and install
many host-specific rules.

III. CASE STUDY: DIVERSE ENTERPRISE POLICIES

In this section, we present a case study of 25 enterprise net-
works, to identify the challenges in representing sophisticated
policies, and the implications for Alpaca. Specifically:
• We present a qualitative analysis of the security and quality-
of-service policies employed by 22 universities, plus one
individual department that runs its network separately from
the campus IT group. The analysis indicates that networks
must often apply policy along several logical dimensions, with
multiple attributes as possible categories in each dimension.
However, the analysis also points to policies that are desirable
but difficult to realize in practice.
• We analyze router configuration data from two other large
campuses. The analysis provides further confirmation that
there is significant commonality in policy across hosts, but
also points to how an inefficient assignment of IP addresses
can lead to an unnecessary “blow-up” in rule-table size.

• We study host-registration data for one department-level
network, to understand the dimensions of network policies and
the number and size of host “groups” with these attributes. The
analysis has important implications for the design of Alpaca.

A. Policies on Multiple Dimensions

Many universities make descriptions of their high-level net-
work policies available online (see http://tinyurl.com/pwvlygx
for a summary). Most schools classify hosts by the owner’s
role (e.g., faculty, student, staff, visitors), department, resi-
dence (e.g., a particular dormitory), and usage (e.g., research
vs. education). In addition, many schools associate each host
with a security level (with around ten different integer values)
and whether the host is currently viewed as compromised
(with a “yes” or “no” value). Some schools also classify
hosts by bandwidth quota and past usage, to inform rate-
limiting policies, and by whether they offer core services (e.g.,
email and web servers). Based on these documents, and our
discussions with the administrators of the computer-science
department’s network of one university (University A), we
learned about the following example policies.

Security: Schools use the security level to limit which
external users can access a given host (and in what way). For
example, hosts at the lowest security level might be blocked
from receiving unsolicited traffic from external hosts; that is,
these hosts cannot run public services. Other security levels
correspond to different restrictions on which transport port
numbers are allowed (e.g., port 80 for HTTP, but not port 22
for SSH or 109, 110, and 195 for POP3). Some schools allow
individual departments to state their own access-control lists,
applicable only to hosts with IP addresses in that department’s
address block. When administrators identify an internal host
as compromised, they change the compromised attribute and
significantly restrict the host’s access to network services. In
addition, users in the visitor category typically have access to
a limited set of services on the campus (e.g., no access to the
printers or campus email servers and compute clusters). One
school restricts access to compute clusters in dormitories to
the students residing in that particular dorm.

Quality of Service: Some universities impose a different
default bandwidth quota based on the host’s role, but allow
students and postdocs to purchase a higher quota. Some
universities employ rate-limiting policies that depend on the
user’s bandwidth usage on previous days (e.g., users whose
bandwidth usage exceeded a certain level were rate-limited to
a lower level). Hosts offering core services are excluded from
bandwidth usage calculations for both the users responsible for
the service machines and the owners of the access machines,
to avoid that traffic counting against their usage caps. Also,
some schools offer higher quality-of-service for hosts assigned
for educational use (e.g., for streaming high-quality media in a
classroom). The administrators of University A also expressed
a desire to perform server load balancing for internal Web
services based on role, to prevent heavy load from one group
of users from compromising the performance of other users.

Administrator “wish-lists”: Our discussions with the ad-
ministrators of University A also indicated that there were

4

many additional policies that they would ideally like to imple-
ment in the network, but did not do so since they were hard to
realize in practice. University A assigns hosts to VLANs based
on role (e.g., faculty, staff, and student), for traffic isolation,
to prevent packet sniffing and excessive broadcast traffic.
The administrators would like to apply access-control policies
based on device usage, device ownership, and OS, but do not
do so today, since this would require exhaustive enumeration
of IP addresses in the switch configuration. Likewise, the
administrators expressed a desire to apply flexible QoS policies
based on (i) the way a device is used (e.g., research vs.
infrastructure machines) and (ii) whether the host is owned
by the department (unlike a “Bring Your Own Device” host).

Our discussions also revealed additional challenges with
federated network management. The campus network assigns
IP addresses in blocks based on location (e.g., building). This
raises challenges in applying security policies that restrict
access to users affiliated with computer science department.
Currently, the policy works correctly for hosts that are phys-
ically in the CS building, since these hosts are assigned a
prefix from the CS subnet. However, when a CS user works in
another building (common for faculty with dual appointments
in other departments), the host receives a different IP address
outside the CS subnet and the user is no longer able to access
the CS resources. While the administrators could conceivably
update network configurations dynamically to reflect the IP
addresses that should have access, the management complexity
is a deterrent. More generally, federated management would
be much easier if network administrators had concise ways to
represent security and QoS policies based on host attributes.

B. Potential for Concise Rules with ACIPs

Existing techniques for assigning IP addresses to hosts can
lead to a large numbers of rules in the switches. To quantify
this problem, we analyzed the access-control policies in router
configuration files for two university networks (University B
and University C). Prior work shows that hosts in a network
may be partitioned into a small number of policy units [28]—
i.e., a set of hosts that have identical reachability policies in
terms of their communication with the rest of the network.
Though the number of policy units is small, the number of
ACL rules to express policy could still be as large as the square
of the number of policy units. Thus, we go beyond [28], and
not only identify policy units, but also calculate the number of
rules required if ACLs were written in terms of policy units
rather than the existing IP assignment.

Specifically, we consider two hosts as belonging to the
same source policy unit (SPU) if and only if packets sent by
these hosts to all destinations are treated identically in every
ACL across all routers. Likewise, we consider two hosts as
belonging to the same destination policy unit (DPU) if and
only if packets from all sources to these hosts are treated
identically in every ACL across all routers. We then compute
the total number of rules needed to represent each ACL if
it were more compactly expressed in terms of its source and
destination policy units. Our results show that the number of
ACL rules required is much smaller than the product of the

Dimensions #Attributes Example Attributes
Role 8 Faculty, Student
Security Level 16 1, 2, ..., 16
Status 6 In service, In testing
Location 7 –
Usage 3 Research, Infrastructure, ...
CS owned 2 Yes, No
OS 5 MacOS, Windows, Linux, ...

TABLE I
HOST DATA FOR CS DEPARTMENT (UNIVERSITY A)

source and destination policy units, and indicates that a smart
ACIP allocation, which classifies hosts into their SPUs and
DPUs efficiently, can potentially offer significant reduction for
ACLs of the two universities (Section VIII).

C. Diverse Attributes and Group Sizes

To better understand the attributes of hosts, we collected
data about the 1491 registered hosts of the CS department
of one university (University A). Each host is associated with
seven dimensions of information, as summarized in Table I. In
this network, (i) hosts are assigned to separate VLANs based
on role and (ii) role, security level, and status are considered
in access-control policy.

Given the number of attributes in each dimension, hosts
could theoretically have 161,280 (i.e., 8× 16× 6× 7× 3×
2×5) combinations of attributes. In practice, only 287 unique
combinations exist; for example, no visitor has a CS owned
host. In addition, some combinations are much more popular
than others. One group of hosts—belonging to one Linux-
based compute cluster—has 109 members (more than 7% of
all hosts). The large number of attributes and the diversity
of group sizes have important implications for address assign-
ment in Alpaca, which encodes host attributes in the IP address
to enable more compact representations of policies.

Consider a naive address allocation scheme that performs
BitSegmentation, by (1) concatenating a binary encoding of
the host attributes along each dimension, where dimension i
with a set of attributes Di requires dlog‖Di‖e bits, and (2)
using the remaining bits to distinguish hosts with the same
attributes along all dimensions, requiring dlogXe bits, where
X is the size of the largest group.

The resulting encoding would enable very compact rules in
the switches, using wildcard patterns to match on any attribute.
However, this solution is impractical, even for this small
network. Representing the seven dimensions would require 19
bits, and representing the largest group (with 109 members)
would requires 7 bits, for a total of 26 bits—a highly inefficient
allocation of IP address space.

IV. ALPACA OVERVIEW

A. ACIP allocation with Alpaca

We present Alpaca, a system that embeds host attributes
in IP addresses to enable compact policies. Figure 1 shows
an overview of the system. Alpaca takes as inputs from the
network operator the set of policy dimensions, and a database
that lists the attributes associated with each host. It instructs

5

'+&3 6ZLWFK�GULYHU��H�J���2SHQ)ORZ�

$
VV
LJ
Q�
,3
V ,QVWDOO�UXOHV

$GGUHVV�VSDFH+RVW�LQIR

�GK<><

3ROLFLHV

Fig. 1. Use Alpaca in a network.

DHCP servers how to assign IP addresses to hosts based
on the results of Alpaca algorithm. If a host needs to be
assigned a new address (e.g., it moves to a new location),
the original attributes along with the new location are used
in determining the new IP address. Meanwhile, the switch
driver instantiates the network policies, which are defined
on attributes, by installing match-action processing rules on
switches. Alpaca coordinates with the switch driver such that
rules can correctly classify the IP addresses of hosts to the
corresponding attributes along different dimensions.

While ACIP allocation enables operators to express policies
defined on multiple dimensions with switch rules, Alpaca must
adapt to the following constraints:

Switch rule-table sizes: Switches impose hard constraints
on the maximum number of rules to be installed. Therefore,
Alpaca should optimize the classification of hosts for different
switch architectures so that the attribute-based policies can be
compactly expressed with switch rules that stay within the
rule-table sizes.

Adddress space: IPv4 is widely deployed and likely to
remain for the foreseeable future. Many enterprises have 16
or fewer bits for public IPv4 address space, or up to 24
bits for private IPv4 address space (i.e., 10.0.0.0/8). The
limited address space calls for an efficient ACIP allocation that
encodes attributes without wasting IPs. Though the address
space constraint may be relaxed if IPv6 is fully deployed in a
network, the allocation still needs to take the size of address
space into account to correctly represent attributes.

Dynamics: Attributes of a host along any dimension may
change. Alpaca must be able to handle changes in the attributes
of a host while ensuring that only the IP address of that
host changes, and that IP addresses of other hosts are not
impacted. Alpaca should also handle (1) addition or removal
of new attributes in existing dimensions without impacting the
existing IP address allocation, and (2) addition or removal of
dimensions, which is however relatively rare and may require
significant changes.

B. Problem Formulation

Given an IP address space of W bits, a set U of N hosts
(N ≤ 2W), a set of M dimensions and the attributes for the
hosts along each dimension, an Alpaca algorithm computes
an assignment of IPs to individual hosts and M sets of
classification rules. Consider a multi-table switch architecture

where each rule-set corresponds to a dimension and appears in
a dedicated table. A classification rule consists of an address
pattern p and an attribute a; rule (p,a) means that any host
with IP matching p has attribute a.

Our optimization metric is the total size of M rule-sets, i.e.,
the number of classification rules that decide the attributes
of all hosts along all dimensions in a multi-table switch
architecture. We would like to find an IP address assignment
that minimizes this total number of required rules.

An example is shown in Table II for the case of N = 16 hosts
with M = 2 dimensions of Department and Role. Their values
for each of the hosts are described in (a). Two IP address
assignments T1,T2 for each of the hosts are shown in (b). In
(c), we can see encodings of the M dimensions based on the
address assignments. With assignment T1, 7 rules are required
for the Department and 2 for the Role and the total cost is
9 rules. Alternatively, with assignment T2, 5 and 8 rules are
required for the two dimensions with a larger cost of 13.

Given an assignment, the number of required rules depends
on the encoding technique. We mainly focus (Section V) on
a simple technique named binary prefix [29], where prefix
rules with disjoint matching sets of addresses are used to map
addresses to attributes (as illustrated in Table II(c)). Due to
its simplicity, this encoding technique can be implemented
in simple memories or in simplified TCAMs without the
expensive priority encoder component.

We generalize our solution for a more general encoding
technique with wildcard matching rules that can implemented
in conventional TCAMs (Section VI).

C. Overview of Alpaca algorithms

Alpaca consists of a series of algorithms targeted at different
scenarios. The algorithms are described in Sections V-VII.

The Prefix algorithm computes prefix classification rules
with a proven approximation ratio to the optimal case. It uses
address space efficiently, requiring exactly dlog2Ne bits. It is
specially designed for multi-table switches with SRAMs that
support a large number of prefix rules.

The Wildcard algorithm computes wildcard classification
rules. It uses a small address space and can be applied on
multi-table switch architectures.

Both prefix and wildcard algorithms by themselves do not
handle dynamics and host attribute changes.

The Slack algorithm refines the prefix and wildcard algo-
rithms by taking advantage of one more bit in the address
space for an allocation that works well under dynamics in
host attributes.

V. ALPACA PREFIX ALGORITHM

In the following we describe Alpaca algorithms for assign-
ing IPs to individual hosts. The first algorithm is designed for
switch chipsets that allow prefix rules.

This section presents an address allocation algorithm that
optimizes the number of prefix rules to represent attributes
along multiple dimensions. It targets at multi-table switch
architectures with IP prefix matching tables. We first introduce

6

(a) Input dimensions Dept, Role
Hosts Dept Role

h1−h5 CS Faculty
h6−h7 CS Student
h8−h10 EE Faculty
h11−h16 EE Student

(b) Assignment Examples
address T1 T2
0000 h1 h1
0001 h2 h2
0010 h3 h3
0011 h4 h4
0100 h8 h5
0101 h9 h6
0110 h10 h7
0111 h5 h8
1000 h11 h9
1001 h12 h10
1010 h6 h11
1011 h7 h12
1100 h13 h13
1101 h14 h14
1110 h15 h15
1111 h16 h16

(c) Dimension representation based on the assignments
T1 T2

Dept Role Dept Role
00**→ CS 0***→ Faculty 00**→ CS 00**→ Faculty
010*→ EE 1***→ Student 010*→ CS 0100→ Faculty
0110→ EE 0110→ CS 0101→ Student
0111→ CS 0111→ EE 0110→ Student
100*→ EE 1***→ EE 0111→ Faculty
101*→ CS 100*→ Faculty
11**→ EE 101*→ Student

11**→ Student
7+2 = 9 rules 5+8 = 13 rules

TABLE II
ALPACA ILLUSTRATION. A COMMON IP ASSIGNMENT IS USED TO

REPRESENT ALL DIMENSIONS. THE COST OF AN ASSIGNMENT IS GIVEN
BY THE SUM OF ITS COSTS FOR THE DIMENSIONS, I.E., THEIR TOTAL

NUMBER OF REQUIRED RULES.

the notation, then discuss the optimal solution for a single
dimension and the generalization to multiple dimensions.

We use the following notations when illustrating the al-
gorithms. Let α be a dimension and A = {a1,a2, ...} be the
set of associated attributes. For instance in the example from
Table II the dimension Dept has the set of attributes {CS, EE}
and the dimension Role has the set {Faculty, Student}. We
view α as a function that maps every host to an attribute, i.e.,
α(x)∈A is the attribute of host x. Let T be an ACIP allocation.
We use Cα(T) to denote the minimum number of rules to
represent dimension α . Likewise, for a set of dimensions
D = {α,β , . . .}, CD (T) represents the total number of rules
to present all the dimensions in D using the allocation T ,
i.e., CD (T) = ∑φ∈D Cφ (T). We define optα = minT Cα(T) and
optD = minT CD (T) to be the minimum number of rules to
represent dimension α and the set of dimensions, respectively.

A. A single dimension

We start with the simplest case: assigning addresses to
represent exactly one dimension. Consider the dimension Role:
each attribute of Role, such as Faculty or Student, should
have its own set of rules for the hosts. As a prefix pattern
matches a power-of-two number of hosts (e.g., 0*** stands
for 8 hosts and 111* stands for 2 hosts), one attribute might
need several rules. The rules of different attributes do not
overlap, i.e., matches are disjoint. Below, we describe a simple
algorithm that finds an optimal address allocation to represent

Algorithm 1 Optimal algorithm for a single dimension α

for attribute ai ∈ A do
Ui = {x ∈U , where α(x) = ai}
ni = |Ui|

Start from address 0 . . .0, R = /0
for j =W to 0 do

for attribute ai ∈ A do
if ni ≥ 2 j then

Allocate in T , 2 j next addresses to hosts from Ui
Remove these 2 j hosts from Ui
Add to R a corresponding rule:

with j *s and attribute ai
ni = ni−2 j

return address allocation of hosts T , set of rules R

one dimension.
Given the dimension function α : U → A, the algorithm

returns the address allocation function T : U → {0,1}W . The
core idea is to treat the number of hosts for each attribute as
the sum of power-of-twos and use a prefix rule for each power-
of-two. Specifically, we first partition hosts into |A| sets based
on their attributes. Let ni be the number of hosts with attribute
ai (i= 1, . . . , |A|) and bin(ni) be the binary representation of ni.
We represent ni as the sum of distinct power-of-twos based on
bin(ni). For example, bin(14) = b1110 and 14 is represented
as 8+ 4+ 2. For each attribute ai, we further partition the
set of hosts into subsets according to the representation of
ni. For example, if ni = 14, we partition the set of hosts
into 3 subsets with size 2,4 and 8 respectively. Subsets for
different attributes are considered in a descending size. Hosts
are allocated addresses based on the index of the subset they
belong to among the order subsets. The pseudo-code of the
algorithm is shown in Algorithm 1.

Let ‖bin(ni)‖ be the number of 1s in the binary representa-
tion of ni, e.g., ‖bin(14)‖= 3. The above algorithm constructs
∑
|A|
i=1 ‖bin(ni)‖ subsets. We show that the resulting address

allocation needs exactly ∑
|A|
i=1 ‖bin(ni)‖ rules for α . In other

words, each subset takes a single rule to represent. To prove
it, we consider a subset of size 2 j. Since subsets are sorted
in a descending size, any previous subset must have a size of
2i for some i≥ j. Hence, the sum of the sizes of all previous
subsets are multiples of 2 j. This guarantees that all 2i hosts
in the current set can be all represented by a single prefix rule
with exactly j wildcards.

Example 1. We demonstrate the algorithm for the first dimen-
sion of Department for the hosts from Table II. We have seven
hosts (h1−h7) with the attribute CS and nine hosts (h8−h16)
with the attributes EE. They satisfy n1 = 7 = 4 + 2 + 1 =
22 + 21 + 20 and n2 = 9 = 8 + 1 = 23 + 20. We consider
the powers of two 23,22,21,20 in this descending order. We
allocate the first 8 = 23 addresses 0000− 0111 to the first
hosts with EE h8− h15, adding the rule 0***→ EE. Then,
we allocate the next 4 = 22 addresses 1000−1011 to the first
hosts with attribute CS h1−h4, adding the rule 10**→CS.
Next, we allocate the following 2 = 21 addresses 1100−1101

7

to the hosts h5,h6 with attribute CS. The corresponding rule
is 110* → CS. Next we allocate a single address 1110 to
h7 and 1111 to h16, one for each of the attributes with
corresponding rules 1110 → CS, 1111 → EE. There are a
total of ‖bin(7)‖+‖bin(9)‖= 3+2 = 5 rules.

To prove the algorithm optimality, we show the following.

Property 1. For a dimension α , let ni = |{x ∈U |α(x) = ai}|
be the number of hosts that have to be mapped to an
attribute ai, i = 1,2, · · · , |A|. The minimal number of rules
that can represent α in any ACIP allocation satisfies optα =

minT Cα(T) = ∑
|A|
i=1 ‖bin(ni)‖.

Proof. An integer ni cannot be described as a sum of less
than ‖bin(ni)‖ powers of two. Due to their disjointness, the
matching rules for an attribute match a total number of hosts
ni that equals the sum of their matching sizes. Accordingly,
an attribute with ni hosts requires at least ‖bin(ni)‖ rules.

B. Two dimensions
We now consider the case of two dimensions. Let α :

U → A,β : U → B be the dimensions under consideration,
where B = {b1, · · · ,b|B|} is the set of attributes in the second
dimension. We observe a clear tradeoff between shortening
the representation of these two dimensions. While we could
choose the address allocation to be for instance the optimal
for α and use the minimal number of rules for α , we may
have to use many more rules to represent β . Since the
address allocation is shared by both dimensions, in most cases
we cannot find an allocation that favors both dimensions.
This is summarized in the following property describing the
relationship between the optimal allocation for two dimensions
and the optimal allocation for each dimension. We recall that
the optimal allocation minimizes the sum of the number of
rules to represent each dimension.

Property 2. The optimal allocation for the dimensions α , β

satisfies optα,β ≥ optα + optβ . An equality optα,β = optα +
optβ is achieved if there exists an allocation that is optimal
for the dimension α as well as for the dimension β .

Proof. Consider an optimal representation of α,β with optα,β

rules. It is composed of legal representations for each of the
dimensions with the same allocation. Thus it has at least optα
rules for the first dimension and at least optβ for the second
and a total of at least optα +optβ rules.

To obtain an upper bound on the optimal number of rules,
we construct a special allocation below. Let γ be a new
(dummy) dimension, which is the product of α and β . The
corresponding set of attributes is C = {c1, . . . ,c|A|·|B|}. For a
host x ∈ U , if α(x) = ai,β (x) = b j then γ(x) = c(i−1)·|B|+ j.
The dimension γ , denoted by γ = α×β , has the property that
γ(x) determines the attributes α(x),β (x) for the same host x.
Considering the optimal allocation for γ , we deduce:

Property 3. The cost of an optimal mapping for the dimen-
sions α , β and for γ satisfy optα,β ≤ 2 ·optγ .

Proof. Consider the representation of γ under some allocation
T with Cγ(T) rules. We can obtain a representation of the

Algorithm 2 Algorithm for two dimensions α,β

Define a dimension γ with attributes C = {c1, . . . ,c|A|·|B|}:
γ(x) = c(i−1)·|B|+ j if α(x) = ai,β (x) = b j

Find an optimal address allocation T for γ by Algorithm 1
Let R be the corresponding set of rules
For α , define Rα based on R:

replace an attribute c(i−1)·|B|+ j of a rule by ai
For β , define Rβ based on R:

replace an attribute c(i−1)·|B|+ j of a rule by b j
return address allocation of hosts T , sets of rules Rα ,Rβ

dimension α (or of β) with the same number of rules by only
modifying the attribute of each rule, i.e., replacing attribute
in C with the corresponding attribute in A (respectively in B).
Therefore, Cα(T)≤Cγ(T), Cβ (T)≤Cγ(T). Finally,

Cα(T)+Cβ (T) =Cα,β (T)≤ 2Cγ(T). (1)

Example 2. We demonstrate the algorithm for the two di-
mensions Department, Role from Table II. Denote the at-
tributes of the two dimensions as {CS,EE} = {a1,a2} and
{Faculty,Student} = {b1,b2}. Accordingly we define the di-
mension γ with attributes C = {c1, . . . ,c4} as γ(hi) = c1 for
i ∈ [1,5], γ(hi) = c2 for i ∈ [6,7], γ(hi) = c3 for i ∈ [8,10]
and γ(hi) = c4 for i ∈ [11,16]. With regards to γ , n1 = 5,n2 =
2,n3 = 3,n4 = 6. We apply Algorithm 1 for γ . This results in a
set of rules R of 2+1+2+2 = 7 rules (00**→ c1, 01**→ c4,
100*→ c2, 101*→ c3, 110*→ c4, 1110→ c1, 1111→ c3)
based on some address allocation T . For this allocation, we
can derive a representation for Department with seven rules
by replacing c1,c2 by CS and c3,c4 by EE. We can also build
a representation for Role with the same number of rules by
replacing c1,c3 by Faculty and c2,c4 by Student. This results
in a representation for the two dimensions with 14 rules.

We remark here that the representations obtained from that
of γ , are not necessarily the minimum representations of α

or β with the address allocation T : we can sometimes further
compress rules for each dimension. For instance, for Role we
derived the seven rules (00** → Faculty, 01** → Student,
100*→ Student, 101*→ Faculty, 110*→ Student, 1110→
Faculty, 1111→ Faculty). Here, it is possible merge the last
two of them to a single rule 111* → Faculty to achieve a
representation for this dimension with only six rules and with
7+6 = 13 rules for the two dimensions.

Next we show that an optimal allocation for γ is a 2-
approximation of the optimal allocation for α,β , i.e., the
number of rules it generates is at most twice of the optimum.

Property 4. The costs of optimal mappings for the dimensions
α,β and for γ satisfy optγ ≤ optα,β .

Proof. Consider some allocation T , it must satisfy

Cγ(T)≤Cα(T)+Cβ (T) =Cα,β (T). (2)

This is because a group of hosts that cannot be represented
using a single rule in γ must have different attributes in at

8

least one of α and β , thus requiring a minimum of two
rules to represent these hosts in that dimension. In particular,
considering the optimal allocation Tα,β for α,β we have
Cγ(Tα,β)≤Cα,β (Tα,β) = optα,β and the claim follows.

Finally, we conclude the following property:

Property 5. Let Tγ be an optimal allocation for γ = α ×β .
Then, Cα,β (Tγ) ≤ 2 · optα,β , i.e., this allocation is a 2-
approximation for the two dimensions α,β .

Proof. Let Tγ be the optimal solution of γ and Tα,β be
the optimal solution for α,β together. Substituting T with
Tα,β ,Tγ in Equation 1 and 2, we obtain Cα,β (Tγ) ≤ 2Cγ(Tγ)
and 2Cγ(Tα,β) ≤ 2Cα,β (Tα,β). Since Cγ(Tγ) ≤ Cγ(Tα,β) and
Cα,β (Tα,β) = optα,β we deduce the result.

To summarize, for two given dimensions α,β , we calculate
γ = α×β and find its optimal allocation Tγ by the algorithm
for a single dimension. We then use this allocation to represent
each of the dimensions α,β . A pseudo-code of the algorithm
is given in Algorithm 2.

C. General number of dimensions

We can generalize the solution for two general dimensions
from Section V-B to handle a set D of an arbitrary number
of dimensions M = |D |. Similar to computing γ for the two
dimensions, we introduce a dimension ΠD , whose attributes
for a host x∈U is a vector of length |D | with the attributes of
all dimensions in D for that host. The number of attributes
in ΠD equals the product of the attributes number in the
dimensions of D . We find an optimal assignment for this new
dimension ΠD based on Algorithm 1.

We derive that the optimal allocation for ΠD is an M-
approximation to the optimal allocation for D . As in the case
of two dimensions, we can obtain a representation for each of
the M dimensions from the representation of ΠD . To do so,
we use the same set of rules while replacing an attribute of
ΠD by the single attribute it is associated with in each of the
|D | dimensions. The guaranteed approximation ratio on the
memory size holds since the cost of an optimal allocation for
D is at least the cost of an optimal allocation for ΠD .

D. Exploiting Redundant Addresses

The analysis so far assumed that the number of available
addresses equals the number of hosts. We can further reduce
the representation cost when the number of available addresses
is larger than the number of hosts. In practice, we expect
some slack in the number of addresses, to handle dynamics
in the number of hosts, and changes in host attributes. We
demonstrate that for a single dimension. A similar approach
can lead to cost reduction also for multiple dimensions.

Consider a dimension α (with a set of attributes A) defined
on a set of hosts U . Addresses of W bits should be allocated
to the set of hosts satisfying |U | < 2W . Let again ni be the
number of hosts with an attribute ai, i ∈ [1, |A|]. In an address
allocation, there are 2W −|U | addresses that are not allocated
to any of the hosts. For these addresses, the matching rule can
be associated with an arbitrary attribute. Furthermore, there is

no requirement for the existence of a matching rule for these
addresses. Of course, for the correctness of a representation
of a dimension, the matching rule for the address assigned to
a host must have its required attribute.

Consider a representation of α . Let hi be the number of
addresses that match rules with a value ai. For the correctness
of the representation necessarily hi ≥ ni. Furthermore, since
the total number of available addresses is 2W then necessarily
∑i∈[1,|A|] hi ≤ 2W . There exists such a representation with
∑i∈[1,|A|] |hi|b rules.

Notice that ∀ni ∈ N the value hi = 2 j for j = dlog2(ni)e
satisfies |hi|b = 1 and hi < 2 ·ni. This means that by allocating
less than twice the number of addresses for some attribute,
we can represent all hosts with this attribute by a single
rule. Accordingly, if the number of hosts satisfies U ≤ 2W−1,
then ∑i∈[1,|A|] 2dlog2(ni)e<∑i∈[1,|A|] 2 ·ni = 2 · |U | ≤ 2W and there
exists a representation with a single rule for each policy value.
In other words, we can always guarantee the existence of a
representation with a single rule for each attribute by allocating
addresses that are longer by a single bit than the minimal
length required for the uniqueness of the addresses.

We generalize this analysis to describe a bound that applies
also for smaller amount of redundancy (with U > 2W−1).

Property 6. A dimension α , with a set of attributes A, defined
on a set of hosts U that satisfies |U | · (1 + 2−k) ≤ 2W can
always be represented by at most (k+ 1) · |A| rules with the
allocation of hosts to W-bit addresses.

Proof. Consider a value ni with j = blog2(ni)c. For k ∈ [0, j−
1] there exists hi ≥ ni that is a multiple of 2 j−k satisfying
hi− ni < 2 j−k. Such a value must satisfy |hi|b ≤ j+ 1− (j−
k) = k+ 1 since either hi = 2 j+1 or hi ∈ [2 j,2 j+1− 1] with a
binary representation composed of (j−k) last bits of 0. Such
hi satisfies hi/ni < (1+2 j−k/2 j) = (1+2−k). If the number of
available addresses enables to consider for some fixed k the
value of hi for all attributes, all hosts with a common attribute
can be represented by at most k+1 rules and the total number
of required rules to represent α is at most (k+1) · |A|.

VI. ALPACA WILDCARD ALGORITHM

In this section, we present an algorithm that generates
wildcard rules by optimizing the output of the prefix solution.
To illustrate the algorithm, we use the same example in
Table II. For clarity, we use host group to refer the set of
hosts with the same attributes along all dimensions; we use
rules and patterns interchangeably to refer the compact ACIP
representation of host groups and attributes.

We revisit our example. The prefix solution uses 1 pattern
for the (CS, Student) group and 2 patterns for each of the
other groups, because it views the size of a host group as
the sum of powers-of-twos (e.g., 5 = 1+ 4), each of which
corresponds to a prefix pattern. Hence, it uses 2 + 2 = 4
prefix rules to represent Faculty attribute. But if we assign
{0111, 010*} to EE Faculty and {0110, 11**} to CS Faculty,
then we can compress these patterns to a single pattern *1**
to represent Faculty attribute. The key observation is that if
two host groups share common attribute(s), it is beneficial to

9

CS EE
Faculty 5 3
Student 2 6

(a) Group sizes

⇒

Id (Dept, Role, Value)
1 CS, F, 1
2 EE, F ,1
3 EE, S, 2
4 CS, S, 2
5 EE, F, 2
6 EE, S, 4
7 CS, F, 4

(b) Initial nodes

Fig. 2. Create nodes from input of Table II(a).

assign them similar patterns that can be compressed to reduce
the number of rules for the common attribute.

In the design of our algorithm we are inspired by ideas
described in BitWeaving [14]. This novel approach was shown
to achieve a significant reduction of semantically-equivalent
representations of packet classifiers. It relies on two tech-
niques named bit swapping and bit merging. In particular,
using wildcard rules, in bit merging there is an effort to
merge rules whose matching patterns differ by a single bit.
Similarly, in our suggested graph approach, we try to merge
two nodes describing host groups aligned on a large number of
dimensions. Inherent differences between the two approaches
exist: BitWeaving finds an efficient semantically-equivalent
representation of a given single classifier. An input address
allocation affects the starting point of that technique. On
the other hand, Alpaca assumes multiple dimensions, each
can be seen as a mapping from hosts to different attributes.
This is equivalent to a simultaneous optimization of multiple
classifiers through the selection of the address allocation.
Unlike our approach that assumes a simple single-field address
as the input to the classification, BitWeaving is more general
in this aspect and supports multiple-field classification. A
comparison with BitWeaving for the scope of this paper is
performed in Section VIII.

We now describe the highlights of the wildcard algorithm.
Potential compression. Our first task is to find out all the

potential compression of patterns among host groups. Starting
with the output of prefix solution, which uses the sum of
power-of-two terms to denote the size of a host group, we
map every power-of-two term to a node. The node saves the
value of the term and copies the attributes of the host group.
For example, we can create two nodes for the CS Faculty
group: (CS, Faculty, 1) and (CS, Faculty, 4), as the group size
5 = 1+4. Figure 2(b) shows the full list of nodes.

Two nodes can be compressed if their values are equal and
they share some common attribute(s). The result of compres-
sion is a new node that (1) has a value equal the sum of the
values of the two nodes, (2) “inherits” the shared attributes and
(3) has /0 attributes for other dimensions. For example, (CS,
Faculty, 1) and (EE, Faculty, 1) can be compressed into a new
node (/0, Faculty, 2). We call the new node a super-node and the
two original nodes sub-nodes. The compression suggests that
we could use the super-node instead of listing two sub-nodes
individually to represent their common attributes. In Figure 3
nodes appear in white background and super-nodes in gray.

A super-node can be compressed with other nodes, as long

��������)����

����&6��)���� ����((��)���

����((��6����

����((��)��������((��6���� ����&6��6����

����&6��)����

�������)����

��������6����

�����((������� ��������)�����������6����

�����((�������

�T��JG@
�T��@KO

Fig. 3. The compression graph: a node has an id, attributes and a value.
Colored nodes are super-nodes.

�D�

�F�

�

� �

��G
�

�E�

�

� �

��F
�

G
�

� �

F
�

�

� �

��

�

E
�

�

�G�

��

G
�

� �

F
�

�

� �

��

�

E
�

�

Fig. 4. Flip bits to compress nodes

as they share the same attributes (except /0). But a node cannot
be compressed twice on the same dimension, i.e., once (CS,
Faculty, 1) and (EE, Faculty, 1) are compressed, neither of
them can be compressed with other nodes that have Faculty
attribute. We repeat the compression until no new super-nodes
can be produced. We plot graphs to denote the compression
relationship by creating edges from sub-nodes to their super-
nodes.

In the graph, a node with value 2k can be assigned a
wildcard pattern with exactly k wildcards, which represent 2k

hosts. As we work on the output of the prefix solution, the
initial nodes (Figure 2(b)) should be assigned prefix patterns.

Compressible patterns. Two patterns are compressible if
they negate at exactly one bit, e.g., *00* and *10* are com-
pressed into **0* [14]. When two sub-nodes (of a super-node)
are assigned compressible patterns (e.g., *00* and *10*), the
resulting pattern (e.g., **0*) can be assigned to the super-node
to achieve a reduction of one rule in representing the common
attribute, where we can use the compressed pattern instead of
listing two patterns independently. In the example, we can use
the pattern for (/0, Faculty, 2) to represent CS attribute rather
than two patterns for (CS, Faculty, 1) and (EE, Faculty, 1).
Therefore, our goal is to assign patterns to nodes to maximize
the number of pairs of sub-nodes with compressible patterns,
i.e., the total reduction in the number of rules to represent
attributes.

Key idea: flip one bit. Let aibicidi be the pattern assigned
to the i-th node, where ai,bi,ci,di ∈ {0,1,∗}. Consider Node
1 (CS, Faculty, 1) and Node 2 (EE, Faculty, 1). a1b1c1d1
and a2b2c2d2 are compressible if they negate at one bit, i.e.,
a1b1c1d1 = a2b2c2d2, or a2b2c2d2, or a2b2c2d2, or a2b2c2d2.
Our key idea to enable compression is to choose a bit (e.g.,

10

Dept
p a

0110 CS
001* CS
11** CS
0111 EE
10** EE
0*0* EE

Role
p a

*1** Faculty
*0** Student

Fig. 5. Wildcard rule-sets.

a,b,c or d) to flip. If we flip d, the compressed pattern a1b1c1∗
(or a2b2c2∗) can be assigned to the super-node (/0, Faculty, 2),
i.e., Node 8. As a result, a8b8c8d8 = a1b1c1∗. We plot the
equality in Figure 4(a).

Similarly, we can compress patterns of Node 3 and Node 4
by flipping c (d3 = d4 = ∗) as shown in Figure 4(b). We can
further compress (1) Node 5 and Node 3 by flipping b (as c3
is flipped before) and (2) Node 5 and Node 8 by flipping c
(shown in Figure 4(c)). However, we are unable to compress
Node 6 (a6b6c6d6 = a3b3 ∗ ∗) and Node 10 (a10b10c10d10 =
a3 ∗ c3∗), because their patterns do not match. We finish the
procedure by compressing Node 6 and Node 9, Node 7 and
Node 11 (Figure 4(d)). To translate the results to patterns, we
set all variables, i.e., a3,b3,c3,d1, to 0.

To summarize, with the idea of bit flipping, we construct
equality and inequality between the bits of patterns, i.e.,
a,b,c,d, assigned to nodes. For the patterns of each pair of
sub-nodes, if the equality (or inequality) is not determined
before, we choose the last possible bit to flip. When there
is no such a bit (i.e., all the patterns negating at one bit are
already used), then we choose to flip more than one bit until
the resulting patterns do not overlap with any used ones. After
checking all pairs of sub-nodes, we obtain the full equality and
inequality. The final step is to set all free bit variables to 0.

We can represent each attribute with rules given the pattern
assignment (Figure 5). For example, to represent Student,
we can use *0** for super-node (/0, Student, 8), i.e., Node
12. Similarly, we use 10**, 0*0* and 0111 to represent EE.
In total, we need 3 + 3 + 1 + 1 = 8 rules to represent all
the attributes, whereas prefix solution needs 9 or more rules
(Table II(c)).

Processing order of sub-nodes. The order we use to
process sub-nodes matters, as the compression of one pair of
sub-nodes may restrict the compression of another (due to the
equality and inequality between bits). The algorithm calculates
the order values for super-node n as the total number of super-
nodes in the tree rooted at n in the graph. For example, the tree
rooted at (/0, S, 4) only contains one super-node (i.e., itself);
the tree rooted at (/0, F, 8) contains three. Super-nodes are
sorted according to their order values and examined one by
one. When examining one super-node, we process all the pairs
of sub-nodes in its tree. If the compression failed for one pair
(i.e., we cannot find a bit to flip), we roll back all previous
compressions of sub-node pairs in the tree and continue to
examine the next super-node in the sorted list; if compressions
of all pairs of sub-nodes succeed, we remove these sub-nodes
from the trees of other super-nodes, re-calculate order values
of the affected super-nodes and sort again.

VII. SUPPORTING UPDATES AND PRACTICAL ISSUES

In this section we discuss the overhead of the approach. We
also explain how to easily handle changes in the association
of hosts to attributes.

A. Overhead and Practical Issues

Taking into account host attributes in the address alloca-
tion process has an inherent overhead. A change in a host
attribute can lead to a severe increase in the memory required
to represent policies given an existing address assignment,
suitable for the previous attributes. Such changes can occur too
often eliminating the possibility to reallocate addresses upon
any such small change. More specifically, we would like to
minimize the impact on any other hosts while sometimes due
to a limited address space, changing the address of a specific
host necessitates changing the address of some others. In
particular, consider a policy that takes into account a location
of a host as a dimension. Based on an estimated frequency
for updates in a dimension (e.g., a location is changed more
often that a role of a host), a potential improvement for the
allocation would be not to consider all dimensions identically.
Similarly, the attributes along one dimension might not be fully
available during the allocation process. This might lead to a
non-optimal allocation. In this case, a potential generalization
can be to find an allocation given a restricted possible subset
of attributes for a host dimension, where the specific value
might not be known. Next we discuss how to efficiently deal
with updates in host attributes.

B. Handle Changes in Host Attributes

Our algorithms proposed so far support address allocation
given the attributes of each host. In practice, attributes of
a host may change over time (e.g., the department of the
corresponding user might change), or new attributes may be
added (e.g., a new department may be created). In handling
changes, a key consideration is ensuring that only the IP
addresses of impacted hosts are modified to the extent possible.

We employ two techniques to handle changes in attributes.
First, to handle growth in the number of hosts that have a
certain attribute, we introduce slack, and budget for more hosts
than actually exist. While earlier in Section V-D we took
advantage of redundant addresses to improve representation
cost, here the focus is to handle updates and the discussion is
not limited to the prefix algorithm nor to a single dimension.
A straight-forward solution is to provision for a growth in the
number of hosts corresponding to a given attribute by a fixed
percentage (e.g., 10%), though information about projected
trends could be used when available. For example, a university
can estimate the number of hosts in the coming semester based
on the number of newly admitted students.

Second, to handle growth in the number of attributes along
each dimension, we introduce a “ghost” attribute for each
dimension (an additional attributes with which no host is cur-
rently associated) and decide the group sizes for combinations
of ghost and real attributes (e.g., the number of hosts with
ghost Department and Student, or the number of hosts with
ghost Department and ghost Role).

11

CS (9) EE (8) Ghost Dept (6)
Faculty (6) 3 1 2

Student (11) 4 5 2
Ghost Role (6) 2 2 2

↓
CS (16) EE (8) Ghost Dept (6)

Faculty (8) 5 1 2
Student (16) 9 5 2

Ghost Role (6) 2 2 2
TABLE III

AN EXAMPLE OF SLACK

Given the input with slacked group sizes and ghost at-
tributes, Alpaca algorithms compute ACIP allocation. When
the updates only occur for the existing attributes, we change
the addresses of the affected hosts to unused ACIP from the
patterns computed for their new attribute. In the case that the
provisioned slack of a group is exhausted, we partition the
address space of the associated ghost groups, whose attributes
are either ghost attributes or attributes of the exhausted group,
and allocate part of the space to the exhausted one. For
example, if the ACIPs of (Student, CS) are used up, we
could partition the address space of (Student, GhostDept),
(GhostRole, CS) or (GhostRole, GhostDept) and assign new
space to (Student, CS). When the updates involve a new
attribute in one dimension, e.g., Department, we run Alpaca
algorithms on the address space for the ghost attribute to split
the space into two parts: one for the new attribute and the other
for the ghost attribute. Afterwards, the addresses of affected
hosts are changed accordingly.

Benefits of slack and ghost attributes. The above two
techniques offer another important advantage: further com-
pacting network policies beyond the optimal solution. Consider
an example where there are 7 CS hosts and 7 EE hosts. Alpaca
needs at least 3 rules for each attribute, as 7 = 4 + 2 + 1
(Section V). With slack, we can round 7 to 8, thus allowing
Alpaca to use only 1 rule per attribute. In fact, if we round
the group size for every attribute to the nearest power-of-two
upper bound, we at most double the used addresses.

We create extra hosts with “mix-matched” attributes such
that the number of hosts for every attribute is power-of-two
(Algorithm 3). Let pa be the target power-of-two and ga be
the number of hosts for the attribute a. We choose attribute
vi from i-th dimension such that pvi > gvi ,∀i ∈ [1,M], and
create h = mini{pvi−gvi} hosts with attribute v1, ..,vM . When
all attributes in a dimension reach their target power-of-two
(i.e., pa = ga), we use the ghost attribute as default, assuming
its target power-of-two is infinite. We repeat the procedure
until all attributes reach their target power-of-two (except ghost
attributes). Consider the example in Table III. The numbers of
hosts for CS, Faculty and Student should be rounded to 16,8
and 16. We create 2 CS Faculty hosts in the first iteration and
create 5 CS Student afterwards.

For more complex updates that involve additions of new
dimensions, it may be desirable to recompute IP allocations
from scratch. However, we make several points. First, such
scenarios are relatively infrequent. We envision that Alpaca
algorithms are run with a conservative set of dimensions, even

Algorithm 3 Slack algorithm
while True do

for Dimension di do
vi = ghost attribute
for Attribute a ∈ di do

if pa > ga then
vi = a

if ∀i,vi is ghost attribute then
break

h = min pvi −gvi

gvi = gvi +h,∀i
Create h hosts with attribute v1, ...,vM

return

#ACLs Total #Rules #SPU #DPU
University B 13 17868 577 624
University C 5027 32401 523 87

TABLE IV
NETWORK POLICIES OF TWO UNIVERSITIES.

if some of these dimensions are not currently used as part
of network policy. Addition of new dimensions is likely to
happen over long time-scales — operators typically collect
host attribute information using device registration information
filled by owners, and introducing new dimensions would
require new data collection for registered devices. Second,
when such scenarios do occur, it is feasible to temporarily
deal with it by splitting the unused address space of other
dimensions and introducing less compact classification rules
to identify a given set of hosts. Finally, changes in address
allocation can be incrementally handled using DHCP.

VIII. EVALUATION

In this section, we evaluate Alpaca’s effectiveness in pro-
ducing concise rules under two scenarios: (i) actual policies
in existing networks and (ii) futuristic scenarios where oper-
ators may express policy along many orthogonal dimensions.
For existing settings, we evaluate Alpaca using the network
configuration files of University B and University C (Sec-
tion VIII-A). For futuristic settings, we use the host attribute
data obtained from University A (Section VIII-B). Details of
both data-sets were presented in Section III.

Overall, our results show that Alpaca can reduce the number
of rules by 60%−68% as compared to the current IP address
allocation for multi-table switches. We observe a reduction of
20% - 31% in comparison with schemes relying on existing
techniques for rule table compression. Meanwhile, it has the
potential to reduce the total number of rules by over an order
of magnitude as compared to the traditional single dimensional
approaches (e.g.,VLAN) in futuristic scenario where the policy
is expressed on many dimensions. Our experiments further
demonstrate that Alpaca can handle changes in hosts grace-
fully, with only a small extra number of rules.

Our evaluations explore the performance of both Alpaca
variants: Prefix (ALP PFX) and Wildcard (ALP WC). For
comparison purposes we also consider the simple BitSegmen-
tation scheme (BitSeg) as well as schemes based on popular

12

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

UniversityB UniversityC

#
R

u
le

s

Orig

BitSeg

ALP_WC

ALP_PFX

Fig. 6. Optimize network policies.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Orig BitSegWC_NS WC PFX_NS PFX

#
R

u
le

s

(a) Rules

 0

 5

 10

 15

 20

 25

 30

 35

Orig BitSegWC_NS WC PFX_NS PFX

#
B

it
s

(b) Bits

Fig. 7. Benefits of slack. BS, WC and PFX denote Wildcard, Prefix and
BitSegmentation schemes. NS indicates variant without slack.

schemes for the compression of rule classifiers [12]–[14].
Unless otherwise mentioned, both our prefix and wildcard
algorithms use the algorithm (with prefix extension) in Sec-
tion VI and the extension with slack in Section VII-B by
default. We focus on multi-table architectures.

A. Benefits with Existing Policies

We extract the source and destination policy units (SPUs
and DPUs) from the low-level configuration files for both
University B and University C, as discussed in Section III.
Table IV shows the total number of ACL rule-sets, ACL
rules across rule-sets, and the number of SPUs and DPUs
for both universities. Given a pipeline of tables, we install the
classification rules that associate a given IP with its appropriate
SPU and DPU in the first two tables, and the actual policy
action (e.g., permit or deny) based on the SPUs and DPUs in
the last table. We focus on the number of classification rules
in the first two tables for a given policy, since the last table is
the same in all approaches.

Figure 6 compares the number of rules used by (1) the
original IP allocation (Orig), (2) BitSeg, (3) ALP PFX and
(4) ALP WC for University B and University C, respectively.
The original IP allocation needs the most rules. BitSeg takes
the least, as it uses one rule for each policy unit. Specifically,
the number of rules used by BitSeg equals the number of SPUs
and DPUs. Both ALP PFX and ALP WC perform closely to
BitSeg, achieving 68% reduction in rule consumption as com-
pared to the original. It confirms that Alpaca can efficiently
encode policy units.

Benefits of slack. We compare the case with and without
slack operations to show the benefits of trading an extra bit for
significant reduction in number of rules. Figure 7(a) presents
the reduction in the number of rules for University B. We use
NS to indicate running Alpaca without slack. While WC NS
(3rd bar) is competitive with other approaches, PFX NS (5th

bar) performs slightly worse, giving a reduction of 35.4%. The
reasons are two-fold: for one thing, prefix patterns fundamen-
tally restrict the potential of using fewer rules (as compared to
wildcard patterns); for the other, PFX NS solutions represent
the exact group size of every combination (i.e., each SPU and
DPU pair) without any slack. If the group size is not power-
of-two, PFX NS solutions need many more rules. We bridge
the gap by adding slack and rounding group sizes. As a result,
PFX offers similar performance to the optimal (i.e., BitSeg).
In the remainder of the evaluation, we run slack algorithm
before IP allocation by default.

Moving to the number of bits for encoding (Figure 7(b)), we
find BitSeg performs the worst, using as many as 34 bits (more
than IPv4!). We calculate the least number of bits that can
sufficiently number all hosts (13 for University B). While the
original allocation uses the least bits, PFX NS takes exactly
one bit more as the slack algorithm makes use of an extra bit
to round group sizes (Section VII-B). Alpaca strikes a balance
in both the number of rules and bits, using almost as few rules
as BitSeg and one extra bit than the least number of bits.

B. Benefits with Futuristic Policies

We demonstrate Alpaca’s capability to support flexible
attribute-based policies with a series of experiments on the host
information at the CS department of University A (Table I).
In the current CS network, operators deploy VLANs to group
hosts with the same Role, which is used in most network
policies. But they would like to use Security Level, Status
and Operating System for access control and have flexible
QoS policies defined on Usage, CS owned as well. Hence,
we examine the cost in terms of rules and address space to
support the futuristic scenarios, where policies are defined on
attributes along multiple dimensions.

We compare Alpaca with three approaches:
(1) SingleDim (e.g., VLAN), which assigns addresses based

on a single dimension. SingleDim uses a few rules to represent
attributes for one dimension: VLAN uses one rule (the subnet)
for each Role attribute; a host is assigned a random address in
the subnet corresponding to its Role attribute. However, given
a second dimension or more, SingleDim has to enumerate
every single host and list their attributes.

(2) TCAMRazor [13], which applies an algorithm to min-
imize the number of prefix rules for attributes, given the
SingleDim address assignment.

(3) BitWeaving [14], which uses an efficient approach to
compute the wildcard rules to represent attributes based on
the SingleDim address assignment, as minimizing wildcard
rules is NP-hard [17].

We remark that TCAMRazor and BitWeaving minimize
the number of rules by assuming rule priority. Both methods
generate overlapping rules for different attributes. In contrast,
Alpaca generates non-overlapping rules for different attributes,
i.e., does not apply rule priority. Below, we show that even
without using rule priority, Alpaca significantly outperforms
the two compression methods.

Scale with more dimensions. We evaluate Alpaca’s en-
coding efficiency and scalability with increasing number of

13

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 2 3 4 5 6

#
R

u
le

s

#Dimensions

SingleDim

TCAMRazor

BitWeaving

ALP_PFX

ALP_WC

(a) Increased #dims (Rules)

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6

#
B

it
s

#Dimensions

Opt

BitSeg

ALP/SingleDim/TCAMRazor/BitWeaving

(b) Increased #dims (Bits)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1500 3000 6000 9000 12000 15000

#
R

u
le

s

#Hosts

SingleDim

TCAMRazor

BitWeaving

ALP_PFX

ALP_WC

(c) Increased #hosts

Fig. 8. Comparison with previous approaches. Alpaca simultaneously considers multiple dimensions.

#Dimensions ORTC ALP PFX ALP PFX + ORTC
1 8 8 8
2 35 202 24
3 135 627 107
4 237 677 177
5 300 834 227
6 456 1363 316

TABLE V
#PREFIX RULES: COMPARISON WITH ORTC [12]

dimensions. Six dimensions are chosen (in order): Role, Secu-
rity Level, Location, Status, CS owned and Usage. The initial
set of dimensions only contains Role. Then, in each iteration,
we add one more dimension to the current set and run Alpaca
algorithms to generate classification rules. Figure 8(a) plots
the number of rules generated by SingleDim, TCAMRazor
and BitWeaving and Alpaca over the six iterations. Given
one dimension, all approaches generate a small number of
rules. Moving to two dimensions (i.e., Role and Security
Level), SingleDim has to potentially enumerate hosts and their
attributes, taking as many rules as the number of hosts in the
data. The number of rules used by SingleDim is unchanged
over the iterations then. TCAMRazor and BitWeaving gen-
erates less rules than SingleDim, as they apply compression
algorithms for a smaller rule set to represent attributes. Yet,
when there are six dimensions, the number of rules (e.g.,
1130 wildcard rules) is very close to the number of hosts.
In contrast, both Alpaca prefix and wildcard scales well with
increasing number of dimensions. Alpaca uses 376 wildcard
rules for six dimensions, which are significantly smaller. We
show the number of bits in Figure 8(b). Both Alpaca and
SingleDim approaches use 12 bits, while the least number of
bits (denoted as Opt) is 11 (1491 < 211). BitSeg is infeasible
in practice after two dimensions, as it takes more than 16 bits
to encode attributes.

Scale with more hosts. Our data only covers a single
department, but an entire university (with dozens of depart-
ments) has more hosts and enterprises can be even larger
in sizes. We examine Alpaca’s scalability with more hosts,
by synthesizing the host information. We copy each host 2
to 10 times and obtain the scaled-up host data. Figure 8(c)
compares several approaches to classify hosts in 6 dimensions.
Alpaca scales well, using 436 wildcard rules or 528 prefix
rules for around 15000 hosts. Its performance is very stable,

due to the use of aggregated patterns (e.g., wildcard or
prefix matches) to classify groups of hosts. The number of
hosts does not impact its performance. In contrast, SingleDim
potentially needs 15000 rules to enumerate every host; it does
not scale to larger networks. The compression algorithms do
not help much: TCAMRazor and BitWeaving need 13589 and
10821 rules, respectively, because the single dimension based
allocation does not help the aggregation on other dimensions.

In Table V we compare the Alpaca prefix algorithm
(ALP PFX) with ORTC [12] for the same parameters as
in Figure 8(a). For a single dimension and fixed address
assignment, ORTC finds an optimal representation with a
minimal number of (possibly overlapping) prefix rules. For the
ORTC we again assume the SingleDim address assignment.
We also examine applying ORTC on the address assignment
found by ALP PFX. We can see that ORTC cannot compete
ALP PFX since its address assignment was selected without
considering all dimensions. With 5 dimensions for instance,
ALP PFX and ORTC require 834 and 300 rules, respectively.
Their combination reduces the number to only 227, a reduction
of 72.8% and 24.3%, respectively. More generally, for 2-6
dimensions, combining the two schemes achieves a reduction
of 20.7%-31.4% in comparison with ORTC, the prefix optimal
scheme for a fixed address assignment.

Encode different sets of dimensions. While Alpaca per-
forms well for three dimensions: Role, Security Level and
Location (as shown above), we are curious about its per-
formance on a different set of three dimensions, such as
Role, CS owned and Operating System. Hence, we fix the
number of dimensions to encode and run the algorithm on
various sets of dimensions. Figure 9(a) shows the performance
of Alpaca to encode seven sets of three dimensions. We
do observe the fluctuation: the number of rules generated
by Alpaca ranges from 36 to 117 for wildcard case and
44 to 135 for prefix case. Upon closer examination, we
find out that the performance is highly correlated with the
possible combinations of attributes. Specifically, for the set
of dimension {Role, Security Level, Location}, there are 80
combinations of attributes which at least one host is associated
with; for the set {Status, CS owned, OS}, there are only 22
combinations. Given increasing numbers of combinations of
attributes, Alpaca is more likely to generate many rules.

Update the assignment for new hosts. We divide hosts

14

 0

 20

 40

 60

 80

 100

 120

 140

R,SL,Loc

R,SL,OS

Loc,CS,OS

R,CS,OS

Loc,S,Use

SL,S,CS
S,CS,OS

#
R

u
le

s

ALP_PFX

ALP_WC

(a) Different sets of dims

 0

 50

 100

 150

 200

PFX_Update 	 WC_Update 	

#
R

u
le

s

FirstSet

Overflow

NewAttribute

UnionOfTwoSets

(b) Update assignment

Fig. 9. Property of Alpaca algorithm

into two equal-sized sets based on their created time and run
Alpaca to encode four dimensions: Role, Security Level, Status
and Usage. We use the first set for the initial hosts and the
second set for the newly added hosts. For the first set, Alpaca
provisions slack and creates ghost attributes for all dimen-
sions. The second set not only inserts more hosts with the
existing attributes but also introduces 4 more new attributes in
Security Level. To assign addresses to new hosts with existing
attributes, Alpaca uses the slack in the corresponding group.
But if the group size is insufficient, Alpaca has to “steal” flow
space from the related ghost groups (Section VII-B). To handle
the new attributes, Alpaca splits the address space of ghost
attributes in the same dimension as well. In our evaluation
(Figure 9(b)), the first set (left red bar) uses 139 prefix rules or
119 wildcard rules to represent the four dimensions. Fixing the
assignment for the first set, we calculate the extra rules needed
to handle the second set. The extra rules come from two parts:
(1) hosts with new attributes and (2) overflowed group sizes.
As a result, we need an extra 6 rules for the new attributes
and 24 rules for the overflowed groups. The overhead is very
small compared to 153 prefix rules or 130 wildcard rules for
the union of the two sets, where the assignment is computed
from scratch without any incremental updates.

IX. CONCLUSION

In this paper, we have made three contributions. First, we
show the importance and feasibility of considering attributes in
IP address allocation. Second, we present the Alpaca system,
and two algorithms which cope well with constraints on the
IP address space, enterprise churn, and heterogeneity in group
sizes. When evaluated with configuration data from several
universities, ALP WC and ALP PFX reduce the number of
rules by 50%− 68% and 60%− 68% respectively for multi-
table switches. Further, the algorithms have the potential to
reduce the total number of rules by over an order of magnitude
compared to single dimension based IP address allocation
schemes. This can in turn lower the barriers for network
administrators to express richer policies involving multiple
dimensions. While promising, our results are only a first step.
In the future, we hope to build and deploy an actual prototype,
as well as evaluate the system with more networks and richer
data-sets.

X. ACKNOWLEDGEMENTS

This work was supported in part by the NSF Career Award
No. 0953622 and a Google Research Award.

REFERENCES

[1] N. Kang, O. Rottenstreich, S. G. Rao, and J. Rexford, “Alpaca: Compact
network policies with attribute-carrying addresses,” in ACM CoNEXT,
2015.

[2] M. Yu et al., “A survey of virtual LAN usage in campus networks,”
IEEE Communications Magazine, vol. 49, no. 7, pp. 98–103, 2011.

[3] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
USENIX NSDI, 2015.

[4] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM
Trans. Netw., vol. 17, no. 4, pp. 1270–1283, 2009.

[5] S. K. Fayazbakhsh et al., “Enforcing network-wide policies in the
presence of dynamic middlebox actions using FlowTags,” in NSDI, 2014.

[6] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[7] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[8] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in ACM SIGCOMM,
2013.

[9] R. Ozdag, “Intel®Ethernet Switch FM6000 Series-Software Defined
Networking,” Intel Corporation, 2012.

[10] M. Appelman and M. D. Boer, “Performance analysis of OpenFlow
hardware,” University of Amsterdam, Tech. Rep., Feb 2012, http://www.
delaat.net/rp/2011-2012/p18/report.pdf.

[11] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch
models for software-defined network emulation,” in ACM HotSDN,
2013.

[12] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing optimal
IP routing tables,” in IEEE INFOCOM, 1999.

[13] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, 2010.

[14] C. R. Meiners, A. X. Liu, and E. Torng, “BitWeaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 20, no. 2, pp. 488–500, 2012.

[15] R. Wei, Y. Xu, and H. J. Chao, “Block permutations in boolean space to
minimize TCAM for packet classification,” in IEEE INFOCOM, 2012.

[16] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation
approaches to TCAM-based packet classification,” IEEE/ACM Trans.
Netw., vol. 19, no. 1, pp. 237–250, 2011.

[17] R. McGeer and P. Yalagandula, “Minimizing rulesets for TCAM imple-
mentation,” in IEEE INFOCOM, 2009.

[18] S. Suri, T. Sandholm, and P. R. Warkhede, “Compressing two-
dimensional routing tables,” Algorithmica, vol. 35, no. 4, pp. 287–300,
2003.

[19] D. L. Applegate et al., “Compressing rectilinear pictures and minimizing
access control lists,” in ACM-SIAM SODA, 2007, pp. 1066–1075.

[20] O. Rottenstreich et al., “Optimal In/Out TCAM encodings of ranges,”
IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 555–568, 2016.

[21] O. Rottenstreich and J. Tapolcai, “Optimal rule caching and lossy
compression for longest prefix matching,” IEEE/ACM Trans. Netw.,
2017.

[22] K. Kogan et al., “Exploiting order independence for scalable and
expressive packet classification,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 1251–1264, 2016.

[23] O. Rottenstreich et al., “Compressing forwarding tables,” in IEEE
Infocom, 2013.

[24] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimiz-
ing space, power, and throughput for TCAM-based classification,” in
ACM/IEEE ANCS, 2011.

[25] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and
flexible cellular core network architecture,” in ACM CoNEXT, 2013.

[26] R. MacDavid et al., “Concise encoding of flow attributes in SDN
switches,” in ACM Symposium on SDN Research (SOSR), 2017.

[27] S. Donovan and N. Feamster, “NetAssay: Providing new monitoring
primitives for network operators,” in ACM HotNets, 2014.

[28] T. Benson, A. Akella, and D. A. Maltz, “Mining policies from enterprise
network configuration,” in ACM IMC, 2009.

[29] R. Wang, D. Butnariu, and J. Rexford, “Openflow-based server load
balancing gone wild,” in USENIX Hot-ICE, 2011.

15

Nanxi Kang is a Software Engineer in Databricks,
Inc. She received Master and Ph.D. degree from the
Computer Science department in Princeton Univer-
sity, Princeton, US in 2013 and 2016 respectively.
She is a recipient of Wu Fellowship in Princeton and
Google Anita Borg Memorial Scholarship. She has
won the Best paper award at EuroSys conference.

Ori Rottenstreich is a Postdoctoral Research Fellow
at the department of Computer Science, Princeton
university. He received the B.S. in Computer Engi-
neering (summa cum laude) and Ph.D. degree from
the Electrical Engineering department of the Tech-
nion, Haifa, Israel in 2008 and 2014, respectively.
He is a recipient of the Rothschild Yad-Hanadiv
postdoctoral fellowship, the Google Europe PhD
Fellowship in Computer Networking, the Andrew
Viterbi graduate fellowship, the Jacobs-Qualcomm
fellowship, the Intel graduate fellowship and the

Gutwirth Memorial fellowship. He also received the Best Paper Runner Up
Award at the IEEE Infocom 2013 conference.

Sanjay G. Rao is an Associate Professor in the
School of Electrical and Computer Engineering
at Purdue University, where he leads the Internet
Systems Laboratory. His research spans network
management, cloud computing, and Internet video
distribution. He received a B.Tech in Computer
Science and Engineering from the Indian Institute of
Technology, Madras, and the Ph.D from the School
of Computer Science, Carnegie Mellon University.
He has been a Visiting Researcher at Google, AT&T
Research and Princeton University. He is a recipient

of the NSF Career award, and won the ACM SIGMETRICS Test of Time
Award for his work on End System Multicast (peer-to-peer video streaming).
He has served on the Technical Program Committees of conferences including
ACM Sigcomm, Usenix NSDI, and ACM CoNext, has served as the Area
technical program chair of IEEE Infocom, is currently an Editor for the
IEEE/ACM Transactions on Networking, and was the technical program co-
chair of the INM/WREN workshop held in conjuction with NSDI 2010.

Jennifer Rexford is the Gordon Y.S. Wu Professor
of Engineering and the Chair of Computer Science
at Princeton University. Before joining Princeton in
2005, she worked for eight years at AT&T Labs–
Research. Jennifer received her BSE degree in elec-
trical engineering from Princeton University in 1991,
and her PhD degree in electrical engineering and
computer science from the University of Michigan
in 1996. She is co-author of the book ”Web Protocols
and Practice” (Addison-Wesley, May 2001). She
served as the chair of ACM SIGCOMM from 2003

to 2007. Jennifer was the 2004 winner of ACM’s Grace Murray Hopper Award
for outstanding young computer professional. She is an ACM Fellow (2008),
and a member of the American Academy of Arts and Sciences (2013) and
the National Academy of Engineering (2014).

