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Abstract—Traffic management is the adaptation of source the link-weight setting problem is NP-hard, forcing operat
rates and routing to efficiently utilize network resources.Traffic  to resort to heuristics that can lead to highly suboptimal
management today includes congestion control, routing and solutions [4]. Finally, since this offline optimization ags

traffic engineering. In this paper, we perform a top-down redesign . - .
of traffic management using recent innovations in optimiza- at the timescale of hours, it does not adapt to changes in the

tion theory. First, we propose a new objective function that Offered traffic, causing an inefficient use of the underlying
captures the goals of both end users and network operators. resources.

Second, using various optimization decomposition techniges,  |n this paper, we rethink Internet traffic management using
we generate four distributed algorithms that divide traffic over optimization theory as a foundatio@ptimization theory has
multiple paths based on feedback from the network links. Thee . .
distributed algorithms are provably stable and optimal. Third, been successfully "_’sed to analyze and design Fhe various
combining the best features of these distributed algorithrs, COmponents of traffic management. TCP congestion control
we construct TRUMP: a new traffic management protocol that has been reverse engineered as implicitly solving an opti-
is distributed, adaptive, robust, flexible and easy to manag mization problem [5], [6], [7], and optimization theory has
Packet-level simulations show TRUMP behaves well with regtic been used to guide the design of new congestion control

topologies, feedback delays, capacities, and traffic load®&verall, tocol 8N, In additi traffi . S
we show that using optimization decomposition as a foundati, protocols €.g, [8]). In addition, traffic engineering imposes

simulations as a building block, and engineering intuitonas a &n optimization problem on the system [2], and optimization
guide can be a principled approach to protocol design. theory has been used to analyze proposed traffic-engimgeerin
protocols [9]. Although much of the existing research has
focused on a single aspect of traffic management, our paper
provides a holistic view.

Traffic managemenis the adaptation of source rates and Optimization decompositids the process of decomposing a
routing to achieve the goals of users and operators. Traf§iigle optimization problem into many sub-problems, each o
management has three players: users, routers, and operaighich is solved locally. The challenges of using optimiaati
In today’s Internet, users run congestion control to ada@itt decomposition to derive protocols are two-fold. First, any
sending rates at the edge of the network. Inside a singlathematical modeling makes simplifying assumptions- Sec
Autonomous System (AS), routers run shortest-path routig@d, while multiple decomposition methods exist, it is @al
based on link weights. Operators monitor the network fefow to compare them. To the best of our knowledge, this is the
congestion, and tune link weights to direct traffic away frorfirst work that comparesultiple decomposition solutions for
congested links [2]. The current division of labor betwelea t traffic-management protocols, then builds a practicalquoit
three players slowly evolved over time without any conssiodhat combines best features from each one.
design, resulting in a few shortcomings. First, operataret  In our top-down redesigrof traffic management, we start
link weights assuming that the traffic is inelastic, and east® by selecting an intuitive and practical objective function
adapt their sending rates assuming routing is fixed, leatingSection 1. Section Il describes practical consideration
suboptimal interactions [3]. Second, tuning link weigltsan  deploying of a distributednultipath traffic-management al-
indirect way to control traffic flow through a network; furthe gorithm: where sources adapt their sending rates along mul-

. . _ tiple paths according to congestion feedback from the links

This paper is an extended version of a conference paperghateed as [1]. Ith h ltinath ffi . v d
The key additions of this journal version are as follows.sEitSection || Although multipath traffic-management is not commoq y ae-
describes several specific scenarios for the distributefficrmanagement ployed today, we explore several deployment scenarios that
protocols to be implemented in the current Internet. Sectigl paper con- ralate mathematical notions of sources and paths congretel
tains a proof of convergence for TRUMP in Section VI-B. Finathis paper K el Usi L d itiorn
contains new experimental results in Section V-B, VII-B, I-@ and VII-E. t‘? networ. € ementls' sing optlmlzatlon gcomp05|t|0 {ef:.
In Section V-B, additional experiments on a mulihomingdimgy provide hiques discussed in [10], Section IV derives four specific
insight on the relationship between the number of flows sigabiottleneck (Jistributed solutions that differ in the computation of tpat
links, and the performance of distributed algorithms. Ict®a VII-B, new d ion feedback. Optimizati h
experiments provide insight on setting specific protocalapeeters for fast rates an conge_stlon eedback. Optimization theory _gman_
convergence (for a wide range of topologies and capacitie§ection VII-C, that these algorithms converge to a stable and optimal point
new experiments capture both the sending rates and thd #utoaghput for \yhile simulations allow us to compare rate of convergenck an
distributed protocols, allowing for a more concrete corgmar. Section VII-E . .
studies how the number of flows and the number of paths per flopact r(?bulsmess to tunable parameters in Section V. Altlhloumthe
the performance of TRUMP. distributed algorithms work well, they can be sensitiveun-t
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able parameters. We combine the best features of each ef thegorithms where sources adapt sending ratesuaitiple paths
algorithms to construct a simple TRaffic-management Usirtg a destination. This is illustrated in Figure 1, sourcee8éd
Multipath Protocol (TRUMP) in Section VI. Our contributisn computes its sending rate on each of its three paths to destin
are two-fold: tion node 6, based on feedback regarding the path congestion

« Protocol Design using Decompositiong[\/e demonstrate conditions. An advantage of our distributed aIgorithmsh'EBtt
how to create a practical network protocol by derivinghey adapt at a single timescale (on the order of RTTs), and
multiple distributed algorithms, comparing their praatic is able to respond quickly to traffic shifts.
properties, and synthesizing their best features into almplementing such a distributed algorithm requires suppor
practical protocol. from the network: multiple paths must exist between a source

« Redesigned Traffic Management: We introduce destination pair, the sources must have knowledge of and
TRUMP: an easy to manage distributed protocol, th&@ntrol over the multiple paths, and data plane forwarding

performs well for diverse topologies, capacities, feettba®f packets on each of the specified paths must be possi-
delays and traffic loads. ble. We address all these requirements in this section. The

TRUMP converges faster than the four algorithms presentgurces’ and ‘paths’ in an algorithm can map to different
in Section IV, and has the fewest tunable parameters. Aetwork elements depending on the scenario. For example, in

though TRUMP is not derived from a particular optimiza\tiorliOdayS traffic-management system, sources can be end hosts

decomposition, we are able to prove its convergence Wh@y‘hich run distributed congestion-control algorithms)edge

the network is tuned to have low packet loss. As with arfr)puters (which have been proposed to run distributed traffic

mathematical modeling, the TRUMP algorithm leaves marf'dineering protocols [11]). - .
protocol details unspecified. We use engineering intuitmn Existence of Multiple Paths:In the Internet today, multiple
address these details end-to-end paths often exist because many stub networks are

In Section VII, the TRUMP protocol is evaluated usin$onnected to multip!e upstream ISPs, most ISPs have naultipl
packet-level simulations with a wide range of topologied al aths between a pair of edge router§, and large ISPs often.con
traffic loads. We use a simple heuristic to set TRUMPAECt to each other in multiple Iocatlons: Today, most rautin
parameter such that it converges smoothly for a wide rangg)tocols only fo-rwa}rd packets on a smgle_ path between a
of topologies, capacities, feedback delays, and trafficldoa ource and_d_estlnatlc_)r_n thQUQh t_he_ underlylng resources ca
When many flows share the same bottleneck link, the g more efficiently utilized if traffic islynamicallybalanced

: : tween multiple paths, as we propose in this paper.
is a small amount of packet loss during convergence, . . " _
TRUMP still converges within a few RTTs. In contrast, the Sources See Multiple PathsAlthough path diversity exists

other distributed solutions become unstable when sucts link the 'r_‘te”‘et: sources cannot always access the multiple
ths, since directing packets orday end-to-end path can

exist. We also study the impact of number of paths on &

performance of TRUMP. First, TRUMP is more likely to splitrequ'reI co?perlatlon bepNeerrl]muIt|pIe netvt\{orkz. tStlII,refme i
traffic over multiple paths when there are fewer concurreRt Lo & hatural scenarios where cooperation be weenpieult

source-destination pairs. Second, while TRUMP can achie%tworks is not required.
r End-host Overlayin an end host overlay network, end

higher throughput if all sources can access two paths rathe ) . .
than a single path, additional paths do not provide significa  NOStS (Possibly belonging to multiple networks) are con-
nected in a logical topology. Although the routers be-

gains. This paper discusses related work in Section VIII and : i
tween any two end hosts still select a single path between

concludes in Section IX. e
them, an end host can reach a destination through any
other overlay node in the network, thus creating multiple
paths.

« Single ISP:A single ISP can also exploit its own internal
path diversity. Inside an ISP, an edge router can compute
the traffic rates on each path and the end hosts connected
to it can send at a rate explicitly specified by the edge
router. Alternatively, an edge router can shape the incom-
ing traffic, and the end hosts can run congestion control
to adapt to the rate limits imposed by the edge routers.

o Multihomed Stub:A stub network connected to mul-
tiple upstream providers can split traffic over multiple
upstream links. At the multihomed stub network, an

Fig. 1. Three paths between source node 9 and destinatiom od edge router can compute the splitting percentages over

outgoing links, or the stub network can provide the access
Traffic management controls how much traffic traverses information for the end hosts residing in the network.
each path in a network. In the Internet today, end hodfEven more end-to-end paths are accessible if two or more

run congestion control to adapt sending rates, and routingtworks cooperate, as surveyed in [12].

protocols select @single pathbetween two end hosts. In  Directing Packets onto Specific PathsOnce sources have

this paper, we present sevedistributed traffic-management computed the splitting percentages between multiple pttbs
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data plane must ensure packets are split between the sgecifepresent the sending rate of soutan its jth path. We also
paths accordingly. A packet can be directed onto a specifit paepresent available paths by a matliwhere

throughtunnels There are two prevalent tunneling techniques } 1, if path j of sourcei uses linkl
- {1

in use today: IP-in-IP tunnels and MultiProtocol Label Shit 0, otherwise.

ing (MPLS). In both cases, establishing a tunnel involves

“pushing” an extra IP header (or label) at the tunnel ingre$$ does not necessarily present all possible paths in the
and “popping” the IP header (or label) at the tunnel egred¥lysical topology, but a subset of paths chosen by operators
In the case of MPLS, each intermediate router also store®fathe routing protocol. Then we can rewrite (1) as:

label-based forwarding table, so that it can direct a pattket maximize Y, U;(>. Z;‘,)
an appropriate outgoing link based on the label. No tungelin subjectto 3. 3. Hjlz; <¢, Wi @
i Laj Ty = b :

is required in the case of a multihomed stub, where the stub ) O ,
network just chooses an outgoing link, rather than the enti? this form, (2) is a convex optimization problem. A dis-
path a packet follows. Today, routers can already splifieraf ibuted solution to (2) can be derived usidgal decompo-
equally amongst multiple paths using a variety of techrri;ques't'on [13], where adual variableis introduced to relax the

thus it is not difficult to extend such techniques to achie@Pacity constraint. The resulting Dual-based Utility lifau-
arbitrary splitting percentages [12]. ing Protocol (DUMP) is summarized in Figure 2. Similar to the

reverse engineering of the congestion-control protocd6]n

s can be interpreted as link prices.
IIl. CHOOSINGAN OBJECTIVE FUNCTION

In this section, we use optimization as a modeling languageedback price update at link(:
to formalize traffic management. Every optimization praoble
consists of an objective function, a constraint set anchises. o
For traffic management, by having both routing and sourc&(t + 1) = [si(t) = Bs(t) | e(t) = > > H;zi(t) ;
rate as optimization variables, we have the most flexibility i
in resource allocation. In our problem, the constraint &t thywhere 3, is the feedback price stepsize.
link load does not exceed capacity. The objective function
remains to be designed. We first propose an objective th#ith rate update at sourcei, path j:
maximizes aggregate user utility, but simulations revéeal t
solution converges slowly and is sensitive to stepsize. In, o ; ; ;
addition, maximizing user utility leads to bottlenecks et (1) = maximize.: | U; > 2| =2 ) st H]
network, making the network fragile to traffic bursts. To ad- J !
dress these practical challenges, we design an objectiigwit
balances maximizing user utility with minimizing operasor gig 5 The DUMP algorithm.
cost function.

+

Heret represents the iteration number and each iteration is
at the same timescale as the longest Round Trip Time (RTT) of
the network. At each links; is updated based on the difference

One natural objective for the traffic management systemystween the link load”, Zj Hsz; and the link capacity. As
to maximize aggregate user utility, where utilitf;(z;) is a indicated by{|*, s, is only positive when the link load exceeds
measure of “happiness” of source-destination pé&ieferredto the link capacity,i.e. when the network is congested. Each
as source in this paper) as a function of the total transmissioggyrce updates;'- based on explicit feedback from the links,
ratez;. U is a concave, non-negative, increasing and twicgy the form of feedback prices;. In particular, each source
differentiable function.e.g. log(z;), that can also representmaximizes its own utility, while balancing the price of ugin
the elasticity of the traffic or determine fairness of reseur path] The path price is the product of the source rate with the
allocation. This is the ObjeCtive Imp|IC|t|y achieved by PC price per load for patb (Computed by Summingl over the
congestion control today [5], [6]. We represent the routyg |inks in the path). DUMP is similar to the TCP dual algorithm
matrix R;; that captures the fraction of sourés flow that in [6] except the local maximization is conducted overeator
traverses Iin”, and we IetCl denote the CapaCity of link As Zi, as Opposed to On'y a Sca|a{, to Capture the mu|t|path
proposed in [13], [14], the resulting optimization probl&n nature of DUMP.

From optimization theory, certain choices of stepsizeshsu

A. Maximizing Aggregate Utility: DUMP

maximize >, U;(z;)

subject to Rx < ¢, x = 0 (1) asBs(t) = f/t where 3 > 0 is a constant, guarantee that
DUMP will converge to the joint optimum as— oo [15].
where bothR andz are variables. However, such diminishing stepsize is difficult to implernien

A distributed solution to (1) can be derived through dugractice as it requires synchronization of time across tuen,
decomposition if (1) is a convex optimization problem. Ig itand particularly difficult to do with dynamic arrivals of new
current form, (1) has a non-convex constraint set, which ciows. Previous work indicates that even under the simplest
be transformed into a convex set if the routing is allowed tf topologies and assuming greedy flows, DUMP has poor
be multipath. To capture multipath routing, we introduﬁ}eo convergence behavior [13]; our own Matlab experiments [16]



confirm this. When the stepsize is too large, DUMP willv is large, the solution is more conservative and avoids high
constantly overshoot or undershoot, never reaching thal idénk utilization. Today, operators perform traffic enginieg by
utility. On the other hand, when the stepsize is too smaddjusting link weights depending on the instantaneouéidraf
DUMP converges very slowly. Even at the optimal stepsiziad. In our case, they can adjust a single parameter
DUMP only converges after about 100 iterations. This high- Aside from performance, fairness is another important con-
lights that choosing an appropriate stepsize for DUMP #&deration. From a theoretical perspective, the solutm)
challenging. is a-fair asw — 0, wherea-fairness is defined in [18]. While
this does not hold for general values ©f our experimental
results in Section VII-F are encouraging.

Before generating distributed solutions in Section 1V, we

Let us reflect for a moment on why DUMP has poofirst transform (4) to a convex optimization problem:
convergence behavior. If we look at the form for feedback

B. New Objective for Traffic Management

price, we see it is only nonzero when links are overloaded, maximize Y=, U;(32; 25) —w Y, f(ui/c)
therefore, the feedback from the links is not fine-graindds T subject to y <c, o (5)
corresponds to the congestion control mechanism of TCP Reno yi=7>_;>; Hjzj, VI

where sources only rgduce their sending rate; once paclf\%%e that to decouple the objective which containga per-
are already lost, causing the sawtooth behavior. In fa&t, thurce function) and’ (a per-link function), we introduce an

feedback price in DUMP has the same formulation as the 4 yariabley, to provide feedback before link load exceeds
congestion price in [6]. In addition, utility is only basedthe actual capacity.

on throughput, while having low delay is also important to

traffic management. In addition, the authors of [3] suggest IV. MULTIPLE DECOMPOSITIONS
the network is driven to a solution where some links are
operating near capacity when only utility is maximized. Sisi
an undesirable operating point which is very fragile toficaf
bursts. This indicates that maximizing the aggregatetytili

enhances performance of the individual users, but leawes inks. There are a number of other similarities between tue f

network as a whole fragile. . . . . .
. . algorithms. First, the operations performed by links idlitg
To avoid the poor convergence properties of DUMP, w, . .
look for an alternative problem formulation which also takel%easunng the link load present only a small overhead. Skcon

into account the oberator's obiective. Todav. traffic epaiin all four algorithms incur the same small message passing
P 'S ODje ) Y, U 8MY  4verhead: only the sum of the link prices on the end-to-end
solves the following optimization problem with onR. as a

. ) path needs to be communicated. Third, while computations
variable (andx constant): can involve solving a local optimization problem and taking
minimize Y, f(32, Ruzi/c). (3) derivatives,U and f are twice differentiable, and therefore
closed-form solutions exist and they are just simple fuorcti
[ s a convex, non-decreasing, and twice-differentiablefuneyaluations. Finally, the computational complexity of failir
tion that gives increasingly heavier penalty as link load ing|gorithms is constant per link and linear per source. The
creasese.g.ezi Rizi/er The intuition behind choosing thi main difference, then, is the number of tunable parametiers o
is two-fold. First, f can be selected to model M/M/1 queuingzach algorithm, which varies from one to three. Optimizatio
delay. Second, network operators want to penalize solsitiolecomposition leads us to three constructs that are géneral
with many links at or near capacity and do not care too muelpplicable: effective capacity, consistency price ancedir
whether a link is20% loaded or40% loaded [2]. If we solve path-rate update.
(3) with bothx andR as variables, then the solution would
end up with zero throughput, which is also undesirable. A, Effective Capacity
A better traffic management objective could be to combine the first three algorithms (partial-dual, primal-dual, and
performance metrics (users’ objective) with network rabusy_qual) prevent link loads from reaching link capacity b
ness (operator's objective), leading to the following fafed  ,6\iding feedback based oeffective capacityrather than
tion as a joint optimization ovefx, R): actual capacity. In the resulting algorithms, the sourqesate
the path rates based on feedback price just as in Figure 2. The
maximize >, Ui(z;) —w )., fO°, Ruzi/cr) feedback price is similar to that in Figure 2, except it isdzhs
. (4) ) -
subjectto Rx <c, x = 0. on effective capacity);:

In this section, we describe the distributed algorithms-gen

erated from optimization decompositions of (4) (the decomp

sition techniques are surveyed in [10], [5]). All four retaurg
Igorithms update the path rates based on feedback prares fr

This objective favors a solution that strikes a trade-offisen

high aggregate utility and a low overall network congestion o

satisfy the need for performance and robustness. Simitdr-pr st +1) = si(t) = Bs | wu(t) — Z Z Hizi(t) |- (6)
lem formulations were proposed in [3], [17], though without L

w. Herew is a parameter which adjusts the balance betweés in Section IlI-A, we consider constant stepsize for prac-
the utility function and the cost function. When is small, tical reasons, thus we remove the dependence fsom all

(4) is very close to (1) since the utility term dominates. \Whestepsizes.



1) Local Optimization: Partial-Dual: The derivation pro- the consistency price is updated over time using a subgradie
cess for theartial-dual algorithm is identical to Section 1l1I-A method:
except with effective capacityy as an additional primal
variable. The constraing < ¢ is enforced, resulting in the pult+1) = [pult) = Bypler = ()]
following equation for updating effective capacity: where 3, is the stepsize for consistency price. Consistency
price only comes into play when the capacity constraint is
. violated, therefore, it is mapped to a non-negative value T
it +1) = minimizey, <cywf(y/c) = sty () effective capacity update is based on both link prices:

n (7),_ y; is updated by solving a local optimization using it + 1) = minimize, wf (yi/c) — (si(t) + pu(t))ur.
information from the feedback price and the cost function
f. An economic interpretation is that the effective capacitjhe path rate update and feedback price update are identical
balances the cost of using a link (represented ﬂ)yand to that Of the preViOUS two algoritth. The fu”-dual algbm
revenue from traffic transmission (represented by the mod§losely resembles an algorithm presented in [3], though our
of feedback price with the effective capacity). There is a@biective containsy as a weighing factor. Appendix 2 of [3]
explicit solution to (7). Note that the effect of the costétion also shows a complete derivation of the full-dual algorithm
is proportional tow.

2) Subgradient Update: Primal-Dual:The primal-dual C. Direct Path Rate Update: Primal

decomposition first decomposes (5) into two subproblems,, | the previous algorithms, auxiliary dual variablesreve
one responsible fqr each_ primal vz_zlrlable. The master pnoble..nquced to relax the constraints. In thisimal decom-
solves fory assuming a giver®, while the subproblem solves ,ition  we find a direct solution by introducing a penalty
for x assuming a fixe@. The master problem is as fOHOWS:function, as in the appendix of [19]. Let the penalty funatio
o . O3 HE2%) replace the capacity constraiiiz < c. The
maximize 2 Uix™) —w ), fw/a) (8) ge(rgllt%ﬁncl{iojn) is z Continuousp, incyr/easing, differenligaand
subject to y =, convex function that is sufficiently steep such that linkdsa
wherex* is a solution to the following subproblem: will not overshoot capacity. If it is also sufficiently close
zero for values less than capacity, it will not affect theimjat
maximize >, Ui(x;) ©) point [20]. If we addg and the cost functiofi to get a penalty-
subjectto Rx <y. cost functionP, (>, >, Hj;z;), then (5) can be transformed

1j%j
I . . into the following: ’
Note that (9) is identical to (2) except the constraint isyon

rather tharc. The solution to the subproblem is then identical maximized ~U;(> 21 —w Y P> > Hjjz). (11)
I i

to that presented in Figure 2 except for the feedback price i J
update which uses the effective capagityather than actual The gerivative of (11) is:
capacityc.
The master problem can be solved through an iterative dz. U o
update of effective capacity : d_tl =4, azz (zi(t)) — wz P/(Z Z Hy;23(t), (12)
J l 4 J

. /
wilt + k) = min(er, yu() + By (s(t) —wf (), (10) where 3, is the stepsize for path rate. Converting (12) into a

where 3, is the effective capacity stepsize. Taking a clos@ubgradient update form and separating link informatiomfr

look at (10), the minimization ensures effective capadiays Source information, we obtain the algorithm in Figure 3.

below the actual capacity. The paramétés an integer greater

than 1 since (8) is updated less frequently than (9). Th&h rate update:

subgradient update itself consists of balancing the ptiee t SU.

link can charge £;), and the cost that link must pay;(y:)). zj-(t +1) = zj-(t) + ﬁzzj-(t)(—;(xi(t)) — ZHlijSl(t))

In a nutshell, the primal-dual decomposition is identicattte ' ' ' 0z; . '

partial-dual decomposition except that the effective capas

updated iteratively through (10) rather than by solving @alo

minimization problem. Feedback price update:

si(t+1) = wP/ (YD Hj;z(t)
B. Consistency Price: Full Dual i

The full-dual decomposition is quite similar to the partial-
dual decomposition in Section IV-Al, but a second dual vanFig. 3. The Primal algorithm.
ablep is introduced to relax the constraigt< c. This dual
variable can be interpreted asnsistency pricas it ensures  The path rates are iteratively updated based on the differen
consistencybetween the effective capacity and the capacityetween the rate of change of the utility function and the as-
constraint at the equilibrium point. As with the feedbackeyr sociated path feedback price. The feedback price heretlgirec



represents how quickly the penalty function is changing atinimum-hop paths are available for Abilene. The simulaio
a given link load. The primal algorithm in Figure 3 differsassume the link capacities follow a truncated (to avoid tiega
significantly from the first three decompositions. Firstises values) Gaussian distribution, with an averagelod and a
direct subgradient update on the path rates. Second, it detndard deviation af0. For this set of experiments, we define

not use the concept of effective capacity. convergence as reachif.9% of the optimal aggregate utility
of (4). We found the convergence rates to be independent of
V. CONVERGENCEPROPERTIES initial rate assignments. We omit extra graphs when the same

In thi i wud " fthe f trends are observed across algorithms, topologies anéwalu
n this section, we study convergeénce properties ot the Togy w, more detailed results can be found in [16].
algorithms, and make key observations which will guide our

design of a new protocol in Section VI. First, we find that
there is a trade-off between the speed of convergence and BhéMeighing User Utility and Operator Cost

achievable aggregate utility. Second, we find algorithmewh 1, this subsection, we study theade-off between aggregate
use local minimizations instead of iterative updates coywe utility and convergence timén Figure 6, we plot the number

faster. Third, we find consistency price can aid convergenggiiarations before convergence against stepgizéor three
for small w. values ofw for the partial-dual algorithm. For each stepsize,

each point corresponds to a set of capacity values, and the
A. Set-up of MATLAB Experiments average number of iterations before convergence is higteliy
Due to the multitude of tuning parameters, finding thé @ SOI'(:] line. g:omparlng ?}Cfoss Figure 6 from Iefthto r|g.ht, |
optimal values requires fine-grained sweeping of the pairermewe see that as decreases, the convergence time at the optima

space. Thus we use MATLAB simulations along with simpl@ter)Size incre_ases a_nd the range of stepsizes with a good
topologies and simple traffic patterns to identify the ke§PMVEYENCe time shrinks. o .
properties that improve convergence. For all algorithme, w " Figure 7, we plot the aggregate utility achieved by
update the source and link variables at each iteration medsolv_lng (4) as a percentage of maximal aggregate utility
link load from the previous iteration. For the utility fuimh achieved by solving (1), for a range of valugs. From the

U, we use a logarithmic function commonly associated wif@Ph, we observe that there is a knee region for all three
proportional faimess and TCP Reno today [18]. For the cod@Pologies. For the Abilene topology, this knee region is
function f, we use an exponential function, which is thé’ = [1/6,1/10]; for the access-core topology, this knee region

continuous version of the function used in various studies & w = [1/4,1/6]; for the multihoming topology, the knee
traffic engineering [2]. region isw = [5/4,3/2]. Forw values smaller than the knee

region, the algorithm achieves near maximal aggregatiyutil
since the cost functiorf is weighed sufficiently lightly to not
change achieved aggregate utility. Forvalues larger than

the knee region, the aggregate utility achieved decreases,
the cost functiorf becomes a significant part of the objective.
The location of the knee region depends on whether bottlenec
links are shared by many source-destination pairs, which is
dependent on the topology, associated capacities, and the
source-destination pairs chosen.

In this paper, we define fhow to be the aggregate connec-
tions between a source-destination pair. In the multihgmin
topology, the three links connecting the ISPs to the detitina
are shared by many flows. If all links have equal capacities,
then those three links are bottleneck links. Sinceftligenction
Fig. 5. Topology capturing 20 stub networks connected to Bsisall IS @ sum over all links, when a bottleneck link is shared by
networks are connected to ISR, networks 1 through 10 are connected tomany flows, the penalty associated with pushing that link
Comocing e o e et e b vk poys 10 full Gapacity is compensated by driving all sending rates
R0ms. higher. Consequently, for a given value, the gap to maximal

achievable utility is smaller when there is a single botiga

We study three realistic topologies as shown in Figureslitk shared by multiple flows, than when there are many
and 5. Figure 4a is a tree-mesh topology, which is representattleneck links. So, in Figure 7, we observe the aggregate
tive of a common access-core network structure. Figure 4buslity is at 100% even aty = 1 for the multihoming topology.
the Abilene backbone network [21]. Finally, Figure 5 repreSimilarly, the access-core topology has a knee at a larger
sents a multihoming topology where many multihomed stultisan the Abilene topology, since several flows share the mesh
are all trying to reach the same destination through thrs.ISat the center in the access-core topology.

We select six source-destination pairs for access coreand f Looking at Figures 6 and 7 together, at= 1/36, the
pairs for Abilene. For each of these communicating pairgegh maximal aggregate utility is achieved, but the partialidua
minimum-hop paths are available for access-core and falgorithm converges slowly and is very sensitive to stepsiz




(a) Access-Core topology (b) Abilene topology

Fig. 4. Two topologies.
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Fig. 6. Plots of partial-dual algorithm showing dependeoteonvergence time on stepsize. X’ represent the actual plaints and 'o’ represent the average
value. Access-core topology was used.

110 : : C. Comparing the Algorithms

In this subsection, we do a series of comparisons between
convergence time and stepsize sensitivity of the four algo-
rithms, and find partial-dual in Figure 6 is the best overillh
a good convergence profile and fewest tunable parameters. We
summarize our observations in Table I.

Comparing the primal-dual algorithm to the partial-dual
algorithm, we findthe two extra tunable parameters do not
improve the convergence propertieehe convergence times
of primal-dual and partial-dual algorithms are almost iitsai

—— Access-core
| | —e— Abilene
—e&— Multihome

percent of maximal aggregate utility

w0 » ! for well-choseng, and k. For other values ofB,, however,
we find the primal-dual algorithm converges more slowly than
Fig. 7. Plot ofw versus percentage of maximal utility achieved. the partial-dual algorithm.

Comparing the full-dual algorithm in Section IV-B to the
partial-dual algorithm, we findonsistency price may improve
convergence propertiesrom Table I, we note that, has no
effect on the convergence time when= 1. This is because
the effective capacity stays far below actual capacity winés

choice. In comparison, for a mere 3% reduction in aggregdtigh, so consistency prigg stays at) and its stepsize plays no
utility, the convergence properties improve significandly role. Forw = 1/6 (which is the edge of the knee region seen
w = 1/6. As w increases even more, there is a clear trade-aff Figure 7), we find that the full-dual algorithm can conwerg
between aggregate utility achieved, the rate of conveyand faster than the partial-dual algorithm. This is because éf w
sensitivity to stepsize. Atv = 1, the convergence propertiesallow the capacity constraint to be violated during transie
are much nicer than ab = 1/6, but there is a 20% drop periods, the algorithm can take more aggressive steps and
in utility. For a givenw value, if the topology, capacitiespotentially converge faster.

and traffic pattern causes multiple flows to share a singleComparing the primal algorithm in Section IV-C to the
bottleneck link €.g, mulithoming topology instead of accesspartial-dual algorithm, we findbcal minimization update has
core topology), then there is a higher utility achieved, &ut better convergence properties than subgradient updates
slower rate of convergence. is intuitive as the subgradient update with a constant steps



Algorithm Partial-Dual | Primal-Dual | Full-Dual | Primal
w = 1, Access-Core 15 25* 15 25
w = 1/6, Access-Core 50* 75%* 125* 150*
w = 1, Abilene 15 25* 15 25
w = 1/6, Abilene 125* 100** 50* 150*
TABLE |

SUMMARY OF AVERAGE NUMBER OF ITERATIONS TO CONVERGENCE FOR B&ET CHOSEN TUNING PARAMETERSHERE * DENOTES SENSITIVITY TO
STEPSIZE VARIATION AND ** DENOTES EXTRA SENSITIVITY TO STEPSIZE VARIATION

is constrained to react with the same strength each timdewhiteegback price update
local minimization can react more flexibly. From Table I,

the primal algorithm takes longer to converge at the optimal sit+1) =p(t+1) +aqt+1),
stepsize (25 iterations versus 15 iterations). In addittbe i i +
. . . t+1) = t) — — Hj. 2%t
primal algorithm also requires operators to tune a second plt+1) = [pit) = ol z;z 52O
parameteg. !
VI. TRUMP a(t+1) =wf | Y Y H )/ |,
i J

While the algorithms introduced in Section IV converge
faster than DUMP, we seek an algorithm with even bettgfath-rate update:
convergence properties. In this section, we introducefitraf

management Using Multipath Protocol (TRUMP) with only . . ; P
one easy to tune parameter. zj(t + 1) = maximize,; U; oA | =D sy Hiz
p ,

J J

A. The TRUMP Algorithm

Our simulations in the previous section suggest that simplgg. 8. The TRUMP algorithm.
algorithms with fewer tunable parameters converge faster,
although having a second link price can help for small
Using those observations, waombine the best parts of all B. TRUMP Convergence Proof
four algorithmsto construct the TRUMP algorithm described Unlike the algorithms from Section IV, TRUMP is a
in Figure 8. heuristic and does not correspond to a known decomposi-
In TRUMP, the feedback price has two components as ign. Consequently, the convergence and optimality is not
thefull-dual algorithm:p; andg;. Since we observed that localautomatically guaranteed by optimization theory. Theotem
optimization worked better than subgradient update, we uglow guarantees convergence of TRUMP when the network is
the feedback price update froprimal algorithm in Figure 3 lightly loaded. We consider the region whereis sufficiently
as ourg. This has the additional benefit of removing onéarge forp = 0 (as seen in Figure 9a), and find a contraction
tuning parameter from the protocol since the updategof mapping onz. Overall, TRUMP is simpler than any of the
involves no stepsize. By a similar argument, we use a locdporithms presented in Section IV, with only one tunable
optimization for the path rate update as in the dual-basearameter that only needs to be tuned for small
algorithms. The value af is only known at the sources where A particular family of widely-used utility functions is pa-
the z’s are computed, and there is only a single value for tHi@meterized byx > 0 [18]:
network. The packet-level simulations in Section VII-Ceal/ log z, a=1
that TRUMP performs well for a large rangewfvalues when Ua(z) = { (1—a) 'z’ a#1.

an appropriate stepsize is chosen. o L . .
Through simulations, we find that TRUMP indeed converg aximizing thesea—faw utilities over I|r!ear flow cpqgtralnts
to the optimum of (4) for both topologies and a range gds to r_ate-allocatlon yectprs that satisfy thg defm@ofa-
w values. When we plot the achieved aggregate utility girness n the economics Iltera_ture. T_he n_ouornefa!rness
equilibrium versusw, we obtain a plot identical to Figure 7./rom [18] I_ed to many TCP vgrlantg with d|ﬁerem-_fa|rness
IIerpretamons. A utility function withn = 2 was linked to

In Figure 9, we plot convergence time versus stepsize fl . .

TRUMP. When the network sources are reacting strongly O?P Retng. Thr_oulgh reversgf gglnezrlggéTrC; C\Igegashcan be

the priceq (e.g., w = 1 and the traffic engineering partIn erpreted as: = 1, as can - and | " IS shown
0 be maximizinglU, asa — oo in the single-link case.

is dominating), the pricep is unnecessary as observed il ) .
Figure 9a. In the region where the network is being IessTheorem 1 TRUMP converges to the optimal value of (4)

conservative) = 1/6), pricep is a more definitive indicator under the following conditions:

of performance than price, and can be helpful for source 1) p=0, V/l (1/at1)

rate adjustments. Comparing Figure 9 to Figure 6, we see tha?) m < a%, vi

TRUMP has nicer convergence properties than the partial-dwheren; is the number of flows sharing linkand o refers

algorithm, while having fewer parameters. to a-fair utility [18].

(13)
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Fig. 9. Plots of TRUMP algorithm showing dependence of coyeece time on stepsize. 'x’ represent the actual data paintl ‘0’ represent the average
value. Access-core topology.

Proof: If p =0, then thez update is: The time between iterations of the TRUMP algorithm
1 depends on RTT, the time it takes for source to receive
Z =U; Z Hla fi( Z % Hla Je)/e)- feedback along all the links of pagh To transition to a packet-
i based protocol, the link prices are calculated based on the
We look for acontraction mappindor z as outlined in [20]. estimated local link load; the number of bits which arrived
First we compute the Jacobian f@jz in period(¢,t +T') divided by length of the period. Choosing

f as an exponential function, each link updates its prices as:

T = (U7 S Hf(, ;25 /e fer)

O Hiy 3o Hin ' (2 25 Hy e)) [ (e)?). nt+T)= [p (t) — Bpler = ST, (14)

Letu =3, .z y 7HlJ/Cz be the link utilization, then: qt+T)= L % exp (Tq) , (15)

110 = ma(U7) (S B 1)) (S By D Hi 7 ). WEETI= T D,
l l

Choosing a logarithmic function fd¥ and solving the local
Letn, = >, , Hj; represent the number of flows sharingninimization, we obtain the following source rate update:
link {, then:

[1]lo0 = max(U;1) (D Hiz fl(w) (Y Hiyna fl' (w)). B = 24(
2 ;l,ll;l,lll (t+T VZ Z

For convergence of, ||.J||« < 1 is a sufficientcondition.
For a-utility, we have(U; ') = —Lz=1/2=1 for o > 1. For
U = log(x),a = 1, (U ") = —z~2, so the same equation
holds. So we can rewritgJ||- as:

SH=0 &

At time 0, the prices are initialized to a constant before
real prices are available after one RTT. New flows after time
0 are set at the calculated path rates according to the latest
(delayed) price, collected by a probe before the flow stads.

1 ]joe = max 1 2o Hmf) (w) control the rate of convergence for flows with va_rying RTTs,
o a (Y Hzg fl(uy))A/e+D) as commonly done in congestion control mechanisnts[8],
we introduce a parametér < v < 1. In general, path rates
[|7]|oe < 1 holds if 2t " (ur) < f](u)M/ 1), V. B are updated everyRTT:, but the path rate is recalculated
at most once for any given price update. Thus the path rate
C. TRUMP: Transition to Network Protocol adaptation will happen evefy/ = max(T,yRTT;). Note that

rﬁpe extra parameterg andT' are necessary for any packet-

The transition from a mathematical algorithm to a netwo
level protocol.

protocol requires relaxation of several simplifying asgam
tions. First, the algorithm in Figure 8 assumes feedback is

signaled explicitly from links to sources. The explicit tee VIl. TRUMP: PACKET-LEVEL EVALUATION

back could be piggy-backed on acknowledgment packets [22],

attached to probe packets [11] or flooded throughout theln our MATLAB simulations, we had made a number of
network [23]. In all cases, there is delay associated with tsimplifying assumptions. Moving to packet-level simubais,
feedback. Second, the algorithm assumes traffic flows fluidlye study the impact of relaxing the following assumptiorts: h
while real traffic consists gbackets Third, while an algorithm mogeneous feedback delay, no flow dynamics and no packet-
can be broadly defined with a family of functiobsand f, a level burstiness. In addition, we test TRUMP under realisti
specificU and f must be selected. We address these concetraffic loads and link failures. Finally, we examine whether
in the TRUMP protocol. TRUMP shares bottleneck links fairly.
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A. Experimental Set-up B. Tuning Stepsize of TRUMP

We observed in section V-B that the links connecting
e ISPs to the destination are fully utilized even for the
?onservative choice ofv = 1. Previous MATLAB results

, ndicate choosing, is challenging when there are bottleneck
the sources. The path rates are updated with0.1. Most of links, since packet loss can easily occur. In this sectioa, w

the experiments are performed with= 1, where there is no Wedy the impact of link capacity of},, using the multihoming

packet loss. The calculated source rates are compared totﬁOpoIogy in Figure 5 where there are three bottleneck links.

ideal rates, which are determined using MOSEK optimization

We implement the TRUMP protocol in NS-2 as describe
in Section VI-C. In particular, the link prices are update
every 5ms and feedback is piggybacked from the links t

software. 10 Mbps | 100 Mbps | 1000 Mbps
Our simulations use both synthetic and realistic topolagie Bp =1%10""" no no no
which are summarized in Tables Il and Ill respectively. For Py = 1*10:1; no no no
the topologies that were previously simulated in MATLAB Z” z}:g,” o ;eos =
(Figure 4), we use the same paths with link capacities of 55 —1+10- Slow Slow ves
100Mb/s. Link delays on the Abilene topology were selected Bp =1%10 2L slow slow slow
to approximate the realistic values. Links in Access-Core Bp=1%10"% slow slow slow
topology have a one-way propagation delay;0fns, a value TABLE IV

chosen to test TRUMP under Iong feedback de|ay_ Figure BQATE OF CONVERGENCE OFTRUMP FOR DIFFERENTﬁp VALUES AND
contains three heavily loaded links, and hence was chosen DIFFERENT LINK CAPACITIES.

for tuning of 5, under varying capacities, with link delays

varying from30ms to 80ms. Specific paths and link delays are

selected in the Share topology (Figure 15a) to test thedagn  In our first set of experiments, we vary the capacity of
of TRUMP. Links in the Share topology have a capacity ghe links uniformly from 10Mbps to 1000Mbps. In Table 1V,
200Mbps, except for the bottleneck link from node 7 to nod&e observe the best, for fast convergence i$ « 1015 for

8, which has a capacity of 100Mbps. 10Mbps,1 %1017 for 200Mbps andl x 10~ for 1000Mbps.
More precisely, the appropriatg, value decreases by two
orders of magnitude when the link capacities increase by one

Topology Nodes | Links | Flows | Paths ) -

Abilene i1 78 4 4 order of magnitude. Taking a closer look at (14), we observe
Access Core| 10 24 6 3 that for 3, = 0.1, p; is larger thang by c7. Therefore,
"S"#gr'zome 34 ‘l‘g go 1'3 we let 8, equal 0.05/c2 and repeat the experiments with

different capacities. We find that convergence is achievigdd w
this setting of3,. To confirm our choice holds in networks
with heterogeneous capacities, we repeated the experiment
with topology from Figure 5 with randomly assigned capac-
ities ranging from 10Mbps to 1000Mbps. We confirmed that

Since TRUMP with explicit feedback is most easily defy = 0.05/c; results in a smooth convergence even in this
ployed inside a single AS, we obtained intra-AS topologie§hallenging scenario.
along with link delays from the Rocketfuel topology mapping
engine_ [24], [25]. The link capacities are 100Mbps if neiith%_ TRUMP versus Partial-Dual
endpoint has degree larger than 7, and 52Mbps otherwise. ] )
As summarized in Table IlI, between 10 and 50 flows were We confirm our MATLAB results from Section VI-A:
randomly selected. For each source-destination pair,ipreilt TRUMP has better convergence properties than partial-dual
paths were computed by first selecting a third transit nddey t Under heterogeneous feedback delay and for a range of
computing the shortest path containing all the three ncatess, Values. In Figures 10 and 11, we plot the aggregate throughpu

finally removing cycles in the path. The RTTs on the patHQ the Sprint network with 50 greedy flows. The paths chosen
range fromlms to 400ms. had RTTs ranging frondms to 327ms, with an average of

127ms and a standard deviation dféms. Similar to the
MATLAB experiments, we observe TRUMP converges slower

TABLE Il
SUMMARY OF SYNTHETIC TOPOLOGIES

IGS:n(StSy(T)U mben) ff;“es 'iTgs g(l)ows E_‘Zths for smallerw, though to higher aggregate rates, as shown in
Telstra(1221) 47 88 20 14 Figure 10. Whenv = 1, the TRUMP aggregate rates increase
Sprinf((1239)) 52 168 | 500 | 14 from O at timeOs (when the flows are established), to close to
Tiscali(3257 41 174 | 25 1-4 s . :
Abovenei(646T) | 19 58 5 e the target value withirs00ms — about 4 times the average
AT&T(7018) 115 296 1000 | 14 RTT. Whenw = 1/6, the TRL_JMP aggregate rates take Iong_er
to converge, though they still converge smoothly. Compmarin
TABLE Il . . . .
SUMMARY OF ISPTOPOLOGIES Figure 10a with Figure 10b, for the first second or so, the

actual throughput is lower than the sending rates for small
w. This is because if TRUMP’s sending rates are above the
bandwidth in the network, packets are lost. TRUMP converges
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Fig. 11. Aggregate throughput of partial-dual with= 1/3, in the Sprint network with 50 greedy flows.

for a range ofw values with a singlg3, value, chosen in the traffic returns to the original path quickly. Similar behawi

previous subsection. is observed for flow 39.

Similar to the MATLAB experiments, we observe in Fig- 12407
ure 11 the partial-dual is quite sensitive to the choice of
stepsize atv = 1/3. In Figure 11a, we observe for a stepsize 1e+07 - 8
of 10716, the partial-dual sending rates converge slowly; but A T
for a stepsize 08 x 10~16 (only three times larger), we find the E Ber06 I i A
partial-dual sending rates oscillate significantly. Inufg11b, g 6et06 | |
we observe when the sending rates oscillate, there are heavy £ i
packet losses. In fact, the actual throughput for a stepsize &  se+0s i

of 3 x 10716 is lower than when the stepsize 1§'6. In |
addition, the same stepsize does not work across different 2e+06 Il
values ofw. By comparing Figures 10 and 11, we confirm o Lit !

our MATLAB results from Section VI-A: TRUMP has better o 2 4 & 8 10 12 12 15 18
convergence properties than partial-dual under hetermgen time (sec)

feedback delay and for a range ofvalues.

Fig. 12. Plot of affected path rates for a link failure in therigt network.

D. Topology and Traffic Dynamics Second, we study the performance of TRUMP under re-
First we consider the impact of a link failure in the Sprinalistic traffic loads by using 10 stochastic ON-OFF flows

Network. Path failures and recoveries are detected throughthe Abovenet network. As suggested by [26], the OFF

active probing. All 50 greedy flows are established at 0 sgueriods are Pareto with shape 2.0 and averagé.nf. We

At 5 sec the link between Pennsauken, NJ and Roachdale,dbhsider three file size distributions: exponential, Raxeith

fails, and it recovers at 10 sec. Flows 20 and 39 contain theape 1.2 and Pareto with shape 1.8. In Figure 13, we

affected link in at least one of their paths. In Figure 12, @ p plot the average file size against tlefficiency fraction of

the path rates of the flow 20. We observe that immediately afthe actual throughput over the ideal throughput forl (e

the failure, traffic is assigned to an alternate path untdtec period. The ideal throughput is found by solving (5). First,

by the failure. After the link is repaired at time 10 secTRUMP’s behavior isindependentof the variance of the
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file-size distribution, since all three curves overlap. @et; f is summed over all links, shorter-hop paths are generally
TRUMP is more efficient for larger files as it takes a few RTTpreferred because if a longer-hop is taken, then more lirks a
to converge to the ideal throughput. On the surface, TRUM®&aded. So if there are two equally loaded paths, the one with
performs poorly for small files, only achieving 50% of thdewer hops is preferred. Longer-hop paths are more likely to
ideal rate. However, given those files are transmitted withi be used when the network is under-utilized, because a flow
single RTT, achieving 50% of the ideal rate is much betten thanight split traffic over two or three paths that are not used by
TCP today. In addition, TRUMP is optimized for logarithmicany other flow. Longer-hop paths are also more likely to be
utility, for examplelog(20,000)/log(40,000) = 0.93. This utilized when the network is very congested, because athligh
means TRUMP achieves close to ideal utility even for shofbnger-hop path that is much less congested is still atact
lived flows. Another advantage of shortest-hop paths is that they can be
chosen a priori, while congestion levels depend on dynamic
traffic patterns.
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Fig. 13. Plot of average file size versus efficiency for thragributions.

Fig. 14. Plot of aggregate throughput versus time for theehlal topology

. . with four flows. Different lines correspond to different nber of paths
E. Selecting the Multiple Paths available per flow. P P

There are often many paths available between each source-
destination pair. In this subsection, we study how many gath Next, we study how the number of paths available to each
to provide TRUMP, and how to select such paths. flow affects the utility achieved and rate of convergence. In
Figure 14, we vary the number of paths available to each flow

FI%WS Siné;éeef;ath T\%Oﬁ%f)t/ths Thrzeé;‘r;aths ShOétgeZttypath from one to four. For the Abilene topology with four flows,
.6% 8% .6% 8% H 0, H

o 5659 ST B% ET% =% the aggregate throgghput increases by 25% When_ there is more
55 6§7.0% 32.4% 0.4% 50.2% than one path available to a flow, though the gains are much
50 76.8.4% 20.4% 2.8% 72.6% more modest when more than two paths are provided for each
100 70% 27.8% 2.2% 64.4% source. This observation is inline with research illustigithe

250 88.6% 11% 0.4% 70.8% f o hoi 571 1281, Th ber of f h

=00 91.8% 5% 01% 59% power of two ¢ oices [27], [28]. The num er of flows has no

TABLE V visible impact on the rate of convergence. Looking at Fidute

and Table V together, we conclude selecting two (or three)
shortest-hop paths per source-destination pair is suftidéor
TRUMP to perform well.

IMPACT OF VARYING NUMBER OF FLOWS ON THESPRINT NETWORK.

We begin by studying how the number of flows (source- ) )
destination pairs) affects whether traffic splits over ipigt - Faimess of Bandwidth Sharing
paths, and whether shortest-hop paths are used. For tha SpriAs mentioned in Section I1I-B, TRUMP ig-fair asw — 0,
topology, we summarize in Table V the number of paths usédt its fairness for generab values is unknown. Fotw =
by flows at equilibrium and percentage of flows using shortedt, we construct a simple topology (Figure 15a) to illustrate
hop paths. The number of flows in the network impacts thvehether the bottleneck link is shared fairly. In Figure 15b,
likelihood of a flow being split amongst multiple paths. letk  we plot throughput of two pairs of flows which differ in RTT
is a single flow in the network, it will use all the paths avhia or hop-count. All flows have a shared destination (node 9),
to it. So when there are very few flows, a large percentage arid the sources are nodes 1, 2 and 3 respectively. We observe
flows place load on multiple paths simultaneously sinceethethat flows 1 and 2, which have very different RTT (30ms and
are many uncongested paths. As the number of flows increadé¥)ms) but the same number of hops on their paths, share
a larger percentage of flows will just select a single paticesi bandwidth fairly. Unlike most congestion control propasal
most of the links are used by at least one flow already. = TRUMP does not discriminate against long RTTs since (4) has
Further, we observe 50% to 73% of the flows send all thaiio dependency on RTT. While RTTs does indeed affect the
traffic on the shortest-hop path(s). Given the penalty fionct transient behavior as indicated in the distributed albamiof
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Fig. 15. Fairness of bandwidth sharing.

(13), fairness is an equilibrium property. On the other handhich prove that multipath congestion control can be stable
flow 3 with twice as many hops receives roughly half thander heterogeneous feedback delay. In particular, [1afesh
bandwidth of flow 1. This is inline with network operator'sa similar problem formulation and analyzes an algorithm
goals to penalize against longer-hop paths since that wougidilar to the primal-driven algorithm presented in Sect3o3,
require more usage of network resources. If the unsharks limowever, TRUMP offers extra flexibility through the tuning
are lightly loaded, the bandwidth sharing would be lessiunfgparameterw and faster convergence through an universal
since the amount of penalty depends on link load. It is alstepsize. In [28], they study coordinated path selectiothén
possible to change the source rate adaptation for TRUMP dontext of multipath congestion control, while in this pape
react to path prices normalized by hop length of that path, wee find selecting two or three shortest-hop paths is sufficien
ensure fair bandwidth sharing for diverse hop lengths. for TRUMP to perform well.

IX. CONCLUSIONS

In this paper, we searched for a traffic-management protocol

Optimization theory is used in traffic management researcri!1ich is distributed, adaptive, robust, flexible and easy to

in areas such as reverse engineering of existing protopls . . X
[6], tuning configuration parameters of existing protod@ll anage. We foII_owed a top-down design process starting with
’ an objective which balances the goals of users and operators

and guiding the design of new protocols [8] (for more refer; . o .
e generated four provably optimal distributed solutiosiang
ences see [29]). In turn, such a broad use has encouraged In- o ) R .
. : S : nown decomposition techniques. Using insight from simula
novations in optimization theory, for example, [10] inttmetd . . : .
. o tions comparing the four algorithms, we combined the best
multiple decomposition methods. Our paper takes advamtage : R .
) . ~.parts of each algorithm to construct TRUMP: a simpler traffic
the recent advancements and applies multiple decompusiti . L
; ) management protocol. TRUMP is easy to manage, with just
to design traffic management protocols.

Most of the pronosed traffic management brotocols considpene optional tunable parameter. Our packet-level evalnati
X prop . nagel P SOnfirmed TRUMP is effective in reacting to topology changes
congestion control or traffic engineering alone. Several pr

posed dynamic traffic engineering protocols also load tata and traffic shifts on a small timescale, even with realistic
over multiple paths based on feedback from links [11], [9 eedback delay. We also found TRUMP’s performance is only

[30], but they do not adapt the source rates. From the meth(?Hgakly dependent on the properties of file size distribution

. addition, our preliminary experiments show TRUMP can
ology perspective, our work bgars the most resemblanceataqieve fair bandwidth sharing for paths of diverse RTT$, bu
FAST TCP [8]. Other congestion control protocols that us '

S ot for diverse hop count.
control thgory o prove stability include [22]’ [31], [32]. This paper started from an abstract model, and ended with
According to recent research, congestion-control anfidraf

. . : X a practical traffic management protocol based on feedback
engineering practices may not interact well [33], [3], [34]from the links along each path. In our ongoing work, we

In response, many new de§|gns are proposed. Som_e of thfl@ exploring a version of TRUMP where the sources adapt
start with a different objective than this paper, and find rpo

. . > th rates based b ti f end-to-end del d
convergence properties [14], [13]. Algorithms similarwetof © path raies based on observarons of end-1o-end defay an

I ; . . . loss. We show that using optimization decompositions as a
Fhesdecc;mﬁ)osmc:jr.] solluggnstéSecLlon It\r/]) are de.zcr'bedfg'.bfoundation, simulations as a building block, and engimegri
in [ _] and Appendix o [35] though neither considers polssi intuition as a guide can be a principled approach to protocol
design alternatives, nor present a packet-level protoaod ( design
associated experiments). '
Some research analyzes stability of joint congestion obntr

and routing algorithms using theory [17], [36], [37], while ) .

Lo S . . él] J. He, M. Suchara, M. Bresler, M. Chiang, and J. RexfoRiethinking
use optimization decomposmon to gmde the dES|gn of a-pra Internet Traffic Management: From Multiple Decompositiotts A
tical protocol. Some of our evaluation is inspired by [37]/], Practical Protocol,” inProc. CONEXT December 2007.
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