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Abstract—Traffic management is the adaptation of source
rates and routing to efficiently utilize network resources.Traffic
management today includes congestion control, routing and
traffic engineering. In this paper, we perform a top-down redesign
of traffic management using recent innovations in optimiza-
tion theory. First, we propose a new objective function that
captures the goals of both end users and network operators.
Second, using various optimization decomposition techniques,
we generate four distributed algorithms that divide traffic over
multiple paths based on feedback from the network links. These
distributed algorithms are provably stable and optimal. Third,
combining the best features of these distributed algorithms,
we construct TRUMP: a new traffic management protocol that
is distributed, adaptive, robust, flexible and easy to manage.
Packet-level simulations show TRUMP behaves well with realistic
topologies, feedback delays, capacities, and traffic loads. Overall,
we show that using optimization decomposition as a foundation,
simulations as a building block, and engineering intuitionas a
guide can be a principled approach to protocol design.

I. I NTRODUCTION

Traffic managementis the adaptation of source rates and
routing to achieve the goals of users and operators. Traffic
management has three players: users, routers, and operators.
In today’s Internet, users run congestion control to adapt their
sending rates at the edge of the network. Inside a single
Autonomous System (AS), routers run shortest-path routing
based on link weights. Operators monitor the network for
congestion, and tune link weights to direct traffic away from
congested links [2]. The current division of labor between the
three players slowly evolved over time without any conscious
design, resulting in a few shortcomings. First, operators tune
link weights assuming that the traffic is inelastic, and end hosts
adapt their sending rates assuming routing is fixed, leadingto
suboptimal interactions [3]. Second, tuning link weights is an
indirect way to control traffic flow through a network; further,

This paper is an extended version of a conference paper that appeared as [1].
The key additions of this journal version are as follows. First, Section II
describes several specific scenarios for the distributed traffic management
protocols to be implemented in the current Internet. Second, this paper con-
tains a proof of convergence for TRUMP in Section VI-B. Finally, this paper
contains new experimental results in Section V-B, VII-B, VII-C and VII-E.
In Section V-B, additional experiments on a multihoming topology provide
insight on the relationship between the number of flows sharing bottleneck
links, and the performance of distributed algorithms. In Section VII-B, new
experiments provide insight on setting specific protocol parameters for fast
convergence (for a wide range of topologies and capacities). In Section VII-C,
new experiments capture both the sending rates and the actual throughput for
distributed protocols, allowing for a more concrete comparison. Section VII-E
studies how the number of flows and the number of paths per flow impact
the performance of TRUMP.

the link-weight setting problem is NP-hard, forcing operators
to resort to heuristics that can lead to highly suboptimal
solutions [4]. Finally, since this offline optimization occurs
at the timescale of hours, it does not adapt to changes in the
offered traffic, causing an inefficient use of the underlying
resources.

In this paper, we rethink Internet traffic management using
optimization theory as a foundation.Optimization theory has
been successfully used to analyze and design the various
components of traffic management. TCP congestion control
has been reverse engineered as implicitly solving an opti-
mization problem [5], [6], [7], and optimization theory has
been used to guide the design of new congestion control
protocols (e.g., [8]). In addition, traffic engineering imposes
an optimization problem on the system [2], and optimization
theory has been used to analyze proposed traffic-engineering
protocols [9]. Although much of the existing research has
focused on a single aspect of traffic management, our paper
provides a holistic view.

Optimization decompositionis the process of decomposing a
single optimization problem into many sub-problems, each of
which is solved locally. The challenges of using optimization
decomposition to derive protocols are two-fold. First, any
mathematical modeling makes simplifying assumptions. Sec-
ond, while multiple decomposition methods exist, it is unclear
how to compare them. To the best of our knowledge, this is the
first work that comparesmultiple decomposition solutions for
traffic-management protocols, then builds a practical protocol
that combines best features from each one.

In our top-down redesignof traffic management, we start
by selecting an intuitive and practical objective functionin
Section III. Section II describes practical considerations in
deploying of a distributedmultipath traffic-management al-
gorithm: where sources adapt their sending rates along mul-
tiple paths according to congestion feedback from the links.
Although multipath traffic-management is not commonly de-
ployed today, we explore several deployment scenarios that
relate mathematical notions of sources and paths concretely
to network elements. Using optimization decomposition tech-
niques discussed in [10], Section IV derives four specific
distributed solutions that differ in the computation of path
rates and congestion feedback. Optimization theory guarantees
that these algorithms converge to a stable and optimal point,
while simulations allow us to compare rate of convergence and
robustness to tunable parameters in Section V. Although these
distributed algorithms work well, they can be sensitive to tun-
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able parameters. We combine the best features of each of these
algorithms to construct a simple TRaffic-management Using
Multipath Protocol (TRUMP) in Section VI. Our contributions
are two-fold:

• Protocol Design using Decompositions:We demonstrate
how to create a practical network protocol by deriving
multiple distributed algorithms, comparing their practical
properties, and synthesizing their best features into a
practical protocol.

• Redesigned Traffic Management: We introduce
TRUMP: an easy to manage distributed protocol, that
performs well for diverse topologies, capacities, feedback
delays and traffic loads.

TRUMP converges faster than the four algorithms presented
in Section IV, and has the fewest tunable parameters. Al-
though TRUMP is not derived from a particular optimization
decomposition, we are able to prove its convergence when
the network is tuned to have low packet loss. As with any
mathematical modeling, the TRUMP algorithm leaves many
protocol details unspecified. We use engineering intuitionto
address these details.

In Section VII, the TRUMP protocol is evaluated using
packet-level simulations with a wide range of topologies and
traffic loads. We use a simple heuristic to set TRUMPs
parameter such that it converges smoothly for a wide range
of topologies, capacities, feedback delays, and traffic loads.
When many flows share the same bottleneck link, there
is a small amount of packet loss during convergence, but
TRUMP still converges within a few RTTs. In contrast, the
other distributed solutions become unstable when such links
exist. We also study the impact of number of paths on the
performance of TRUMP. First, TRUMP is more likely to split
traffic over multiple paths when there are fewer concurrent
source-destination pairs. Second, while TRUMP can achieve
higher throughput if all sources can access two paths rather
than a single path, additional paths do not provide significant
gains. This paper discusses related work in Section VIII and
concludes in Section IX.

II. D ISTRIBUTED MULTIPATH TRAFFIC MANAGEMENT

Fig. 1. Three paths between source node 9 and destination node 6.

Traffic management controls how much traffic traverses
each path in a network. In the Internet today, end hosts
run congestion control to adapt sending rates, and routing
protocols select asingle path between two end hosts. In
this paper, we present severaldistributed traffic-management

algorithms where sources adapt sending rates onmultiple paths
to a destination. This is illustrated in Figure 1, source node 9
computes its sending rate on each of its three paths to destina-
tion node 6, based on feedback regarding the path congestion
conditions. An advantage of our distributed algorithms is that
they adapt at a single timescale (on the order of RTTs), and
is able to respond quickly to traffic shifts.

Implementing such a distributed algorithm requires support
from the network: multiple paths must exist between a source-
destination pair, the sources must have knowledge of and
control over the multiple paths, and data plane forwarding
of packets on each of the specified paths must be possi-
ble. We address all these requirements in this section. The
’sources’ and ’paths’ in an algorithm can map to different
network elements depending on the scenario. For example, in
today’s traffic-management system, sources can be end hosts
(which run distributed congestion-control algorithms), or edge
routers (which have been proposed to run distributed traffic-
engineering protocols [11]).

Existence of Multiple Paths:In the Internet today, multiple
end-to-end paths often exist because many stub networks are
connected to multiple upstream ISPs, most ISPs have multiple
paths between a pair of edge routers, and large ISPs often con-
nect to each other in multiple locations. Today, most routing
protocols only forward packets on a single path between a
source and destination, though the underlying resources can
be more efficiently utilized if traffic isdynamicallybalanced
between multiple paths, as we propose in this paper.

Sources See Multiple Paths:Although path diversity exists
in the Internet, sources cannot always access the multiple
paths, since directing packets ontoany end-to-end path can
require cooperation between multiple networks. Still, there are
several natural scenarios where cooperation between multiple
networks is not required.

• End-host Overlay:In an end host overlay network, end
hosts (possibly belonging to multiple networks) are con-
nected in a logical topology. Although the routers be-
tween any two end hosts still select a single path between
them, an end host can reach a destination through any
other overlay node in the network, thus creating multiple
paths.

• Single ISP:A single ISP can also exploit its own internal
path diversity. Inside an ISP, an edge router can compute
the traffic rates on each path and the end hosts connected
to it can send at a rate explicitly specified by the edge
router. Alternatively, an edge router can shape the incom-
ing traffic, and the end hosts can run congestion control
to adapt to the rate limits imposed by the edge routers.

• Multihomed Stub:A stub network connected to mul-
tiple upstream providers can split traffic over multiple
upstream links. At the multihomed stub network, an
edge router can compute the splitting percentages over
outgoing links, or the stub network can provide the access
information for the end hosts residing in the network.

Even more end-to-end paths are accessible if two or more
networks cooperate, as surveyed in [12].

Directing Packets onto Specific Paths:Once sources have
computed the splitting percentages between multiple paths, the
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data plane must ensure packets are split between the specified
paths accordingly. A packet can be directed onto a specific path
throughtunnels. There are two prevalent tunneling techniques
in use today: IP-in-IP tunnels and MultiProtocol Label Switch-
ing (MPLS). In both cases, establishing a tunnel involves
“pushing” an extra IP header (or label) at the tunnel ingress
and “popping” the IP header (or label) at the tunnel egress.
In the case of MPLS, each intermediate router also stores a
label-based forwarding table, so that it can direct a packetto
an appropriate outgoing link based on the label. No tunneling
is required in the case of a multihomed stub, where the stub
network just chooses an outgoing link, rather than the entire
path a packet follows. Today, routers can already split traffic
equally amongst multiple paths using a variety of techniques,
thus it is not difficult to extend such techniques to achieve
arbitrary splitting percentages [12].

III. C HOOSING AN OBJECTIVE FUNCTION

In this section, we use optimization as a modeling language
to formalize traffic management. Every optimization problem
consists of an objective function, a constraint set and variables.
For traffic management, by having both routing and source
rate as optimization variables, we have the most flexibility
in resource allocation. In our problem, the constraint is that
link load does not exceed capacity. The objective function
remains to be designed. We first propose an objective that
maximizes aggregate user utility, but simulations reveal the
solution converges slowly and is sensitive to stepsize. In
addition, maximizing user utility leads to bottlenecks in the
network, making the network fragile to traffic bursts. To ad-
dress these practical challenges, we design an objective which
balances maximizing user utility with minimizing operator’s
cost function.

A. Maximizing Aggregate Utility: DUMP

One natural objective for the traffic management system is
to maximize aggregate user utility, where utilityUi(xi) is a
measure of “happiness” of source-destination pairi (referred to
as sourcei in this paper) as a function of the total transmission
rate xi. U is a concave, non-negative, increasing and twice-
differentiable function,e.g. log(xi), that can also represent
the elasticity of the traffic or determine fairness of resource
allocation. This is the objective implicitly achieved by TCP
congestion control today [5], [6]. We represent the routingby
matrix Rli that captures the fraction of sourcei’s flow that
traverses linkl, and we letcl denote the capacity of linkl. As
proposed in [13], [14], the resulting optimization problemis:

maximize
∑

i Ui(xi)
subject to Rx � c, x � 0

(1)

where bothR andx are variables.
A distributed solution to (1) can be derived through dual

decomposition if (1) is a convex optimization problem. In its
current form, (1) has a non-convex constraint set, which can
be transformed into a convex set if the routing is allowed to
be multipath. To capture multipath routing, we introducezi

j to

represent the sending rate of sourcei on its jth path. We also
represent available paths by a matrixH where

Hi
lj =

{

1, if path j of sourcei uses linkl
0, otherwise.

H does not necessarily present all possible paths in the
physical topology, but a subset of paths chosen by operators
or the routing protocol. Then we can rewrite (1) as:

maximize
∑

i Ui(
∑

j zi
j)

subject to
∑

i

∑

j Hi
ljz

i
j ≤ cl, ∀l.

(2)

In this form, (2) is a convex optimization problem. A dis-
tributed solution to (2) can be derived usingdual decompo-
sition [13], where adual variable is introduced to relax the
capacity constraint. The resulting Dual-based Utility Maximiz-
ing Protocol (DUMP) is summarized in Figure 2. Similar to the
reverse engineering of the congestion-control protocol in[6],
s can be interpreted as link prices.

Feedback price update at link l:

sl(t + 1) =



sl(t) − βs(t)



cl(t) −
∑

i

∑

j

Hi
ljz

i
j(t)









+

,

whereβs is the feedback price stepsize.

Path rate update at sourcei, path j:

zi
j(t + 1) = maximizezi

j



Ui





∑

j

zi
j



 − zi
j

∑

l

sl(t)H
i
lj





Fig. 2. The DUMP algorithm.

Heret represents the iteration number and each iteration is
at the same timescale as the longest Round Trip Time (RTT) of
the network. At each link,sl is updated based on the difference
between the link load

∑

i

∑

j Hi
ljz

i
j and the link capacity. As

indicated by[]+, sl is only positive when the link load exceeds
the link capacity,i.e. when the network is congested. Each
source updateszi

j based on explicit feedback from the links,
in the form of feedback pricessl. In particular, each source
maximizes its own utility, while balancing the price of using
pathj. The path price is the product of the source rate with the
price per load for pathj (computed by summingsl over the
links in the path). DUMP is similar to the TCP dual algorithm
in [6] except the local maximization is conducted over avector
zi, as opposed to only a scalarxi, to capture the multipath
nature of DUMP.

From optimization theory, certain choices of stepsizes, such
as βs(t) = β/t where β > 0 is a constant, guarantee that
DUMP will converge to the joint optimum ast → ∞ [15].
However, such diminishing stepsize is difficult to implement in
practice as it requires synchronization of time across the nodes,
and particularly difficult to do with dynamic arrivals of new
flows. Previous work indicates that even under the simplest
of topologies and assuming greedy flows, DUMP has poor
convergence behavior [13]; our own Matlab experiments [16]
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confirm this. When the stepsize is too large, DUMP will
constantly overshoot or undershoot, never reaching the ideal
utility. On the other hand, when the stepsize is too small,
DUMP converges very slowly. Even at the optimal stepsize,
DUMP only converges after about 100 iterations. This high-
lights that choosing an appropriate stepsize for DUMP is
challenging.

B. New Objective for Traffic Management

Let us reflect for a moment on why DUMP has poor
convergence behavior. If we look at the form for feedback
price, we see it is only nonzero when links are overloaded,
therefore, the feedback from the links is not fine-grained. This
corresponds to the congestion control mechanism of TCP Reno
where sources only reduce their sending rates once packets
are already lost, causing the sawtooth behavior. In fact, the
feedback price in DUMP has the same formulation as the
congestion price in [6]. In addition, utility is only based
on throughput, while having low delay is also important to
traffic management. In addition, the authors of [3] suggest
the network is driven to a solution where some links are
operating near capacity when only utility is maximized. This is
an undesirable operating point which is very fragile to traffic
bursts. This indicates that maximizing the aggregate utility
enhances performance of the individual users, but leaves the
network as a whole fragile.

To avoid the poor convergence properties of DUMP, we
look for an alternative problem formulation which also takes
into account the operator’s objective. Today, traffic engineering
solves the following optimization problem with onlyR as a
variable (andx constant):

minimize
∑

l f(
∑

i Rlixi/cl). (3)

f is a convex, non-decreasing, and twice-differentiable func-
tion that gives increasingly heavier penalty as link load in-
creases,e.g.e

∑

i
Rlixi/cl . The intuition behind choosing thisf

is two-fold. First,f can be selected to model M/M/1 queuing
delay. Second, network operators want to penalize solutions
with many links at or near capacity and do not care too much
whether a link is20% loaded or40% loaded [2]. If we solve
(3) with bothx andR as variables, then the solution would
end up with zero throughput, which is also undesirable.

A better traffic management objective could be to combine
performance metrics (users’ objective) with network robust-
ness (operator’s objective), leading to the following formula-
tion as a joint optimization over(x,R):

maximize
∑

i Ui(xi) − w
∑

l f(
∑

i Rlixi/cl)
subject to Rx � c, x � 0.

(4)

This objective favors a solution that strikes a trade-off between
high aggregate utility and a low overall network congestion, to
satisfy the need for performance and robustness. Similar prob-
lem formulations were proposed in [3], [17], though without
w. Herew is a parameter which adjusts the balance between
the utility function and the cost function. Whenw is small,
(4) is very close to (1) since the utility term dominates. When

w is large, the solution is more conservative and avoids high
link utilization. Today, operators perform traffic engineering by
adjusting link weights depending on the instantaneous traffic
load. In our case, they can adjust a single parameterw.

Aside from performance, fairness is another important con-
sideration. From a theoretical perspective, the solution to (4)
is α-fair asw → 0, whereα-fairness is defined in [18]. While
this does not hold for general values ofw, our experimental
results in Section VII-F are encouraging.

Before generating distributed solutions in Section IV, we
first transform (4) to a convex optimization problem:

maximize
∑

i Ui(
∑

j zi
j) − w

∑

l f(yl/cl)

subject to y � c,
yl =

∑

i

∑

j Hi
ljz

i
j , ∀l.

(5)

Note that to decouple the objective which containsU (a per-
source function) andf (a per-link function), we introduce an
extra variableyl to provide feedback before link load exceeds
the actual capacity.

IV. M ULTIPLE DECOMPOSITIONS

In this section, we describe the distributed algorithms gen-
erated from optimization decompositions of (4) (the decompo-
sition techniques are surveyed in [10], [5]). All four resulting
algorithms update the path rates based on feedback prices from
links. There are a number of other similarities between the four
algorithms. First, the operations performed by links including
measuring the link load present only a small overhead. Second,
all four algorithms incur the same small message passing
overhead: only the sum of the link prices on the end-to-end
path needs to be communicated. Third, while computations
can involve solving a local optimization problem and taking
derivatives,U and f are twice differentiable, and therefore
closed-form solutions exist and they are just simple function
evaluations. Finally, the computational complexity of allfour
algorithms is constant per link and linear per source. The
main difference, then, is the number of tunable parameters of
each algorithm, which varies from one to three. Optimization
decomposition leads us to three constructs that are generally
applicable: effective capacity, consistency price and direct
path-rate update.

A. Effective Capacity

The first three algorithms (partial-dual, primal-dual, and
full-dual) prevent link loads from reaching link capacity by
providing feedback based oneffective capacityrather than
actual capacity. In the resulting algorithms, the sources update
the path rates based on feedback price just as in Figure 2. The
feedback price is similar to that in Figure 2, except it is based
on effective capacityyl:

sl(t + 1) = sl(t) − βs



yl(t) −
∑

i

∑

j

Hi
ljz

i
j(t)



 . (6)

As in Section III-A, we consider constant stepsize for prac-
tical reasons, thus we remove the dependence ont from all
stepsizes.
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1) Local Optimization: Partial-Dual:The derivation pro-
cess for thepartial-dual algorithm is identical to Section III-A
except with effective capacityy as an additional primal
variable. The constrainty � c is enforced, resulting in the
following equation for updating effective capacity:

yl(t + 1) = minimize(yl≤cl)wf(yl/cl) − sl(t)yl. (7)

In (7), yl is updated by solving a local optimization using
information from the feedback price and the cost function
f . An economic interpretation is that the effective capacity
balances the cost of using a link (represented byf ) and
revenue from traffic transmission (represented by the product
of feedback price with the effective capacity). There is an
explicit solution to (7). Note that the effect of the cost function
is proportional tow.

2) Subgradient Update: Primal-Dual:The primal-dual
decomposition first decomposes (5) into two subproblems,
one responsible for each primal variable. The master problem
solves fory assuming a givenx∗, while the subproblem solves
for x assuming a fixedy. The master problem is as follows:

maximize
∑

i Ui(x
∗) − w

∑

l f(yl/cl)
subject to y � c,

(8)

wherex∗ is a solution to the following subproblem:

maximize
∑

i Ui(xi)
subject to Rx � y.

(9)

Note that (9) is identical to (2) except the constraint is ony

rather thanc. The solution to the subproblem is then identical
to that presented in Figure 2 except for the feedback price
update which uses the effective capacityy rather than actual
capacityc.

The master problem can be solved through an iterative
update of effective capacity :

yl(t + k) = min(cl, yl(t) + βy(sl(t) − wf ′(yl(t)))), (10)

where βy is the effective capacity stepsize. Taking a closer
look at (10), the minimization ensures effective capacity stays
below the actual capacity. The parameterk is an integer greater
than 1 since (8) is updated less frequently than (9). The
subgradient update itself consists of balancing the price the
link can charge (sl), and the cost that link must pay (f ′

l (yl)).
In a nutshell, the primal-dual decomposition is identical to the
partial-dual decomposition except that the effective capacity is
updated iteratively through (10) rather than by solving a local
minimization problem.

B. Consistency Price: Full Dual

The full-dual decomposition is quite similar to the partial-
dual decomposition in Section IV-A1, but a second dual vari-
ablep is introduced to relax the constrainty � c. This dual
variable can be interpreted asconsistency priceas it ensures
consistencybetween the effective capacity and the capacity
constraint at the equilibrium point. As with the feedback price,

the consistency price is updated over time using a subgradient
method:

pl(t + 1) = [pl(t) − βp(cl − yl(t))]
+,

where βp is the stepsize for consistency price. Consistency
price only comes into play when the capacity constraint is
violated, therefore, it is mapped to a non-negative value. The
effective capacity update is based on both link prices:

yl(t + 1) = minimizeyl
wf(yl/cl) − (sl(t) + pl(t))yl.

The path rate update and feedback price update are identical
to that of the previous two algorithms. The full-dual algorithm
closely resembles an algorithm presented in [3], though our
objective containsw as a weighing factor. Appendix 2 of [3]
also shows a complete derivation of the full-dual algorithm.

C. Direct Path Rate Update: Primal

In all the previous algorithms, auxiliary dual variables were
introduced to relax the constraints. In thisprimal decom-
position, we find a direct solution by introducing a penalty
function, as in the appendix of [19]. Let the penalty function
gl(

∑

i

∑

j Hi
ljz

i
j) replace the capacity constraintHz � c. The

penalty function is a continuous, increasing, differentiable and
convex function that is sufficiently steep such that link loads
will not overshoot capacity. If it is also sufficiently closeto
zero for values less than capacity, it will not affect the optimal
point [20]. If we addg and the cost functionf to get a penalty-
cost functionPl(

∑

i

∑

j Hi
ljz

i
j), then (5) can be transformed

into the following:

maximize
∑

i

Ui(
∑

j

zi
j) − w

∑

l

Pl(
∑

i

∑

j

Hi
ljz

i
j). (11)

The derivative of (11) is:

dzi

dt
= βz

∂Ui

∂zi
j

(xi(t)) − w
∑

l

P ′
l (

∑

i

∑

j

Hi
ljz

i
j(t)), (12)

whereβz is the stepsize for path rate. Converting (12) into a
subgradient update form and separating link information from
source information, we obtain the algorithm in Figure 3.

Path rate update:

zi
j(t + 1) = zi

j(t) + βzz
i
j(t)(

∂Ui

∂zi
j

(xi(t)) −
∑

l

Hi
ljsl(t))

Feedback price update:

sl(t + 1) = wP ′
l (

∑

i

∑

j

Hi
ljz

i
j(t))

Fig. 3. The Primal algorithm.

The path rates are iteratively updated based on the difference
between the rate of change of the utility function and the as-
sociated path feedback price. The feedback price here directly
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represents how quickly the penalty function is changing at
a given link load. The primal algorithm in Figure 3 differs
significantly from the first three decompositions. First, ituses
direct subgradient update on the path rates. Second, it does
not use the concept of effective capacity.

V. CONVERGENCEPROPERTIES

In this section, we study convergence properties of the four
algorithms, and make key observations which will guide our
design of a new protocol in Section VI. First, we find that
there is a trade-off between the speed of convergence and the
achievable aggregate utility. Second, we find algorithms which
use local minimizations instead of iterative updates converge
faster. Third, we find consistency price can aid convergence
for small w.

A. Set-up of MATLAB Experiments

Due to the multitude of tuning parameters, finding the
optimal values requires fine-grained sweeping of the parameter
space. Thus we use MATLAB simulations along with simple
topologies and simple traffic patterns to identify the key
properties that improve convergence. For all algorithms, we
update the source and link variables at each iteration basedon
link load from the previous iteration. For the utility function
U , we use a logarithmic function commonly associated with
proportional fairness and TCP Reno today [18]. For the cost-
function f , we use an exponential function, which is the
continuous version of the function used in various studies of
traffic engineering [2].

Fig. 5. Topology capturing 20 stub networks connected to 3 ISPs. All
networks are connected to ISPA, networks 1 through 10 are connected to
ISP B and networks 1, 2, 3, 11, 12, 13 are connected to ISPC. The links
connecting the ISPs to the destination have feedback delay from 30ms to
80ms.

We study three realistic topologies as shown in Figures 4
and 5. Figure 4a is a tree-mesh topology, which is representa-
tive of a common access-core network structure. Figure 4b is
the Abilene backbone network [21]. Finally, Figure 5 repre-
sents a multihoming topology where many multihomed stubs
are all trying to reach the same destination through three ISPs.
We select six source-destination pairs for access core and four
pairs for Abilene. For each of these communicating pairs, three
minimum-hop paths are available for access-core and four

minimum-hop paths are available for Abilene. The simulations
assume the link capacities follow a truncated (to avoid negative
values) Gaussian distribution, with an average of100 and a
standard deviation of10. For this set of experiments, we define
convergence as reaching99.9% of the optimal aggregate utility
of (4). We found the convergence rates to be independent of
initial rate assignments. We omit extra graphs when the same
trends are observed across algorithms, topologies and values
of w, more detailed results can be found in [16].

B. Weighing User Utility and Operator Cost

In this subsection, we study thetrade-off between aggregate
utility and convergence time. In Figure 6, we plot the number
of iterations before convergence against stepsizeβs for three
values ofw for the partial-dual algorithm. For each stepsize,
each point corresponds to a set of capacity values, and the
average number of iterations before convergence is highlighted
in a solid line. Comparing across Figure 6 from left to right,
we see that asw decreases, the convergence time at the optimal
stepsize increases and the range of stepsizes with a good
convergence time shrinks.

In Figure 7, we plot the aggregate utility achieved by
solving (4) as a percentage of maximal aggregate utility
achieved by solving (1), for a range ofw values. From the
graph, we observe that there is a knee region for all three
topologies. For the Abilene topology, this knee region is
w = [1/6, 1/10]; for the access-core topology, this knee region
is w = [1/4, 1/6]; for the multihoming topology, the knee
region isw = [5/4, 3/2]. For w values smaller than the knee
region, the algorithm achieves near maximal aggregate utility,
since the cost functionf is weighed sufficiently lightly to not
change achieved aggregate utility. Forw values larger than
the knee region, the aggregate utility achieved decreases,as
the cost functionf becomes a significant part of the objective.
The location of the knee region depends on whether bottleneck
links are shared by many source-destination pairs, which is
dependent on the topology, associated capacities, and the
source-destination pairs chosen.

In this paper, we define aflow to be the aggregate connec-
tions between a source-destination pair. In the multihoming
topology, the three links connecting the ISPs to the destination
are shared by many flows. If all links have equal capacities,
then those three links are bottleneck links. Since thef function
is a sum over all links, when a bottleneck link is shared by
many flows, the penalty associated with pushing that link
to full capacity is compensated by driving all sending rates
higher. Consequently, for a givenw value, the gap to maximal
achievable utility is smaller when there is a single bottleneck
link shared by multiple flows, than when there are many
bottleneck links. So, in Figure 7, we observe the aggregate
utility is at 100% even atw = 1 for the multihoming topology.
Similarly, the access-core topology has a knee at a largerw
than the Abilene topology, since several flows share the mesh
at the center in the access-core topology.

Looking at Figures 6 and 7 together, atw = 1/36, the
maximal aggregate utility is achieved, but the partial-dual
algorithm converges slowly and is very sensitive to stepsize
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Fig. 4. Two topologies.
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Fig. 6. Plots of partial-dual algorithm showing dependenceof convergence time on stepsize. ’x’ represent the actual data points and ’o’ represent the average
value. Access-core topology was used.
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Fig. 7. Plot ofw versus percentage of maximal utility achieved.

choice. In comparison, for a mere 3% reduction in aggregate
utility, the convergence properties improve significantlyat
w = 1/6. As w increases even more, there is a clear trade-off
between aggregate utility achieved, the rate of convergence and
sensitivity to stepsize. Atw = 1, the convergence properties
are much nicer than atw = 1/6, but there is a 20% drop
in utility. For a given w value, if the topology, capacities
and traffic pattern causes multiple flows to share a single
bottleneck link (e.g., mulithoming topology instead of access-
core topology), then there is a higher utility achieved, buta
slower rate of convergence.

C. Comparing the Algorithms

In this subsection, we do a series of comparisons between
convergence time and stepsize sensitivity of the four algo-
rithms, and find partial-dual in Figure 6 is the best overall,with
a good convergence profile and fewest tunable parameters. We
summarize our observations in Table I.

Comparing the primal-dual algorithm to the partial-dual
algorithm, we findthe two extra tunable parameters do not
improve the convergence properties. The convergence times
of primal-dual and partial-dual algorithms are almost identical
for well-chosenβy and k. For other values ofβy, however,
we find the primal-dual algorithm converges more slowly than
the partial-dual algorithm.

Comparing the full-dual algorithm in Section IV-B to the
partial-dual algorithm, we findconsistency price may improve
convergence properties. From Table I, we note thatβp has no
effect on the convergence time whenw = 1. This is because
the effective capacity stays far below actual capacity whenw is
high, so consistency pricepl stays at0 and its stepsize plays no
role. Forw = 1/6 (which is the edge of the knee region seen
in Figure 7), we find that the full-dual algorithm can converge
faster than the partial-dual algorithm. This is because if we
allow the capacity constraint to be violated during transient
periods, the algorithm can take more aggressive steps and
potentially converge faster.

Comparing the primal algorithm in Section IV-C to the
partial-dual algorithm, we findlocal minimization update has
better convergence properties than subgradient update. This
is intuitive as the subgradient update with a constant stepsize
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Algorithm Partial-Dual Primal-Dual Full-Dual Primal
w = 1, Access-Core 15 25* 15 25

w = 1/6, Access-Core 50* 75** 125* 150*
w = 1, Abilene 15 25* 15 25

w = 1/6, Abilene 125* 100** 50* 150*

TABLE I
SUMMARY OF AVERAGE NUMBER OF ITERATIONS TO CONVERGENCE FOR BEST CHOSEN TUNING PARAMETERS. HERE * DENOTES SENSITIVITY TO

STEPSIZE VARIATION AND ** DENOTES EXTRA SENSITIVITY TO STEPSIZE VARIATION.

is constrained to react with the same strength each time, while
local minimization can react more flexibly. From Table I,
the primal algorithm takes longer to converge at the optimal
stepsize (25 iterations versus 15 iterations). In addition, the
primal algorithm also requires operators to tune a second
parameterg.

VI. TRUMP

While the algorithms introduced in Section IV converge
faster than DUMP, we seek an algorithm with even better
convergence properties. In this section, we introduce Traffic-
management Using Multipath Protocol (TRUMP) with only
one easy to tune parameter.

A. The TRUMP Algorithm

Our simulations in the previous section suggest that simpler
algorithms with fewer tunable parameters converge faster,
although having a second link price can help for smallw.
Using those observations, wecombine the best parts of all
four algorithmsto construct the TRUMP algorithm described
in Figure 8.

In TRUMP, the feedback price has two components as in
the full-dual algorithm:pl andql. Since we observed that local
optimization worked better than subgradient update, we use
the feedback price update fromprimal algorithm in Figure 3
as our ql. This has the additional benefit of removing one
tuning parameter from the protocol since the update ofql

involves no stepsize. By a similar argument, we use a local
optimization for the path rate update as in the dual-based
algorithms. The value ofw is only known at the sources where
the z’s are computed, and there is only a single value for the
network. The packet-level simulations in Section VII-C reveal
that TRUMP performs well for a large range ofw-values when
an appropriate stepsize is chosen.

Through simulations, we find that TRUMP indeed converges
to the optimum of (4) for both topologies and a range of
w values. When we plot the achieved aggregate utility at
equilibrium versusw, we obtain a plot identical to Figure 7.
In Figure 9, we plot convergence time versus stepsize for
TRUMP. When the network sources are reacting strongly to
the price q (e.g., w = 1 and the traffic engineering part
is dominating), the pricep is unnecessary as observed in
Figure 9a. In the region where the network is being less
conservative (w = 1/6), pricep is a more definitive indicator
of performance than priceq, and can be helpful for source
rate adjustments. Comparing Figure 9 to Figure 6, we see that
TRUMP has nicer convergence properties than the partial-dual
algorithm, while having fewer parameters.

Feedback price update:

sl(t + 1) = pl(t + 1) + ql(t + 1),

pl(t + 1) = [pl(t) − βp(cl −
∑

i

∑

j

Hi
ljz

i
j(t))]

+,

ql(t + 1) = wf ′





∑

i

∑

j

Hi
ljz

i
j(t)/cl



 ,

Path-rate update:

zi
j(t + 1) = maximizezi

j
Ui





∑

j

zi
j



 −
∑

l

sl(t)
∑

j

Hi
ljz

i
j

Fig. 8. The TRUMP algorithm.

B. TRUMP Convergence Proof

Unlike the algorithms from Section IV, TRUMP is a
heuristic and does not correspond to a known decomposi-
tion. Consequently, the convergence and optimality is not
automatically guaranteed by optimization theory. Theorem1
below guarantees convergence of TRUMP when the network is
lightly loaded. We consider the region wherew is sufficiently
large forp = 0 (as seen in Figure 9a), and find a contraction
mapping onz. Overall, TRUMP is simpler than any of the
algorithms presented in Section IV, with only one tunable
parameter that only needs to be tuned for smallw.

A particular family of widely-used utility functions is pa-
rameterized byα ≥ 0 [18]:

Uα(x) =

{

log x, α = 1
(1 − α)−1x1−α, α 6= 1.

(13)

Maximizing theseα-fair utilities over linear flow constraints
leads to rate-allocation vectors that satisfy the definitions ofα-
fairness in the economics literature. The notion ofα-fairness
from [18] led to many TCP variants with differentα-fairness
interpretations. A utility function withα = 2 was linked to
TCP Reno. Through reverse engineering, TCP Vegas can be
interpreted asα = 1, as can STCP and FAST. XCP is shown
to be maximizingUα asα → ∞ in the single-link case.

Theorem 1:TRUMP converges to the optimal value of (4)
under the following conditions:

1) pl = 0, ∀l

2) nl < α
f ′

l (ul)
(1/α+1)

f ′′

l
(ul)

, ∀l

wherenl is the number of flows sharing linkl and α refers
to α-fair utility [18].



9

10
−7

10
−6

10
−5

10
−4

10
−3

0

50

100

150

200

250

300

β
p

ite
ra

tio
ns

10
−7

10
−6

10
−5

10
−4

10
−3

0

50

100

150

200

250

300

β
p

ite
ra

tio
ns

(a) w = 1 (b) w = 1/6

Fig. 9. Plots of TRUMP algorithm showing dependence of convergence time on stepsize. ’x’ represent the actual data points and ’o’ represent the average
value. Access-core topology.

Proof: If p = 0, then thez update is:

zi
j = U ′−1

i (
∑

l

Hi
ljf

′
l (

∑

i,j

zi
jH

i
lj/cl)/cl).

We look for acontraction mappingfor z as outlined in [20].
First we compute the Jacobian forzi

j :

Jij,st = (U ′−1
i )′(

∑

l H
i
ljf

′
l (

∑

i,j zi
jH

i
lj/cl)/cl)

(
∑

l Hi
lj

∑

s,t Hs
ltf

′′
l (

∑

i,j zi
jH

i
lj/cl)/(cl)

2).

Let ul =
∑

i,j zi
jH

i
lj/cl be the link utilization, then:

||J ||∞ = max
ij

(U ′−1
i )′(

∑

l

Hi
ljf

′
l (ul))(

∑

l

Hi
lj

∑

s,t

Hs
ltf

′′
l (ul)).

Let nl =
∑

s,t Hs
lt represent the number of flows sharing

link l, then:

||J ||∞ = max
ij

(U ′−1
i )′(

∑

l

Hi
ljf

′
l (ul))(

∑

l

Hi
ljnlf

′′
l (ul)).

For convergence ofz, ||J ||∞ < 1 is a sufficientcondition.
For α-utility, we have(U ′−1

i )′ = − 1
αx−1/α−1 for α > 1. For

U = log(x), α = 1, (U ′−1
i )′ = −x−2, so the same equation

holds. So we can rewrite||J ||∞ as:

||J ||∞ = max
ij

1

α

∑

l H
i
ljnlf

′′
l (ul)

(
∑

l H
i
ljf

′
l (ul))(1/α+1)

.

||J ||∞ < 1 holds if nl

α f ′′
l (ul) < f ′

l (ul)
(1/α+1), ∀l.

C. TRUMP: Transition to Network Protocol

The transition from a mathematical algorithm to a network
protocol requires relaxation of several simplifying assump-
tions. First, the algorithm in Figure 8 assumes feedback is
signaled explicitly from links to sources. The explicit feed-
back could be piggy-backed on acknowledgment packets [22],
attached to probe packets [11] or flooded throughout the
network [23]. In all cases, there is delay associated with the
feedback. Second, the algorithm assumes traffic flows fluidly,
while real traffic consists ofpackets. Third, while an algorithm
can be broadly defined with a family of functionsU andf , a
specificU andf must be selected. We address these concerns
in the TRUMP protocol.

The time between iterations of the TRUMP algorithm
depends on RTTij , the time it takes for sourcei to receive
feedback along all the links of pathj. To transition to a packet-
based protocol, the link prices are calculated based on the
estimated local link load:NT the number of bits which arrived
in period(t, t +T ) divided by length of the period. Choosing
f as an exponential function, each link updates its prices as:

pl(t + T ) = [pl(t) − βp(cl −
NT

T )]+, (14)

ql(t + T ) = w
cl
∗ exp

(

NT

Tcl

)

, (15)

sl(t + T ) = pl(t + T ) + ql(t + T ). (16)

Choosing a logarithmic function forU and solving the local
minimization, we obtain the following source rate update:

zi
j(t + T i

j ) = zi
j(t) − γ

∑

j

zi
j(t) +

γ
∑

l Hi
ljsl(t)

. (17)

At time 0, the prices are initialized to a constant before
real prices are available after one RTT. New flows after time
0 are set at the calculated path rates according to the latest
(delayed) price, collected by a probe before the flow starts.To
control the rate of convergence for flows with varying RTTs,
as commonly done in congestion control mechanisms,e.g.[8],
we introduce a parameter0 < γ < 1. In general, path rates
are updated everyγRTTi

j , but the path rate is recalculated
at most once for any given price update. Thus the path rate
adaptation will happen everyT i

j = max(T, γRTTi
j). Note that

the extra parametersγ and T are necessary for any packet-
level protocol.

VII. TRUMP: PACKET-LEVEL EVALUATION

In our MATLAB simulations, we had made a number of
simplifying assumptions. Moving to packet-level simulations,
we study the impact of relaxing the following assumptions: ho-
mogeneous feedback delay, no flow dynamics and no packet-
level burstiness. In addition, we test TRUMP under realistic
traffic loads and link failures. Finally, we examine whether
TRUMP shares bottleneck links fairly.
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A. Experimental Set-up

We implement the TRUMP protocol in NS-2 as described
in Section VI-C. In particular, the link prices are updated
every 5ms and feedback is piggybacked from the links to
the sources. The path rates are updated withγ = 0.1. Most of
the experiments are performed withw = 1, where there is no
packet loss. The calculated source rates are compared to the
ideal rates, which are determined using MOSEK optimization
software.

Our simulations use both synthetic and realistic topologies,
which are summarized in Tables II and III respectively. For
the topologies that were previously simulated in MATLAB
(Figure 4), we use the same paths with link capacities of
100Mb/s. Link delays on the Abilene topology were selected
to approximate the realistic values. Links in Access-Core
topology have a one-way propagation delay of50ms, a value
chosen to test TRUMP under long feedback delay. Figure 5
contains three heavily loaded links, and hence was chosen
for tuning of βp under varying capacities, with link delays
varying from30ms to 80ms. Specific paths and link delays are
selected in the Share topology (Figure 15a) to test the fairness
of TRUMP. Links in the Share topology have a capacity of
200Mbps, except for the bottleneck link from node 7 to node
8, which has a capacity of 100Mbps.

Topology Nodes Links Flows Paths
Abilene 11 28 4 4
Access Core 10 24 6 3
Multihome 24 40 20 1-3
Share 9 16 3 1

TABLE II
SUMMARY OF SYNTHETIC TOPOLOGIES.

Since TRUMP with explicit feedback is most easily de-
ployed inside a single AS, we obtained intra-AS topologies,
along with link delays from the Rocketfuel topology mapping
engine [24], [25]. The link capacities are 100Mbps if neither
endpoint has degree larger than 7, and 52Mbps otherwise.
As summarized in Table III, between 10 and 50 flows were
randomly selected. For each source-destination pair, multiple
paths were computed by first selecting a third transit node, then
computing the shortest path containing all the three nodes,and
finally removing cycles in the path. The RTTs on the paths
range from1ms to 400ms.

ISP(AS Number) Cities Links Flows Paths
Genuity(1) 42 110 50 1-4
Telstra(1221) 44 88 20 1-4
Sprint(1239) 52 168 500 1-4
Tiscali(3257) 41 174 25 1-4
Abovenet(6461) 19 68 10 1-4
AT&T(7018) 115 296 1000 1-4

TABLE III
SUMMARY OF ISPTOPOLOGIES.

B. Tuning Stepsize of TRUMP

We observed in section V-B that the links connecting
the ISPs to the destination are fully utilized even for the
conservative choice ofw = 1. Previous MATLAB results
indicate choosingβp is challenging when there are bottleneck
links, since packet loss can easily occur. In this section, we
study the impact of link capacity onβp, using the multihoming
topology in Figure 5 where there are three bottleneck links.

10 Mbps 100 Mbps 1000 Mbps
βp = 1 ∗ 10

−11 no no no
βp = 1 ∗ 10

−13 no no no
βp = 1 ∗ 10

−15 yes no no
βp = 1 ∗ 10

−17 slow yes no
βp = 1 ∗ 10

−19 slow slow yes
βp = 1 ∗ 10

−21 slow slow slow
βp = 1 ∗ 10

−23 slow slow slow

TABLE IV
RATE OF CONVERGENCE OFTRUMP FOR DIFFERENTβp VALUES AND

DIFFERENT LINK CAPACITIES.

In our first set of experiments, we vary the capacity of
the linksuniformly from 10Mbps to 1000Mbps. In Table IV,
we observe the bestβp for fast convergence is1 ∗ 10−15 for
10Mbps,1∗10−17 for 100Mbps and1∗10−19 for 1000Mbps.
More precisely, the appropriateβp value decreases by two
orders of magnitude when the link capacities increase by one
order of magnitude. Taking a closer look at (14), we observe
that for βp = 0.1, pl is larger thanql by c2

l . Therefore,
we let βp equal 0.05/c2

l and repeat the experiments with
different capacities. We find that convergence is achieved with
this setting ofβp. To confirm our choice holds in networks
with heterogeneous capacities, we repeated the experiment
with topology from Figure 5 with randomly assigned capac-
ities ranging from 10Mbps to 1000Mbps. We confirmed that
βp = 0.05/c2

l results in a smooth convergence even in this
challenging scenario.

C. TRUMP versus Partial-Dual

We confirm our MATLAB results from Section VI-A:
TRUMP has better convergence properties than partial-dual
under heterogeneous feedback delay and for a range ofw
values. In Figures 10 and 11, we plot the aggregate throughput
in the Sprint network with 50 greedy flows. The paths chosen
had RTTs ranging from3ms to 327ms, with an average of
127ms and a standard deviation of76ms. Similar to the
MATLAB experiments, we observe TRUMP converges slower
for smallerw, though to higher aggregate rates, as shown in
Figure 10. Whenw = 1, the TRUMP aggregate rates increase
from 0 at time0s (when the flows are established), to close to
the target value within500ms — about 4 times the average
RTT. Whenw = 1/6, the TRUMP aggregate rates take longer
to converge, though they still converge smoothly. Comparing
Figure 10a with Figure 10b, for the first second or so, the
actual throughput is lower than the sending rates for small
w. This is because if TRUMP’s sending rates are above the
bandwidth in the network, packets are lost. TRUMP converges
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Fig. 10. Aggregate throughput of TRUMP withβp = 0.05/c2
l
, in the Sprint network with 50 greedy flows.
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Fig. 11. Aggregate throughput of partial-dual withw = 1/3, in the Sprint network with 50 greedy flows.

for a range ofw values with a singleβp value, chosen in the
previous subsection.

Similar to the MATLAB experiments, we observe in Fig-
ure 11 the partial-dual is quite sensitive to the choice of
stepsize atw = 1/3. In Figure 11a, we observe for a stepsize
of 10−16, the partial-dual sending rates converge slowly; but
for a stepsize of3×10−16 (only three times larger), we find the
partial-dual sending rates oscillate significantly. In Figure 11b,
we observe when the sending rates oscillate, there are heavy
packet losses. In fact, the actual throughput for a stepsize
of 3 × 10−16 is lower than when the stepsize is10−16. In
addition, the same stepsize does not work across different
values ofw. By comparing Figures 10 and 11, we confirm
our MATLAB results from Section VI-A: TRUMP has better
convergence properties than partial-dual under heterogeneous
feedback delay and for a range ofw values.

D. Topology and Traffic Dynamics

First we consider the impact of a link failure in the Sprint
Network. Path failures and recoveries are detected through
active probing. All 50 greedy flows are established at 0 sec.
At 5 sec the link between Pennsauken, NJ and Roachdale, IN
fails, and it recovers at 10 sec. Flows 20 and 39 contain the
affected link in at least one of their paths. In Figure 12, we plot
the path rates of the flow 20. We observe that immediately after
the failure, traffic is assigned to an alternate path unaffected
by the failure. After the link is repaired at time 10 sec,

traffic returns to the original path quickly. Similar behavior
is observed for flow 39.
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Fig. 12. Plot of affected path rates for a link failure in the Sprint network.

Second, we study the performance of TRUMP under re-
alistic traffic loads by using 10 stochastic ON-OFF flows
in the Abovenet network. As suggested by [26], the OFF
periods are Pareto with shape 2.0 and average of0.2s. We
consider three file size distributions: exponential, Pareto with
shape 1.2 and Pareto with shape 1.8. In Figure 13, we
plot the average file size against theefficiency: fraction of
the actual throughput over the ideal throughput for a10s
period. The ideal throughput is found by solving (5). First,
TRUMP’s behavior is independentof the variance of the
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file-size distribution, since all three curves overlap. Second,
TRUMP is more efficient for larger files as it takes a few RTTs
to converge to the ideal throughput. On the surface, TRUMP
performs poorly for small files, only achieving 50% of the
ideal rate. However, given those files are transmitted within a
single RTT, achieving 50% of the ideal rate is much better than
TCP today. In addition, TRUMP is optimized for logarithmic
utility, for example log(20, 000)/ log(40, 000) = 0.93. This
means TRUMP achieves close to ideal utility even for short-
lived flows.
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Fig. 13. Plot of average file size versus efficiency for three distributions.

E. Selecting the Multiple Paths

There are often many paths available between each source-
destination pair. In this subsection, we study how many paths
to provide TRUMP, and how to select such paths.

Flows Single path Two paths Three paths Shortest path
5 56.6% 36.8% 6.6% 59.8%
10 66.8% 23.8% 6.7% 51%
25 67.2% 32.4% 0.4% 50.2%
50 76.8.4% 20.4% 2.8% 72.6%
100 70% 27.8% 2.2% 64.4%
250 88.6% 11% 0.4% 70.8%
500 91.8% 8% 0.1% 69%

TABLE V
IMPACT OF VARYING NUMBER OF FLOWS ON THESPRINT NETWORK.

We begin by studying how the number of flows (source-
destination pairs) affects whether traffic splits over multiple
paths, and whether shortest-hop paths are used. For the Sprint
topology, we summarize in Table V the number of paths used
by flows at equilibrium and percentage of flows using shortest-
hop paths. The number of flows in the network impacts the
likelihood of a flow being split amongst multiple paths. If there
is a single flow in the network, it will use all the paths available
to it. So when there are very few flows, a large percentage of
flows place load on multiple paths simultaneously since there
are many uncongested paths. As the number of flows increases,
a larger percentage of flows will just select a single path, since
most of the links are used by at least one flow already.

Further, we observe 50% to 73% of the flows send all their
traffic on the shortest-hop path(s). Given the penalty function

f is summed over all links, shorter-hop paths are generally
preferred because if a longer-hop is taken, then more links are
loaded. So if there are two equally loaded paths, the one with
fewer hops is preferred. Longer-hop paths are more likely to
be used when the network is under-utilized, because a flow
might split traffic over two or three paths that are not used by
any other flow. Longer-hop paths are also more likely to be
utilized when the network is very congested, because a slightly
longer-hop path that is much less congested is still attractive.
Another advantage of shortest-hop paths is that they can be
chosen a priori, while congestion levels depend on dynamic
traffic patterns.
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Fig. 14. Plot of aggregate throughput versus time for the Abilene topology
with four flows. Different lines correspond to different number of paths
available per flow.

Next, we study how the number of paths available to each
flow affects the utility achieved and rate of convergence. In
Figure 14, we vary the number of paths available to each flow
from one to four. For the Abilene topology with four flows,
the aggregate throughput increases by 25% when there is more
than one path available to a flow, though the gains are much
more modest when more than two paths are provided for each
source. This observation is inline with research illustrating the
power of two choices [27], [28]. The number of flows has no
visible impact on the rate of convergence. Looking at Figure14
and Table V together, we conclude selecting two (or three)
shortest-hop paths per source-destination pair is sufficient for
TRUMP to perform well.

F. Fairness of Bandwidth Sharing

As mentioned in Section III-B, TRUMP isα-fair asw → 0,
but its fairness for generalw values is unknown. Forw =
1, we construct a simple topology (Figure 15a) to illustrate
whether the bottleneck link is shared fairly. In Figure 15b,
we plot throughput of two pairs of flows which differ in RTT
or hop-count. All flows have a shared destination (node 9),
and the sources are nodes 1, 2 and 3 respectively. We observe
that flows 1 and 2, which have very different RTT (30ms and
100ms) but the same number of hops on their paths, share
bandwidth fairly. Unlike most congestion control proposals,
TRUMP does not discriminate against long RTTs since (4) has
no dependency on RTT. While RTTs does indeed affect the
transient behavior as indicated in the distributed algorithm of



13

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0  5  10  15  20  25

th
ro

ug
hp

ut
 (

bi
t/s

ec
)

time (sec)

flow 1-1
flow 2-1
flow 3-1

(a) Share topology with delays (b) Source rates

Fig. 15. Fairness of bandwidth sharing.

(13), fairness is an equilibrium property. On the other hand,
flow 3 with twice as many hops receives roughly half the
bandwidth of flow 1. This is inline with network operator’s
goals to penalize against longer-hop paths since that would
require more usage of network resources. If the unshared links
are lightly loaded, the bandwidth sharing would be less unfair
since the amount of penalty depends on link load. It is also
possible to change the source rate adaptation for TRUMP to
react to path prices normalized by hop length of that path, to
ensure fair bandwidth sharing for diverse hop lengths.

VIII. R ELATED WORK

Optimization theory is used in traffic management research
in areas such as reverse engineering of existing protocols [5],
[6], tuning configuration parameters of existing protocols[2],
and guiding the design of new protocols [8] (for more refer-
ences see [29]). In turn, such a broad use has encouraged in-
novations in optimization theory, for example, [10] introduced
multiple decomposition methods. Our paper takes advantageof
the recent advancements and applies multiple decompositions
to design traffic management protocols.

Most of the proposed traffic management protocols consider
congestion control or traffic engineering alone. Several pro-
posed dynamic traffic engineering protocols also load balance
over multiple paths based on feedback from links [11], [9],
[30], but they do not adapt the source rates. From the method-
ology perspective, our work bears the most resemblance to
FAST TCP [8]. Other congestion control protocols that use
control theory to prove stability include [22], [31], [32].

According to recent research, congestion-control and traffic-
engineering practices may not interact well [33], [3], [34].
In response, many new designs are proposed. Some of them
start with a different objective than this paper, and find poor
convergence properties [14], [13]. Algorithms similar to two of
the decomposition solutions (Section IV) are described briefly
in [3] and Appendix of [35], though neither considers possible
design alternatives, nor present a packet-level protocol (and
associated experiments).

Some research analyzes stability of joint congestion control
and routing algorithms using theory [17], [36], [37], whilewe
use optimization decomposition to guide the design of a prac-
tical protocol. Some of our evaluation is inspired by [37], [17],

which prove that multipath congestion control can be stable
under heterogeneous feedback delay. In particular, [17] shares
a similar problem formulation and analyzes an algorithm
similar to the primal-driven algorithm presented in Section 3.3,
however, TRUMP offers extra flexibility through the tuning
parameterw and faster convergence through an universal
stepsize. In [28], they study coordinated path selection inthe
context of multipath congestion control, while in this paper
we find selecting two or three shortest-hop paths is sufficient
for TRUMP to perform well.

IX. CONCLUSIONS

In this paper, we searched for a traffic-management protocol
which is distributed, adaptive, robust, flexible and easy to
manage. We followed a top-down design process starting with
an objective which balances the goals of users and operators.
We generated four provably optimal distributed solutions using
known decomposition techniques. Using insight from simula-
tions comparing the four algorithms, we combined the best
parts of each algorithm to construct TRUMP: a simpler traffic
management protocol. TRUMP is easy to manage, with just
one optional tunable parameter. Our packet-level evaluations
confirmed TRUMP is effective in reacting to topology changes
and traffic shifts on a small timescale, even with realistic
feedback delay. We also found TRUMP’s performance is only
weakly dependent on the properties of file size distribution.
In addition, our preliminary experiments show TRUMP can
achieve fair bandwidth sharing for paths of diverse RTTs, but
not for diverse hop count.

This paper started from an abstract model, and ended with
a practical traffic management protocol based on feedback
from the links along each path. In our ongoing work, we
are exploring a version of TRUMP where the sources adapt
the path rates based on observations of end-to-end delay and
loss. We show that using optimization decompositions as a
foundation, simulations as a building block, and engineering
intuition as a guide can be a principled approach to protocol
design.
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