Passive OS Fingerprinting on Commodity Switches

Sherry Bai, Hyojoon Kim, and Jennifer Rexford
Princeton University, Princeton, NJ, USA

Abstract—Operating System (OS) fingerprinting allows net-
work administrators to identify which operating systems are
running on the hosts communicating over their network. This
information is useful for detecting OS-specific vulnerabilities and
for administering OS-related security policies that block, rate-
limit, or redirect traffic. Passive fingerprinting can identify hosts’
OS types without active probes that introduce additional network
load. However, existing software-based passive fingerprinting
tools cannot keep up with the traffic in high-speed networks.
This paper presents P40f, a tool that runs on programmable
switch hardware to perform OS fingerprinting and apply security
policies at line rate. P40f is a P4 implementation of an existing
software tool, pOf. We present our prototype implemented with
the P4 language, which compiles and runs on the Intel Tofino
switch. We present experiments against packet traces from a real
campus network, and make our code publicly available.

I. INTRODUCTION

Information about the operating systems running on end
hosts is important for managing enterprise networks. In par-
ticular, network administrators use host OS information for
keeping device inventory up-to-date, urging users to perform
OS upgrades, and applying different firewall rules based on
OS type. For example, hosts running outdated OSes (e.g.,
Windows XP) may be vulnerable to security exploits that may
cause them to be compromised; OS fingerprinting can help a
network administrator to check how many internal hosts are
using outdated OSes and pinpoint them by IP address.

Active probing is a well-known mechanism for OS fin-
gerprinting. Tools such as Nmap [1] and ZMap [2] send
probes designed to elicit unusual or distinctive responses from
target hosts to reveal OS-specific quirks. However, active
fingerprinting has a number of disadvantages. First, such tools
exchange multiple packets with each host, leading to longer
scan times and extra network load as the number of hosts
grows in the network. Second, active probes might miss many
hosts, leaving them unaccounted for. For example, active
probes have difficulty scanning hosts behind network address
translators (NATSs). Some hosts plainly block or ignore such
probes. Active fingerprinters also cannot run against external
hosts that are contacting the internal hosts of the network,
which is often essential for network forensics.

Passive OS fingerprinting tools [3], [4], in contrast, monitor
existing network traffic to identify a host’s OS in real time,
while avoiding the need for periodic scans or bypassing of
NATs and firewalls. Passive OS fingerprinters are a better fit
to today’s dynamic bring-your-own-device (BYOD) networks
(e.g., eduroam on college campuses [5]), which do not mandate
host registration and where hosts come and go rapidly. Existing
software passive fingerprinters, however, introduce several

challenges in today’s networks. First of all, software cannot
keep up with large amounts of traffic on ever-increasing high-
speed networks. As this was identified as a real operational
problem, tools like k-pOf were developed, designed for
high throughput. However, k—pOf also experiences a 38%
degradation in throughput on a saturated gigabit link [6].
Load balancing on multiple servers running Data Plane De-
velopment Kit (DPDK) [7] might work, yet it is challenging
to build and manage such infrastructure. Second, an out-of-
band monitoring system cannot take immediate actions on
traffic (e.g., blocking, redirecting, or rate-limiting) based on
the OS information as packets pass by; the external monitoring
system would have to send a separate control-plane message
to the data plane to take action, which incurs additional
communication load and delay. These limitations could be
avoided if network devices can perform OS fingerprinting and
take direct action on packets on-the-fly.

To this end, we present P40f, a passive fingerprinter that
runs directly in the data plane. We utilize Protocol Independent
Switch Architecture (PISA) programmable switches [8], [9]
that provide flexible packet processing, which enables both OS
fingerprinting and security policy enforcement on the switch.
P40f fingerprints OS type by analyzing TCP header and option
fields in TCP SYN packets, a powerful technique used by
pOf [3], a popular passive OS fingerprinter implemented in
software. P40f provides OS fingerprinting that matches the
interface’s packet processing rate, whether it is 10, 40, or
even 100 Gbps. In addition, P40f can take direct action, such
as allow, drop, or redirect, on packets based on their OS
information directly in the data plane.

Implementing and running an OS fingerprinter in a pro-
grammable data plane is challenging. Switches impose more
strict constraints on packet parsing and processing when com-
pared to machines with general-purpose CPUs. For example,
the number, types, and lengths of fields in a TCP option
differ from option to option, but switch parsers cannot process
headers that contain a variable number of fields or that contain
variable-length fields in the beginning or middle of the header.
This makes fine-grained TCP option processing difficult. The
pOf tool also requires performing division between some TCP
option fields, but hardware switches cannot perform such
complex arithmetic operations correctly.

P40f presents the following contributions to overcome the
challenge and provide OS fingerprinting functionality for
practical use in real enterprise networks.

Complete, versatile TCP option parser. P40f implements
a complete, versatile, and efficient TCP option parser in the
data plane, dealing with any combination of TCP options with

ver:ittl:olen:mss:wsize,scale:olayout:quirks
*:64:0:%:20,10:mss, sok,ts,nop,ws:df, id+

Figure 1: The first line is the format of a pOf v3.x TCP
signature. The second line is an example signature for “Linux
3.11 and newer”.

a variable number of fields and variable-length fields. P40f’s
TCP option parser also leaves the original TCP header intact
while doing so. P40f can parse up to ten TCP option fields in
any order, and keeps track of the order, too.
Modular design. P40f only occupies in the ingress pipeline,
and can tag the OS type inforamtion as metadata to a packet.
Thus, an operator can easily add a custom P4 code that oper-
ates in the egress pipeline to create any network application
that uses the OS type information.

P40f is an early prototype that demonstrates the power of
programmable data planes. P40f compiles and runs in Intel’s
Tofino-based switches [9], and we open-source our code [10].

II. BACKGROUND: POF OVERVIEW

P40f is based on pOf [3], a popular passive OS fingerprinter.
The software is written in C, and it compiles and runs on
servers with general-purpose CPUs. The pOf software monitors
a network interface and analyzes packets that appear on the
interface. To perform OS fingerprinting on a packet, pOf
first extracts information from the packet’s TCP/IP headers.
Then it compares this information to entries in a fingerprint
database file to match the packet to an operating system label.
Unsurprisingly, the software faces performance issues when
the incoming packet rate becomes too high.

A pOf TCP signature is a string that specifies and enumer-
ates the values, which are in the packet, needed to identify an
OS or application. Figure 1 shows the format of a signature in
the fingerprint database and an example signature for the OS
label “Linux v3.11 and newer”. A signature has nine colon-
delimited fields; Table I summarizes them.

There are two different types of signatures: specific or
generic. The generic signatures match broader groups of
operating systems, are considered “last-resort,” and thus are
given lower priority than specific signatures. An example of a
generic signature is “Mac OS X” while a specific one is “Mac
0OS X 10.x”.

III. PASSIVE OS FINGERPRINTING IN P4

P40f is an implementation of pOf in P4 [11], a language
for specifying how to parse and process packets. Our work
compiles and runs in a real data plane at line rate. Figure 2
illustrates P40f’s architecture and packet’s path through the
switch. As a packet enters the data plane, P40f first ex-
tracts information from a TCP SYN packet’s TCP/IP headers,
populates a set of custom metadata, and then compares the
metadata against a list of pOf signatures. The pOf signatures
are translated and installed as match-action rules in a table in
the data plane, along with the desired actions per OS label.

Field Description

ver Signature for IPv4 (°4’), IPv6 (°6°), or both (**’).

ttl Initial TTL used by the OS. Mostly 64, 128, or 255.

olen Length of IPv4 options or IPv6 extension headers.

mss TCP max segment size. Supports wildcard value.

wsize TCP window size. Value is a fixed integer, a multiple of
MSS or MTU, a multiple of an integer, or a wildcard.

scale TCP window scaling factor. Fixed value or **’.

olayout Exact layout of TCP options, including of bytes of padding
after EOL option. Consists of comma-delimited strings.

quirks Implementation quirks found in IP and TCP headers and in

TCP options. Consists of comma-delimited strings. Exam-
ples include “don’t fragment bit set” (‘df+’).

Table I: Main fields of a pOf v3.x TCP signature.

Type (kind) | Length Data Purpose
0 N/A N/A End of options list
1 N/A N/A No operation
2 4 MSS Maximum segment size
3 3 Window Window scale
4 2 N/A Selected ACK permitted
5 12%” 1% | Blocks ACKed | Selective ACK
8 10 Timestamps TCP timestaps

Table II: The list of available TCP options.

Therefore, there is no need for control-plane interaction at
run-time.

A. Parsing Variable-Length TCP Options

Aside from information contained in the standard IP and
TCP header fields, the list of TCP options in a packet act as
a strong fingerprint. Moreover, the order of the existing TCP
options is also a strong indicator of a particular OS. Thus, we
need a parser design that can: (1) successfully identify and
parse every possible TCP option, (2) parse not just one but a
series of options, and (3) save the order of options.

Predefined parser states: As mentioned before, the number
of TCP options appearing in a packet is variable. Fortunately,
the number of available TCP options is fixed, and each TCP
option is identifiable by its option type, or kind. Also, the
TCP option’s length is fixed per option kind, too. Table II
summarizes the available TCP options. Therefore, P40f creates
a unique parser state for each TCP option kind, and each parser
state knows how many bits to parse. One exception is the
Selective ACKnowledgement (SACK) option kind; this option
has four different possible lengths. As the P4 language and
a real PISA switch hardware are not amendable to writing a
program with parameters, we create four different parser states
for the SACK option type, one for each length. Thus, P40f has
ten different types of predefined parser states.

Sequential branching as packets fly by: With a high-level
programming language for general-purpose CPUs (e.g., C), it
is straightforward to write code that can parse a series of TCP
options: if/elif/else statements within a for/while loop will do.

. 1. pOf signatures Rules & action
>

i e comlpiler i
K TCP option TCP option TCP option | M ! \
stage 1 stage 2 stage 10 | Match-action table H
1 1
EOL EOL ‘ "{ EOL ‘ ! pOf metadata | OS label + !
H action H
Packet NOP NOP ‘ _.’ NOP ‘ i pOf s%gnature Linux 3.1, i Packet
1 1
in | S;;;}gg;)d | for Linux 3.1 drop i Deparse out
> 1 ! acket -
header TS TS ‘ _" TS : i P
1 1
\ pOf metadata i ‘ J
1 1
Parsing (Section III. A) ! Control pipeline (Section IIL. B) ! Deparsing

Figure 2: P40f’s architecture and how a TCP SYN packet traverses the pipeline.

However, as a language for a feed-forward packet processing
pipeline, the P4 language does not allow loop statements.
Thus, we unfold this logic in P40f: we design P40f’s parser
as a sequence of parsing stages, where each parsing stage
contains a set of parser states. In each parsing stage, there
are ten predefined parser states, which were described above.
As illustrated in Figure 2, a TCP SYN packet enters the
first parsing stage and branches along in sequence until no
TCP option is left or it reaches the maximum number of
parsing stages. In our current prototype, we allow up to ten
TCP options, or parsing stages, in sequence; there is no pOf
signature that has more than ten TCP options. As a packet
branches along, the order of parsed TCP options is saved, too.

Knowing when to stop with a parser counter: Per the TCP
protocol standard, a special TCP option kind, end of options
list (Table II), indicates that there are no more TCP options
left in the header. Unsurprisingly, however, this standard is not
always followed in various TCP/IP stack implementations in
different end devices. Therefore, we implement another mech-
anism to identify the end of TCP options list. In particular, we
calculate the length of all TCP options present in a packet and
save it as a counter. This counter value can be calculated by
subtracting the standard TCP header length without any TCP
option, which is 20 bytes, from data offset value in the TCP
header, which indicates the total TCP header length, including
the TCP options fields. Once the counter value is set, P40f
decrements this counter whenever it parses an option kind,
according to the option’s size. When this counter value finally
reaches 0, P40f knows that all TCP options have been parsed.
When the counter never reaches 0 or becomes a negative value,
we consider this as a failed parse. Thus, we discard the packet
and report it accordingly.

Computing POf signature fields: In the switch, we maintain
one metadata field for each pOf signature field. These metadata
fields make up a structure called pOf_metadata. The metadata
fields are populated during parsing and in the control pipeline,
which then act as keys to the match-action table for OS fin-
gerprinting. Our current prototype populates ten pOf metadata
fields, including the first seven rows in Table I and three quirks

that are heavily used: don’t fragment bit set (df+), non-zero
IPID (id+), and TCP timestamp specified as zero (tsl-).

B. Inferring OS Labels and Applying Actions

All pOf signatures are translated into rules in a table in P40f,
where the match keys are fields in the signature. These match
keys are compared with the packet’s pOf_metadata once the
metadata fields have been fully populated. However, some pOf
signature field values are relative to another field value, which
sometimes raises an issue when translating to table rules in
P40f. There are also different priorities assigned to signatures
based on their type. We discuss how P40f deals with these
aspects, and then describe the possible actions an operator
can assign to each rule.

Maximum segment size and window size: In pOf signatures,
the TCP window size (pOf signature field wsize) is often
expressed as a multiple of the TCP maximum segment size
(e.g., wsize=mss x2). This becomes an issue when matching on
this particular field in a programmable data plane. In particular,
the challenge arises when the mss value itself is wildcarded in
the pOf signature. We can do a wildcard matching (i.e.,) for
the mss value, but we cannot do the same for the wsize value
because of the x2 condition. One idea is to enter the integer
that is multiplied to the mss value as a match key, which is 2 in
our example, then make the programmable data plane perform
a division operation, wsize/mss, in the pipeline to match on
this value. Current data planes, however, cannot perform an
exact multiplication or division operation; both are expensive
operations that cannot be done at line rate, currently.

To overcome this limitation, we investigate the most popular
maximum segment sizes (mss) observed in the Internet. Based
on prior work [12], [13], we select the top ten most used
mss values, which covers around 90% of observed IPv4 TCP
traffic: 1460, 1400, 1452, 1360, 1370, 1412, 1440, 1300, 1420,
and 1380. For each mss value, we calculate the matching
wsize according to each pOf signature, and then install a
corresponding table rule. Thus, for a pOf signature with the
(wsize=mss x2) condition, we will have ten rules installed (i.e.,
(1) mss=1460, wsize=2920, (2) mss=1400, wsize=2800, and
so on). Note that this technique only applies to signatures with

wildcard matching on the mss value, thus the increase in the
number of rules in limited.

Generic vs. specific rules: As mentioned in Section II, there
are specific and genetic rules in pOf signatures. The original
pOf software tool matches on the generic rules only after there
is no match with the specific rules. We follow this process in
P40f as well, using the priority field in the match-action table
rules. In particular, the generic signatures are installed with a
lower priority compared to the specific signatures.

Fuzzy matching: The original pOf software does fuzzy
matching: if the key fields in a pOf signature are matching,
pOf relaxes or even ignores some fields. A prime example is
the Time-To-Live or #] value: if all other fields are matching,
pOf allows the #tl value to be between (max(0, ttl-35), ttl). This
makes sense since each hop decrements the ##/ value, thus the
value depends on where the packet trace was captured. We
achieve the same behavior in P40f by using a range match
type for the #/ field for rules in the match-action table.

Supported actions on packets: P40f currently supports three
policy actions: drop_pkt, drop_ip, and redirect. The drop_pkt
action drops any packet matched to an OS label. The drop_ip
action drops the packet as well as any subsequent packets
received from the source IP address this packet came from.
The redirect action redirects any packet matched to this OS
label to a specified destination IP address. This destination IP
is given as a parameter in the policy file.

IV. P40F PROTOTYPE

P40f prototype consists of 1,819 lines of P4 code, and it
compiles and runs in Intel’s Tofino-based switches [9]. In this
section, we describe the resource footprint of the prototype.

Number of stages. When compiled, the processing pipeline of
the P4 code spans around two-thirds of the available number
of stages in the Tofino-1 switch. Yet, the program does not
consume much resources in each stage. Given that hardware
switches can execute multiple independent tables in parallel in
a stage, production-grade P4 compilers (e.g., Intel P4Studio)
will easily allow other packet-processing functionality to run
in parallel with P40f. Other parallel P4 functionality can
likely share the stages with P40f and also additionally use
the remaining one-third of the stages in full while running
simultaneously with P40f on the Tofino switch. Moreover,
P40f fits into the ingress pipeline, leaving the egress pipeline
for any other packet-processing functionality.

Table size and memory space. The P40f installs a total of
278 rules, which are derived from the pOf signatures, in the
match-action table. Our PISA-based hardware, the Edge-core
Wedge 100BF-32X with Intel’s Tofino chip [14], can typically
hold up to tens of thousands of rules, thus the overhead is
negligible. If desired, the P40f prototype can also have an
internal data structure for keeping an up-to-date counter per
OS type (helps produce results in Section V). For this purpose,
we can use the Tofino chip’s a stateful memory called register
arrays. The memory required for OS counter register arrays is

Border router Core router

Tap point for
capturing traffic
Figure 3: The edge of the university campus network. Traffic
was captured at the yellow dot.

negligible: the pOf v3.09b database contains 45 OS labels and
each counter is 64 bits wide, which totals to 360 bytes. This
is less than 1% of the total available on our hardware.

V. PRELIMINARY EVALUATION

We ran our P40f prototype against our campus network
traffic to demonstrate that operators can use P40f for network-
management tasks. Figure 3 shows where the packet traces
were captured on our campus network. A three-hour packet
trace was captured on August 19, 2020 between 8:00am-
11:00am local time. There are around 1.5 millions packets
in total, with an average of 138,802 packets per second. We
applied a one-way hash on all internal campus IP and MAC
addresses to remove any personally identifiable information
(PII), and payloads were not collected. All of our data collec-
tion and evaluation processes were reviewed and approved by
our institutional review board. We perform OS fingerprinting
at the granularity of the source and destination IP pair. This is
because a host’s IP address can change over time due to DHCP
or NAT. Table III summarizes the OS fingerprinting results
against internal IP addresses, or clients with IP addresses
assigned by our campus network. Table IV summarizes the
result against external IP addresses from the Internet.

P40f generally matches p0f’s output for internal hosts. As
shown in Table III, P40f closely matches pOf’s fingerprinting
result for packets originating from internal hosts. This shows
that P40f can perform fingerprinting pretty accurately even
with the sacrifices needed to make the program fit in the
Tofino hardware. Specifically, P40f overcounts Linux systems
but undercounts Windows systems. Although the gaps are
not significant, further investigation is desirable. On the other
hand, P40f fingerprints Mac OS X systems with perfect
accuracy. This is likely because Mac OS X systems have a very
distinctive signature, which is well-defined in the signatures.

OS fingerprinting is harder against external hosts. In Ta-
ble IV, P40f’s result still generally matches the trend of pOf’s,
but with higher variability when compared to fingerprinting
internal hosts. In particular, P40f is still good at fingerprinting
Mac OS X systems, but there are noticeable gaps in Linux and
Window categories. We leave this as future work. For both pOf
and P40f, we detect a lot of SYN scan activity by the NMap
tool, but P40f counts more NMap SYN scans than pOf. The
NMap signature specifies that the NMap scanning tool uses
a random TTL value between O and 64. Further investiga-
tion is required, but we suspect P40f handles this signature

pOf-v3.09b P40f pOf-v3.09b P40f

OS Label Count | % Count | % OS Label Count [% Count [%
Linux 11412 3.05 12769 3.40 Linux 1280209 14.28 1231089 13.56
2.2.x-3.x 9558 2.56 9978 2.66 2.2.x-3.x (barebone) 778527 8.68 681735 7.51
311+ 1406 0.38 2473 0.66 3.11 and newer 402081 4.48 424058 4.67
3.1-3.10 332 0.09 114 0.03 2.2.x-3.x 33986 0.38 66210 0.73
3.x 39 0.01 23 0.01 3.1-3.10 31730 0.35 26488 0.29
Android 21 0.01 2 0.00 2.4.x 15277 0.17 14889 0.16
2.4.x 20 0.01 20 0.01 2.6.x 13272 0.15 12692 0.14
2.2.x-3.x (barebone) 15 0.00 145 0.04 2.2.x-3.x (no timestamps) 3326 0.04 3370 0.04
2.2.x-3.x (no timestamps) 11 0.00 11 0.00 2.4.x-2.6.x 1147 0.01 917 0.01
2.6.x 5 0.00 2 0.00 3.x 827 0.01 675 0.01
2.4.x-2.6.x 5 0.00 1 0.00 Android 28 0.00 23 0.00
Windows 11753 3.14 10874 2.90 2.0 8 0.00 32 0.00
NT kernel 10202 2.73 9546 2.54 Windows 563295 6.28 440887 4.86
NT kernel 5.x 920 0.25 798 0.21 7 or 8 466222 5.20 388341 4.28
7 or 8 560 0.15 499 0.13 XP 81245 091 42603 0.47
XP 65 0.02 31 0.01 NT kernel 15086 0.17 9277 0.10
NT kernel 6.x 6 0.00 0 0.00 NT kernel 5.x 680 0.01 646 0.01
Mac 23917 6.39 23917 6.38 NT kernel 6.x 61 0.00 16 0.00
OS X 23634 6.32 23634 6.30 7 (Websense crawler) 1 0.00 4 0.00
OS X 10.x 171 0.05 171 0.05 Mac 1816 0.02 1816 0.02
OS X 10.9+ (iPhone/iPad) 112 0.03 112 0.03 0S X 1514 0.02 1514 0.02
Other 47 0.01 47 0.01 0OS X 10.x 295 0.00 295 0.00
FreeBSD 37 0.01 37 0.01 OS X 10.9+ (iPhone/iPad) 7 0.00 7 0.00
FreeBSD 9.x+ 9 0.00 9 0.00 Other 256666 2.86 453532 5.00
NMap SYN scan 1 0.00 1 0.00 NMap SYN scan 256326 2.86 453199 4.99
Unclassified 326918 87.40 327513 87.31 FreeBSD 9.x+ 221 0.00 220 0.00
Total [374047 [100% | 375120 | 100% FreeBSD 8.x 68 0.00 68 0.00
FreeBSD 50 0.00 44 0.00
Table III: SYN packets matching each OS label in the three- OpenBSD 4.x-5.x 1 0.00 1 000
hour campus traffic trace for internal hosts (outgoing traffic). Unclassified 0864591 76.56 6951554 76.57
Total [8966577 | 100% | 9079010 | 100%

incorrectly, possibly installing a rule with a wider range. We
plan to fix this in our next version. Deeper investigation also
shows that a large chunk of the unclassified packets are due
to SYN flooding; such packets can be identified by finding
TCP SYN packets without any TCP option. The presence of
such activities in packets originating from the Internet towards
our campus network is not surprising. Besides, the trace was
captured before our firewall, as shown in Figure 3.

In general, it is hard to fingerprint external hosts with
perfect accuracy due to the diversity of client types and
more adversarial behavior. Yet, the ability to run passive OS
fingerprinting against incoming traffic at line rate is a big win.

VI. CONCLUSION AND FUTURE WORK

We present P40f, a work-in-progress tool that can perform
passive OS fingerprinting directly in the data plane. With P40f
running on a programmable switch, network operators can
define and enforce security policies in the data plane by OS
type against incoming and outgoing traffic without relying on
external components. We prototype P40f in P4 and validate
P40f’s output against pOf with simulated packet traces. We
then used the prototype to characterize both incoming and
outgoing traffic from a real campus network.

We plan to improve P40f’s fingerprinting accuracy by fur-
ther investigating the mismatches we observed in our evalu-
ation against our campus trace. We plan to improve P40f’s
response to SYN flood attacks and NMap scan activity. We
also plan to find and use a more updated set of pOf signatures.

Table IV: SYN packets matching each OS label in the three-
hour campus traffic trace for external hosts (incoming traffic).

REFERENCES

[11 G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. USA: Insecure, 2009.

[2] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications,” in USENIX Conference on
Security, 2013, pp. 605-620.

[31 M. Zalewski, “pOf v3.09b),” http://lcamtuf.coredump.cx/p0f3/, 2014.

[4] P. Auffret, “SinFP, unification of active and passive operating system
fingerprinting,” Journal in Computer Virology, vol. 6, no. 3, pp. 197—
205, Aug 2010.

[5] L. Florio and K. Wierenga, “Eduroam, providing mobility for roaming
users,” in EUNIS Conference, 2005. [Online]. Available: https://www.
terena.org/activities/tf-mobility/docs/ppt/eunis-eduroamfinal- LF.pdf

[6] J. Barnes and P. Crowley, “K-pOF: A high-throughput kernel passive OS
fingerprinter,” in ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, 2013, pp. 113-114.

[7]1 DPDK, “The data plane development kit,” https://www.dpdk.org, 2019.

[8] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. 1z-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in ACM
SIGCOMM Conference, 2013, pp. 99-110.

[9] Intel, “Intel Tofino,” https://www.intel.com/content/www/us/en/products/

network-io/programmable- ethernet- switch/tofino-series.html/, 2019.

S. Bai, H. Kim, and J. Rexford, “P40f code public repository,” https:

//github.com/Princeton-Cabernet/p4- projects/tree/master/P40f-tofino.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,

“P4: Programming protocol-independent packet processors,” SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87-95, Jul. 2014.

S. Alcock and R. Nelson, “An analysis of TCP maximum segment sizes,”

https://wand.net.nz/sites/default/files/mss_ict11.pdf.

G. Huston, “APNIC: TCP MSS values - what’s changed?” https://blog.

apnic.net/2019/07/31/tcp-mss-values- whats-changed/, 2019.

[14] EdgeCore, “Edge-core Wedge 100BF-32X with Tofino,” https://www.

edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335.

(10]

(11]

[12]

[13]

