
Patterns and Interactions in Network Security

Pamela Zave and Jennifer Rexford

April 2, 2019

1 Introduction

This article is intended as a concise tutorial on a very large subject. Network
security encompasses both the security of networks themselves, and the security
properties expected by network users as they entrust their data communications
to networks.

The focus of this tutorial is derived from two perspectives. The first perspec-
tive is that, although mechanisms for network security are extremely diverse,
they are all instances of just a few patterns. By emphasizing the patterns rather
than the individual details, we are able to cover more ground. We also aim to
help the reader understand the big issues and retain the most important facts.

The second perspective comes from the observation that security mecha-
nisms interact in important ways, with each other and with other aspects of
networking. Although these interactions are not frequently discussed, they de-
serve our attention. To provide communication services that are secure and also
fully supportive of distributed applications, network designers must understand
the consequences of their decisions on all aspects of network architecture and
services.

The boundaries of network security have been drawn by convention over
time, so §2 defines network security in two ways. First, we classify security
threats based on the way that network engineers might see them, with aware-
ness of the defenses available against various threats. Second we discuss how
network security is related to other forms of cyber-security, and the gaps where
no comprehensive defenses yet exist.

Next, §3 elaborates on how we describe networks and network services. We
use a new model emphasizing that network services are provided by means
of composition of many networks at many levels of abstraction, where each
network is self-contained in the sense of having—at least potentially—all the
basic mechanisms of networking (such as a namespace, routing, forwarding,
session protocols, and directories). This model allows complete and precise
descriptions of today’s network architectures. It also encourages recognition of
reusable patterns: in principle, any security measure might be found in any
network in a compositional architecture.

The main three sections of the tutorial cover the three major patterns for
providing network security, in the most convenient order for exposition. Within

1



a single network, speaking at the very highest level of description, networks
protect themselves and their users by packet filtering (§5). Users protect them-
selves with cryptographic protocols (§4), which hide the data contents of pack-
ets. Cryptography cannot hide packet headers, however, because the network
needs them to deliver the packets. So when users need to hide packet headers
from adversaries, which may include the network from which they are receiving
service, they must resort to compound sessions and overlays (§6). The first two
patterns will be familiar to anyone who has even dabbled in network security,
while the importance of the third pattern has not been sufficiently recognized.

In addition to explaining the basics of network security, we will consider
how security mechanisms interact with other mechanisms within their networks
and across composed networks. Among other goals, this helps determine where
security could and should be placed in a compositional network architecture.
Each of the three main sections includes a discussion of interactions.

Currently interest in verification of trustworthy network services is increas-
ing rapidly. We hope that this tutorial will convince the reader that network
security cannot be understood without considering the compositional nature of
network architecture. On the positive side, a compositional view helps identify
reusable patterns subject to reusable implementation and verification. The tu-
torial concludes (§7) with a brief assessment of prospects for holistic verification
of network security.

2 What is network security?

2.1 Background

§3 will present in some detail how networks and network services can be de-
scribed rigorously for studying network security. In the meantime, this section
explains a few basic concepts necessary to understand the threats.

A member of a network is a software or hardware module running on a
computing machine, and participating in the network. The member can send
or receive digital packets on one or more links of the network, and implements
some subset of the network’s protocols. The member is the machine’s interface
to that network.

A network member usually has a unique name in the namespace of the
network. A network defines a format for transmitted packets, each of which has
a header part and a payload or data part. Each header usually includes a source
name indicating which member originally sent the packet, and a destination
name indicating which member is intended to ultimately receive the packet.

In our model a network always has a single administrative authority (AA),
which is a person or organization responsible for the network. The AA provides
and administers resources for the network, in the form of links, members, and
additional resources on the members’ machines. The AA is expected to protect
the network’s resources and ensure that users of the network enjoy the promised
communication services. It is convenient to partition the members of a network

2



into infrastructure members administered by the AA to provide services, and
user members belonging to the network for the purpose of employing its services.

There are many kinds of network, ranging from the physical (concrete) to the
virtual (abstract). As we shall see in §3, a machine usually participates in several
networks simultaneously. A distributed application system can be viewed as a
network, even though its structure as a network may be uninteresting, and its
AA may be a loose organization of peers. Consider a machine participating in
a distributed application system whose members are connected by the Internet,
which is an association of networks all using the Internet Protocol (IP) suite.
In our model, the machine has members of (interfaces to) both the application
system and the Internet. These members communicate through the operating
system of their machine. When an application member sends a packet, the
application packet will be passed from the application member to the co-located
Internet member. The Internet member will encapsulate the entire application
packet (header and data) in the data part of an Internet packet, prefix an
Internet header to it, and send it through the Internet.

2.2 A practical classification of threats to network security

Network security is a pragmatic subject with boundaries that have been drawn
by convention over time. In §2.3 we will talk about the boundaries between
network security and other kinds of cyber-security, and the gaps where no com-
prehensive defenses yet exist.

It seems to be a hopeless task to classify security attacks directly—by their
very nature, they are crafty, they exploit gaps in standard models, and they are
always evolving. Defenses, on the other hand, fit into well-understood patterns.
For this reason, our classification of security threats is based primarily on the
factors that cause particular defenses to be applicable. This classification is not
an exact partition of security threats, because: (i) there are overlaps between
categories because multiple defenses may apply, (ii) inevitably, it does not cover
all security attacks, and (iii) it ignores the fact that some “attacks” are mere
mistakes.

2.2.1 Flooding attacks

A resource attack seeks to make its victim unavailable by exhausting its re-
sources. In networking, resource attacks are usually called flooding attacks, be-
cause they entail sending floods of packets toward the victim. Flooding attacks
are one type of denial-of-service attack.

The intended victims of flooding attacks vary. If the victim is a public server
or user member, the attack might seek to exhaust its compute-cycle or memory
resources, or the bandwidth of its interfaces to the physical world. An attacker
might also target some portion of a network, seeking to exhaust the bandwidth
of its links. A bandwidth attack can make particular users unreachable, and
can also deny network service to many other users whose packets pass through
the congested portion of the network. Note that some public servers such as

3



DNS servers are part of the infrastructure of a network, so a flooding attack on
a DNS server is an attempt to deny some network services to a large number of
users.

If an attacker simply sends as many packets as it can toward a victim, the
resources expended by the attacker may be similar to the resources expended
by the victim! For this reason, an effective flooding attack always employs some
form of amplification, in which the attacker’s resources are amplified to cause
the victim to expend far more resources. Here are some well-known forms of
amplification:

• A “botnet” is formed by penetrating large numbers (as in millions) of
innocent-but-buggy Internet members, and installing in them a particular
kind of malware. Subsequently the attacker sends a triggering packet to
each member of the botnet, causing it to launch a security attack unbe-
knownst to the machine’s owner. A flooding attack from many network
members, particularly members of a botnet, is called a “distributed denial-
of-service attack.”

• An “asymmetric attack” sends requests to a server that require it to ex-
pend significant compute or storage resources for each request, so that a
relatively small amount of traffic is sufficient to launch a significant attack.
A typical IP example is a “SYN flood,” in which the victim receives a flood
of TCP SYN (session initiation) packets. Each packet causes the server to
do significant work and allocate significant resources such as buffer space.
Also in IP networks, attackers can flood DNS servers with queries for
random domain names (a “random subdomain attack”). These will force
the servers to make many more queries, because they will have no cached
results to match them. In a Web-based application network, the attacker
can send particular HTTP requests that force a Web server to do a large
amount of computation.

• An attacker can send many request packets to public servers, with the
intended victim’s name as source name. This “reflection attack” causes
all the servers to send their responses to the victim. It amplifies work
because responses (received by the victim) are typically much longer than
requests (sent by the attacker).

• In an Ethernet network, a forwarder’s response to receiving a packet to an
unknown destination is to “flood” the network with it, which means (in
this case) to send it out all links in the “spanning tree” so that eventually
all members receive it and the designated destination responds to it. An
attacker can amplify any packet this way, simply by putting in an unused
destination name.

• Email spam and voice-over-IP robocalls can exhaust the capacity of a ma-
chine’s interface to the physical world, which in these application networks
depends on the time and patience of people.

4



Network infrastructure provides the principal defense against flooding at-
tacks, by filtering out attack packets (§5). Flooding attacks can also be coun-
tered by allocating additional resources to handle peak loads (also §5); this is
something that both network infrastructure and targeted users can do.

If network infrastructure discovers where attack traffic is coming from, de-
fending against the attack becomes much easier. For this reason, attackers
employ various techniques to hide themselves, for example:

• In an IP network, a sender can simply put a false source name in the
packet header, commonly called “spoofing.” In email applications, source
email addresses are also easily spoofed.

• With a botnet, none of the bots sending attack traffic are actually respon-
sible for the attack. Even if bots use their true source names, there may
be too many of them to cut off.

• An attacker can hide by putting a smaller-than-usual number in IP pack-
ets’ “time-to-live” fields, so that the packets are dropped after they have
done their damage in congesting the network, but before they reach a
place where measurements are collected or defenses are deployed.

The examples of amplifications and hiding techniques show that flooding at-
tacks are network-dependent, because they exploit vulnerabilities in the proto-
cols of specific networks. Nevertheless, their effects are not network-dependent,
because of “fate sharing.” All the network members and applications on a
machine share the same physical resources and physical network links, so if re-
source exhaustion causes a machine to crash, thrash, or become disconnected,
all programs running on the machine will share the same fate.

Flooding attacks are a very serious problem in today’s Internet. There are
businesses that generate them for small fees. They target popular Web sites
and (especially) DNS [15]. The worst attacks are mounted by enterprises, albeit
illegal ones, that can draw on the same kind of professional knowledge, human
resources, and computer resources that legitimate businesses and governments
have. Such attackers will use many attacks and combinations of attacks at once,
and can continue them over a long period of time.

2.2.2 Subversion attacks

The purpose of a subversion attack on a network member is to get the victim’s
machine to act as the attacker wants it to, rather than as the owner of the
machine wants. Here are some well-known examples of subversion attacks:

• The attacker sends malware to infect or penetrate the machine. The mal-
ware might be spyware, ransomware, or turn the machine into a bot.
The malware might exploit the machine’s resources, steal or damage data
stored in the machine, or attack the physical world through devices con-
trolled by the machine.

5



• Port scanning is the process of trying every TCP or UDP destination
port on an IP endpoint, to see if it will accept a session initiation. Port
scanning does not in itself do much harm, but should be prevented because
it is gathering information to be used in launching other malware attacks.
This is because most malware targets a known vulnerability in a specific
program or application.

• An attacker can give an infrastructure member of a network false infor-
mation. The best-known of these attacks is “BGP hijacking.” BGP is the
control protocol through which IP networks exchange routing informa-
tion. In a hijacking attack, an attacker tells an IP router to send packets
with certain destination names to the attacker. If the attack succeeds, all
packets sent to the router with those destination names will be forwarded
along a path to the attacker rather than along a path to their true desti-
nations. Although the attacker may do nothing with the packets but drop
them, it can now practice subversion by impersonating the intended desti-
nation, possibly stealing commerce or secrets. Subversion attacks on DNS
inject false entries into the directory; they can make services unavailable
to users, or allow the attacker to impersonate the intended destination.

As with flooding attacks, network infrastructure protects itself and its users
from subversion attacks by packet filtering. But subversion attacks are sig-
nificantly different from flooding attacks because they often require two-way
communication between attacker and victim. This means that an attacker can-
not hide by spoofing. If the attacker put a false source name in its first packet to
a victim, it would never receive a response and could not complete the attack.

2.2.3 Policy violations

Obviously, the default behavior of a network is to provide all communication
services requested of it. These services should be provided according to explicit
or implicit agreements about quality and privacy.

The final two categories are almost duals of one another. In both cases, there
is an exception to the default behavior, and the network infrastructure attempts
to tamper with a specific communication (up to and including blocking it) or
spy on it.

In the category of policy violations, we have specific communications that
laws, business agreements, organizational practices, or social rules say should
not occur, at least not without interference. We support the efforts of the net-
work infrastructure to block it, record it, tamper with it, or rate-limit it. The
next category (§2.2.4) is in some cases exactly the same, except that we are
supporting the network users in trying to avoid interference with their commu-
nications.

Examples of policy violations include:

• Two users can willingly participate in illegal communication. This should
be prevented, or in some cases recorded for evidence in legal proceedings

6



(“lawful intercept”). Similarly, the communications of suspected individ-
uals can be monitored for surveillance and investigation.

• A minor can attempt to access a Web site that violates parental controls,
which should be prevented.

• A network may consider certain voice or video applications to take up
more bandwidth than individual users are entitled to, and rate-limit them
to minimize their effects on overall performance.

• Operators of enterprise networks know which employees are using which
machines for which purposes. Often they configure their networks to
prevent unnecessary communications, which may be attacks, and can be
blocked without harm even if they are only mistakes. For example, ma-
chines used by engineers should not have access to the enterprise’s per-
sonnel database.

As with flooding and subversion attacks, network infrastructure defends
against policy violations by packet filtering. Policy violations are significantly
different because they are so specific—they usually involve at least one speci-
fied individual member. This distinguishes them from flooding and subversion
attacks, whose origins are usually unknown, and whose targets are often oppor-
tunistic.

Other factors that distinguish policy violations from flooding or subversion
attacks are (i) the victim of policy violations is not usually a recipient of packets,
but whoever made the policy being violated (such as parents wanting control
over their children’s Internet usage); (ii) not all policy violations are blocked,
which is always the most desirable response to flooding and subversion attacks.

2.2.4 Spying and tampering

§2.2.3 introduced the relationship between these two categories. The victims of
spying and tampering are network users, who want their communications to be
private, and want the network to be a transparent and effective medium of com-
munication. The attackers are often in the network infrastructure itself. Social
debates involving legal, ethical, political, and commercial considerations should
not be constrained by technical considerations. The goal of technical experts
should be to have the knowledge to implement whatever decisions emerge from
these debates [13].

The reason that spying and tampering is not the exact dual of policy vio-
lations is that policy violations are always countered by network infrastructure
on behalf of the network’s AA, while spying and tampering can be carried out
both by network infrastructure and by other attackers (see §3.1).

For some purposes, spying requires reading the data parts of transmitted
packets. For other purposes, it is sufficient for the attacker to observe packet
headers, sizes, and timing. Examples of spying and tampering include:

7



• Some governments censor the Internet usage of their citizens. Even if
networks in their countries are privately owned, the governments can insist
that network providers enforce their policies.

• Some governments use surveillance of network usage as a tool in repression
of or retaliation against political dissidents.

• By monitoring the searches and Web accesses of a network user, an at-
tacker can learn a great deal about the user’s personal life.

• Network infrastructure can insert into the paths of user sessions middle-
boxes that insert ads or alter search results.

Network users have two possible defenses against spying and tampering. The
first is the use of cryptographic session protocols (§4). The second is the use of
compound sessions and overlays (§6).

2.3 Relation to other kinds of security

For users, network security is a first line of defense against subversion attacks;
a major goal is to to keep subversion packets from being delivered to user ma-
chines. If the packets do arrive, however, then security measures in operating
systems and applications must take over. Many applications and all operating
systems have well-developed security measures of their own.

There is a large body of work on “trust management,” which is technology
aimed at deciding which agents should have permission to access which resources
or perform which operations, based on the credentials and attributes of the
agent, and on the permission policies applicable to the object (see, for example,
[19, 33]). Trust management is a decision-making component of most forms
of security, including network security. Distributed trust-management systems
also rely on network security, for instance to communicate secret information
safely among nodes of the system.

Personal data privacy is a form of security that is much discussed in today’s
world. People are concerned about the massive amounts of personal data that
is collected about them by Web sites, search engines, and other applications.
This data is extremely valuable for selling advertising, and can also be used for
worse purposes. Network privacy—privacy about one’s usage of a network—can
contribute to personal data privacy, but only in a limited way. For example,
privacy from network spying can enable people to access search engines and
read Web sites anonymously, at the cost of longer delays and worse search
results (because they are not customized). On the other hand, people cannot
participate in social media or electronic commerce in any meaningful way while
preserving anonymity.

One of the most challenging aspects of the drive to protect privacy, including
both privacy of personal data and privacy from network spying, is the problem of
“covert channels” or “information leakage.” Attackers can observe many things
in addition to what is intended or explicit, including timing, usage of shared

8



resources, configuration details that distinguish one “identical” machine or soft-
ware copy from another (called “device fingerprinting”), and electromagnetic
radiation across the entire spectrum. Attackers can correlate both covert and
overt information from diverse sources, including simultaneous observations of
different parts of a network. By applying both statistical and logical analysis
to all this data, attackers can reach surprisingly precise conclusions. This is an
area in which attackers appear to be well ahead of defenders, at least in princi-
ple. The only consolation is that covert channels leak information to attackers
at very low bandwidths compared to the overt network channels protected by
network security.

Another area in which attackers appear to be ahead of defenders, again due
to the heterogeneous and unpredictable nature of the threats, is attacks by
social engineering. Such attacks include phishing and guessing passwords. Note
that botnets are heavily populated by Internet of Things devices such as baby
monitors, because they come with factory-installed default passwords, and their
naive owners do not change their passwords. Social attacks also include insider
attacks, where security software has bugs or backdoors installed by employees
with access to code.

3 A model of networking

3.1 Network links

A network has links, which are communication channels on which digital packets
can be sent and received. Most physical links are wires, optical fibers, radio
waves, or microwaves. To be a member of a network, a hardware or software
module on a machine must be able to send or receive on one or more links of
the network.

Network security uses many forms of digital technology to transform physical
networks into virtual networks with more secure behavior. Consider, for exam-
ple, a wireless (radio) network. It has a single many-to-many link on which any
machine with a transmitter within radio range can send packets; similarly, any
machine with a receiver within radio range can receive any packet being sent. In
other words, anybody’s machine within radio range can have a member of this
network. If the network uses secure WiFi protocols, in contrast, packets “on
the air” are encrypted. In a wireless network using these protocols, only autho-
rized members have the keys to encrypt and decrypt packets, so only authorized
members can send and receive in any meaningful sense.

In wired networks, buses (used in older Ethernets and cable networks) are
also many-to-many links, so packets can be sent and received by any machine
connected to them. Even in a network with wires for (supposedly) point-to-
point links, a machine tapped into a wire can send and receive packets on the
wire. Even without wiretapping, a wired link can be compromised by weak
physical security. For example, it may be assumed that the endpoints of a wire
are plugged into known machines because the wire is in a private building with

9



physical security, yet this assumption will be false if an unsupervised visitor
plugs his laptop into an unused wall port, or moves a wire from a desktop
machine to his laptop.

3.2 Composition of networks

As mentioned in §2.1, there are many kinds of network used for many purposes,
and this tutorial should make sense for all of them. The principle example to
be covered, however, is the Internet. The Internet consists of a large number
of IP networks (networks using the Internet Protocol suite), so the constituent
networks may differ in their AAs, but not their basic design. These networks
are connected together at various points by bridging, which means that two
particular networks share some links so they can forward packets to each other.

An IP network in the Internet is typically classified as either public or private.
A public network accepts user members without authorization, so any machine
can have a member of a public network, and the network cannot trust its user
members. A private network only allows authorized user members, so private
networks can assume that members are trustworthy, at least to some extent.
Recalling the unsupervised visitor above, it is worth noting that authorization
of members can take many forms, and assumptions based on it should not be
made casually.

A network provides one or more communication services. A particular in-
stance or usage of a communication service is called a session. A communication
service is usually associated with a session protocol, which is the set of rules
governing packet formats and sender/receiver behavior during sessions of the
service. Like a link, a session is also a communication channel for a group of
digital packets.

In addition to being composed by bridging, networks are often composed by
layering. Formally, a network (the overlay relative to composition) is layered on
another network (the underlay) when a link of the overlay is implemented by a
session of the underlay. Since the implementation always consists of digital logic,
whether hardware or software, an overlay link is always virtual, regardless of
whether the links in the underlay are physical or virtual. For example, Figure 1
shows how an IP network in the Internet may be layered on several local-area
networks.

In the figure, shaded boxes are machines with members of (interfaces to)
multiple networks. In the IP network, A is the IP address (name in the names-
pace of the IP network) of the member on Alice’s machine, while B is the IP
address of the member on Bob’s machine. These members are currently the
endpoints of a TCP session. Packets on a path of links between A and B are
forwarded by IP routers named R1 and R2.

On the lower level of the figure there are three isolated local-area networks.
In the local-area networks, names are Ethernet addresses; we show the Ethernet
name of a member simply as the lower-case version of the IP address on the same
machine. Each IP link is implemented by an Ethernet session, as indicated by
the bold arrows. As mentioned in §2.1, the actual mechanism is that members

10



local-
area

networks path of
links and members

session session session

link linklink

IP
network

a b

TCP session

Alice’s
machine

Bob’s
machine

A R1

r1 r1 r2 r2

R2 B

infrastructure
machine

infrastructure
machine

Figure 1: The IP networks of the Internet are layered on many local-area net-
works.

of different networks on the same machine communicate through the operating
system and/or hardware of the machine, and IP packets on the link are actually
transported by local-area networks as the data parts of Ethernet packets. There
is no bridging in Figure 1; rather, the IP network spans multiple local-area
networks by forwarding on paths that concatenate the links they implement.

This definition of layering is very different from the older notion of layering
in networks found in the “classic” Internet architecture [11] and OSI reference
model [25]. In the older meaning, each layer in a network has a distinct func-
tion, and the number of layers in an architecture is fixed. In the new meaning,
each layer is a self-contained network with the potential to include all the basic
structures and mechanisms of networking. Each network may be specialized
with respect to its purpose, membership scope, geographical span, and role in
the layer hierarchy. An architecture is a flexible composition of as many net-
works as needed. Motivations and further explanations of the new compositional
model are given in [51]. We use it in this tutorial because it allows comprehen-
sive yet precise descriptions of how networks in general, and the Internet in
particular, actually work today.

3.3 Properties of channels

In this tutorial the default communication channel (whether link or session) is
two-way and point-to-point, meaning that it has two authorized endpoints, each
one capable of sending and receiving packets. (In principle, unless proven oth-
erwise, it can also have unauthorized senders and receivers.) Even in networks
with broadcast physical media, layering of virtual networks over the physical
network quickly transforms the single many-to-many link into many one-to-one
links. For performance and fault-tolerance, links have measurable properties
such as packet-loss rate, bandwidth, latency, and jitter.

Enforcing logical properties of channels is a critical part of network security.

11



In this section we distinguish two very different ways of doing this.
A one-way point-to-point link or session has the logical property of data in-

tegrity if: a packet is received by the receiving endpoint only if it was sent by the
sending endpoint. (The extension to two-way channels is obvious.) Attacks—
and also normal network transmission—can duplicate packets, so it is necessary
to add that if the sender sends a distinguished packet m times, the receiver can
receive it at most m times.

A one-way point-to-point link or session has the logical property of data
confidentiality if only the receiver can read the data sent by the sender. (The
extension to two-way channels is obvious.) Confidentiality should include “for-
ward secrecy,” which means that the data remains secret in the future, even
if attackers save encrypted packets, later learn current secrets of one of the
endpoints, and try to use the current secrets to decrypt old packets.

A “secure” link or session has both data integrity and confidentiality. These
properties must hold despite the possibility of physical attacks as in §3.1. They
must also hold despite the fact that a session can be attacked by any untrust-
worthy network member in the path of session packets, and a virtual link can
be attacked by any attack whatsoever on the session implementing it. It is
accepted that observers will have access to packet headers, sizes, and timing.

The first way to establish logical properties of channels is through the use
of a session protocol. In particular, the security properties of data integrity
and confidentiality can be enforced by cryptographic session protocols (§4).
It is important that cryptographic protocols are proved correct even in hostile
environments. For example, in accepted proof systems such as the NRL protocol
analyzer [37] and Universally Composable Security [9], the baseline model of a
security protocol allows an adversary to control all communication channels
among participating agents, reading, deleting, injecting, or altering any packets
that the adversary wishes. If a cryptographic session protocol is proven correct
with such conservative assumptions, the endpoints of a session using it can
trust that the session has data integrity and confidentiality even without the
cooperation of other agents.

The second way to establish logical properties of channels is through bottom-
up reasoning. To reason that a physical link has no senders or receivers except
the authorized ones, it is necessary to talk about physical security. A path
of network members and secure physical links can be established as secure by
reasoning about the network members. Established properties of a path can
be used to guarantee properties of a session whose packets traverse the path;
established properties of a session can be used to guarantee properties of a link
implemented by the sesssion.

4 Cryptographic protocols

Cryptographic protocols are incorporated into the session protocols of a network.
They are most commonly employed by user members of a network, to ensure
that a point-to-point session between them has the properties of data integrity

12



and confidentiality. The members can also achieve endpoint authentication,
which means that either session endpoint can be sure of the other endpoint’s
identity. Cryptographic protocols protect users against spying and tampering
attacks. When the protocols are employed by infrastructure members, they
protect against subversion of the network infrastructure, as well as spying and
tampering.
§4.1 begins our discussion of cryptographic protocols by introducing the

central concept of identity. The foundation for all cryptographic protocols is
public-key cryptography (§4.2), because it provides some crucial functions and
supports others. In §4.3 we return to the properties of data integrity and con-
fidentiality. Finally, in §4.4 we discuss architectural interactions with crypto-
graphic protocols that are relatively independent of other security patterns.

In §4.1 through §4.3 the context will be a single network of any kind. The
discussion also covers a set of similar bridged networks all at the same level of
the layering hierarchy, for example the bridged IP networks of the Internet. §4.4
broadens the context, as it includes how cryptographic protocols interact with
composition of networks by layering.

4.1 Trust and identity

Security requirements are based on which network members do and do not
“trust” each other. Of course a network member is a software or hardware
module; it cannot trust in any ordinary sense of the word, and has no legal
responsibility that it can be trusted to fulfill. For the purpose of establishing
trust, a network member that is an endpoint of a session has an identity. This
identity is given to the other endpoint of the session in answer to the question,
“Whom am I talking to?”

This role implies that an identity should have meaning in the world outside
the network. Often it is closely associated with a legal person—a person or
organization—who is legally responsible for the network member. The identity
is usually the source of the data that the network member sends during the
session.

To understand where identities come from, consider the Web session pictured
in Figure 2. At the lower level, a TCP session initiated by C and accepted by
S traverses a chain of bridged IP networks. At the upper level, a distributed
system is viewed as a network, which is always possible even though their struc-
tures as networks are usually too simple to bother with. In this Web-based
application network there is a dynamic link (implemented by the TCP session)
between a browser and a server, on which an HTTP session is taking place.
Placed above the client’s browser there is a user whose clicks and keystrokes
provide input to the browser.

In this example, the server’s machine has two interfaces to two network
members, each with a name in the namespace of its network. In its IP network
it has IP address S. In the Web network it has domain name bigbank.com. The
client’s machine also has two network members, but the browser does not really
have a name in the Web-based application network, because it only initiates

13



[browser] bigbank.
com

Jane Q. Public

Web-based
application

 network

C S

client’s IP
network

transit IP
 networks

server’s IP
 network

TCP session

dynamic link

HTTP session

client’s
machine

server’s
machine

Figure 2: Member names and identities in a Web application.

sessions and never accepts them. However, the user of the browser is a person
named Jane Q. Public, and we can imagine her as a member of an even-higher-
level distributed financial system.

If the two endpoints of the TCP session need to authenticate each other (as
they should, for a banking transaction), what identities do they give as their
own? The general answer is that each gives its network name or the name of
a higher-level network member that is using it. Either IP interface could give
its IP name, but it would not be a very good identifier—too transient, or with
too little meaning in the outside world. In practice the server’s IP interface S
would be known by its Web name bigbank.com, and the browser’s IP interface
C would send its user’s name Jane Q. Public.

For endpoint authentication, a member must have access to a secret asso-
ciated with the identity it provides. One kind of secret, useful when the two
endpoints have an ongoing relationship, is a password. The server bigbank.com
knows Jane’s password, and she can type it into the browser when requested.

For the important cryptographic protocols, however, the secret is always a
public/private cryptographic key pair (semantics given in the next section). The
relationships among the important entities are shown in Figure 3. The identity
is responsible for the packets sent by the network member, and the network
member has access to the public key and its paired private key.

A “certificate authority” is trusted to ascertain that a particular public key
belongs to a particular identity; it issues a certificate to that effect and signs it
digitally. Thus when an endpoint receives a certificate, it can trust the identity
that goes with the key (at least, as well as it trusts the certificate authority). As
indicated above, identities found in certificates include names of legal persons,
domain names, and IP addresses.

It should be noted that trust between communicating endpoints is not nec-

14



has access to
(checked by endpoint

authentication)

is the
user of this

session
endpoint

owns
(certi�ed by

certi�cate authority)

public/private
key pairidentity

network member,
session endpoint

Figure 3: Relationships among identification entities.

essarily simple or absolute. For instance, two endpoints may be communicating
to negotiate a contract, and (because they do not trust each other completely)
need to communicate through a third party trusted by both. A trusted broker
can ensure, for example, that both parties sign the exact same contract [8].

4.2 Public-key cryptography and its uses

In public-key cryptography, an identity generates and owns a coordinated pair
of keys, one public and one kept private and secret. The important proper-
ties of these keys are that (i) it is extremely difficult to compute the private
key from the public key, and (ii) plaintext encrypted with the public key can
be decrypted with the private key, and vice-versa. Today’s public-key cryp-
tography is descended from the Diffie-Hellman Key Exchange protocol and the
RSA algorithm (named for its inventors Ron Rivest, Adi Shamir, and Leonard
Adleman).

At present a key must be at least 2048 bits to be considered secure (the
minimum size is expected to increase in the future). A public key is a pair of
unsigned integers (n, e). The corresponding private key is a pair (n, d). To be
encrypted, a message must be divided into chunks such that each chunk has an
integer representation less than n. If m is such a chunk, then the public-key
encryption of m is me mod n, and the private-key encryption of m is md mod n.
The point of this isolated detail is to show why public-key cryptography is com-
putationally expensive, which is an important factor in design of cryptographic
protocols. For a readable technical account of public-key cryptography, see
Kurose and Ross [32].

4.2.1 Endpoint authentication

A simple challenge protocol is sufficient to determine that an endpoint has access
to a public/private key pair. Suppose that an endpoint B is engaged in a session
with endpoint A, and wants to check its identity’s claim to own public key K+.
B can make sure of this by sending a nonce (a random number used only once in

15



its context) n. A is supposed to reply with K−(n), which is n encrypted using
the private key K− that goes with public key K+. B then decrypts the reply
with K+. If the result is n, then B has authenticated that the other endpoint
indeed has access to public key K+ and its private key K−.

In practice B may not know the public key ahead of time. In a typical
client/server protocol, the client needs to authenticate the server, but the server
does not authenticate the client. The client B might send its nonce to A, and
A might reply with both its certificate and K−(n). From the certificate, B gets
K+. The client should validate the certificate as well as the encrypted nonce,
including checking that the identity in the certificate is the identity expected,
checking that the certificate has not expired, and checking that it has been
signed by a legitimate certificate authority. Certificates are often validated
poorly or not at all, which is why some client software has been dubbed “the
most dangerous code in the world” [17].

A server can delegate its identity to another trusted network member, by
giving the delegate its certificate and keys. For example, “content-delivery net-
works” host Web content on behalf of other enterprises. Content-delivery servers
are trusted delegates of their customers, and each such server can have many
delegated identities.

As mentioned in §4.1, IP names (addresses) are not very good identities,
because they are often assigned transiently, and are never mnemonic. As a
result, the names of IP members cannot be authenticated, leading directly to
the prominence of spoofing in a variety of security attacks. The Accountable
Internet [2] is a proposal based on the alternative principle that Internet names
should be the persistent identities of Internet members, and that they should
be “self-certifying.” This means that any other member communicating with a
member can authenticate its name, even without trusting a certificate authority.
This is important in a global network, because there are no certificate authorities
that are trusted by all countries [12].

Clearly this could be achieved if the name of a member were its public key,
but public keys are too long for network names. The Accountable Internet
solves this problem by using as a member’s name a 144-bit cryptographic hash
of its public key. A cryptographic hash is computed by a function H from a
digital message m (of any length) to a fixed-length bit string. Its important
property is that, given a hash H(m), it is extremely difficult to compute a
different message m′ such that H(m) = H(m′). In AIP, having validated that a
member has public key K+, a validator completes the job by computing H(K+)
and checking that it is the same as the member’s name.

In the Accountable Internet Protocol (AIP), endpoint authentication is not
implemented in user endpoints by session protocols, as is usual; rather it is part
of routing and forwarding, and is implemented in AIP forwarders. The costs
are considerable and everyone connected to the Internet must bear them, which
is why AIP is a radical proposal. The Accountable Internet’s counter-argument
would be that endpoint authentication is essential for network security, so ev-
eryone needs it all the time.

16



4.2.2 Digital signatures

A digital signature transmitted with a document can be checked to verify that
the document came from a specific identity, and has not been modified in transit.
The simplest digital signature of a document m would be K−(m), i.e., the
document itself encrypted with the private key of the signer. The recipient
encrypts the signature with the public key of the signer. If the result is m, then
the signature and document are verified.

Because public-key encryption is computationally expensive, encrypting whole
documents would be very inefficient. In practice a (short) cryptographic hash
H(m) of the document is encrypted with the private key and used as a digital
signature. To verify the signature, the recipient both encrypts the signature
with the public key, and computes the same hash function on the plaintext
document. Verification is successful if both computed values are the same.

If a client is interested in the identity of a server only to obtain its authen-
tic data, then receiving data signed by the server is just as good as receiving
data directly from the server. This kind of delegation is used in Named Data
Networking [52].

4.2.3 Key exchange

Because public-key cryptography is computationally expensive, it is used only
to encrypt small amounts of data. For encrypting the entire data stream being
transmitted on a link, symmetric-key cryptography, which is much more efficient,
is used. As the name implies, symmetric-key cryptography requires that both
endpoints have the same secret key, which is used to both encrypt and decrypt
the data.

This raises the problem of “key exchange,” or how to distribute secret keys
securely over insecure channels. The basic solution to the problem of key ex-
change is the Diffie-Hellman algorithm, shown in Figure 4.

g, p, Y(A)

ENDPOINT A ENDPOINT B

  

choose g, p,
random secret X(A);

compute Y(A) = g        mod p

compute Y(B)        mod p

X(A)

X(A)
compute Y(A)        mod p

X(B)

X(B)

X(B)

X(A)

choose random secret X(B);
compute Y(B) = g        mod pY(B)

both are g                mod p
which is the shared secret

Figure 4: Diffie-Hellman key exchange. g is a small number such as 2 or 3, while
p, X(A), and X(B) are large integers.

Unfortunately, the basic algorithm is vulnerable to a “man-in-the-middle”

17



attack, which refers to any attack carried out by an adversary able to intercept
packets on a link. The adversary can read, absorb, inject, or alter any packet
transmitted on the link; the attacker can also “replay” packets by storing them
and retransmitting them later. Figure 5 shows how such an attack would work.
The adversary simply engages in a separate key exchange with each of the two
endpoints. After the key exchange the adversary can relay packets transparently
between A and B by decrypting with one key and encrypting with the other; it
can also read the packets and manipulate them in any way whatsoever.

g, p, Y(A)

g, p, Y(C2)

ENDPOINT A ATTACKER C ENDPOINT B

choose g, p,
random secret X(A);

compute Y(A) = g        mod p

compute Y(C1)        mod p
X(A)

compute Y(A)          mod p
X(C1)

compute Y(B)          mod p
X(C2) compute Y(C2)        mod p

X(B)

X(B)

X(A)

choose random secret X(B);
compute Y(B) = g        mod p

Y(B)

Y(C1)

choose random 
secrets X(C1), X(C2)

and do similar computations

equal

equal

Figure 5: A man-in-the-middle attack on Diffie-Hellman key exchange.

Fortunately, the solution to this problem is straightforward. A and B must
have identities and public/private key pairs, and must authenticate each other
before the key exchange. Then, the message of the protocol sent from each to
the other must bear the sender’s digital signature. Even if the attacker can read
Y (A) and Y (B), it can do nothing with them.

4.3 Two IP cryptographic protocols

This section provides an overview of the two most important cryptographic
protocols in the IP protocol suite, TLS and ESP. Transport Layer Security (TLS)
is the successor to Secure Sockets Layer, and is an extension of TCP. “IPsec”
refers to a family of related IP protocols, comprising the Authentication Header
and Encapsulating Security Payload (ESP) protocols, each of which can be used
in “transport mode” or “tunnel mode.” ESP is more useful than Authentication
Header, so only ESP will be discussed here.

These protocols provide endpoint authentication, data integrity, and data
confidentiality. They have interesting differences, and the differences are sig-
nificant for their use in compositional network architectures. To explain these
differences, we must begin with an explanation of how session protocols are
composed.

18



4.3.1 Composition of session protocols

A message is a semantic entity within a session protocol. Because of the conver-
sational nature of protocols, it would be unusual for a packet to contain multiple
messages, but length restrictions could easily cause a message to be transmitted
in multiple packets. Control messages are used by a protocol to synchronize the
endpoints and share specific parameters. Data messages contain the substance
being communicated. Although a session protocol may have only one of these
message types, many protocols have both, or mix control information and data
in a single message.

Within a network, session protocols can be composed, so that the same
session benefits from the services implemented by multiple protocols. When
two session protocols P and Q are composed, one of them is embedded in the
other. If P is embedded in Q, for instance, most packets in the session will have
the format shown in Figure 6, in which the P header and data are encapsulated
in Q data (the figure also shows optional footers, which are required by some
protocols). In addition, the session may include control messages of Q that are
independent of P and have no encapsulated P messages.

network
header

Q header Q footerP header P footerP data

contains destination
name, session
identi�er,
protocol Q

contains Q-speci�c
information,
protocol P

contains
P-speci�c
information

Q data

Figure 6: Packets of a network with session protocol P embedded in session
protocol Q. Protocol footers are optional.

As in the figure, the first header of a packet has a format dictated by the
network design, and includes the destination name and session identifier for the
entire session, so that all packets of the session will be identifiable as such to
the forwarders. Each network or protocol header names the type of the next
header, if any, so that network members can parse and handle the packet with
the appropriate protocol stack.

4.3.2 The setup phase

TLS is composed with (embedded in) TCP. If the URL of a Web site begins
with https://, then its clients should make requests of it using IP protocol
TCP and destination port 443, signifying the use of TLS embedded in TCP.
Figure 7 shows packet formats for TLS, ESP in transport mode, and ESP in
tunnel mode.

19



ESP PACKET, TUNNEL MODE

TLS PACKET

ESP PACKET, TRANSPORT MODE

IP
header

TCP
header

TLS
header data MAC

IP
header

ESP
header

TCP
header data MAC

IP
header
(lower)

IP
header
(upper)

ESP
header

TCP
header data MAC

Figure 7: Packet formats for cryptographic protocols, slightly simplified. The
Message Authentication Code (MAC) is a footer that assists in message authen-
tication. Pink parts of a packet are encrypted, while gray parts are authenti-
cated.

When ESP is used in composition with TCP in transport mode, TCP is
simply embedded in ESP. In contrast, ESP in composition with TCP in tunnel
mode is an instance of layering (as in §3.2). An entire overlay packet with
IP/TCP headers and data is encapsulated in the data part of an underlay
IP/ESP packet. So the important distinction between ESP transport mode
(session-protocol composition with TCP) and ESP tunnel mode (layering com-
position with TCP) is that in tunnel mode there is an upper IP header with
a completely different destination than in the lower IP header. Intuitively, the
upper destination is the ultimate destination of the TCP session, while the lower
destination is the next hop in a session path chosen by the source of the packet.
These issues will be discussed in much more detail in §6.

In a TCP/TLS session, the client and server first have a TCP (control) hand-
shake, after which they begin a TLS (control) handshake. The TLS handshake
performs three tasks: (i) endpoint authentication (§4.2.1), (ii) negotiation of a
“cipher suite,” and (iii) key exchange (§4.2.3). Usually the accepting endpoint
is authenticated with a certificate and the initiating endpoint is not, because
the acceptor is a server and the initiator is a client.

TLS supports many different methods for exchanging keys, encrypting data,
and authenticating message integrity (see below). For each of these tasks there
are many possible algorithms (counting all variations of a few basic algorithms).
A “cipher suite” is a collection of algorithms and parameter choices for doing all
the cryptographic tasks within a security protocol. To negotiate a cipher suite,
the initiator sends all the cipher suites it implements, and the acceptor chooses

20



one that it also implements and sends back the choice. Newer cipher suites are
more secure, particularly with respect to key exchange that guarantees forward
secrecy—learning a current key should not give an attacker clues about past
keys.

ESP endpoints authenticate each other if required, negotiate cipher suites,
and exchange keys by means of the Internet Key Exchange (IKE) protocol. The
result is that each ESP endpoint has long records called “security associations”
including choice of cipher suite and actual keys. Use of IKE to set up an
ESP session is not always necessary because security associations can also be
introduced into ESP endpoints by configuration.

4.3.3 Data integrity and confidentiality

In both TLS and ESP, data and some headers are encrypted with a shared key by
the sender, and decrypted using the same key by the receiver. In both protocols,
a different shared key is used in each direction. According to the mathematics
of symmetric-key cryptography, encryption satisfies the requirement of data
confidentiality.

The requirement of data integrity is satisfied by the process of “message au-
thentication,” Each packet is sent with a “message authentication code” (MAC)
computed from the authenticated data d by appending to the data a shared au-
thentication key k, and then applying a cryptographic hash function (§4.2.1)
to d + k. The MAC H(d + k) is then appended to the data in the packet. As
with encryption keys, both TLS and ESP generate authentication keys during
key exchange, and use a different authentication key in each direction. The
packet receiver performs the same MAC computation and expects it to result in
the same MAC that it received in the packet. If an attacker changes or inserts
packets while they are being transmitted, it will not be able to compute correct
authentication codes for the packets, and the discrepancy will be detected by
the receiver.

This algorithm alone has the limitation that an attacker with access to the
packet stream can still delete, re-order, or replay packets, even though it cannot
create new ones. TLS and ESP require different solutions to this problem,
because of the differences in embedding visible in Figure 7.

One might think that this problem would be solved for TLS by the fact that
the enclosing TCP packets have byte sequence numbers. TCP headers are not
encrypted, however, so an attacker-in-the-middle could alter them to make even
an altered TCP byte stream look correct. The actual TLS solution is for each
endpoint to keep track of packet sequence numbers as TLS packets are sent and
received. The sequence number is not transmitted directly, but it is included
in the bit string hashed to compute the MAC. For a packet to be accepted, the
receiver must be re-computing its MAC with the same sequence number that
the sender used. TLS packets cannot be received out-of-order because of the
guarantees provided by TCP, on which it depends.

Authentication in ESP is concerned with packet replay, to the exclusion of
deletion or re-ordering, because replay is the most serious security vulnerability.

21



ESP headers contain explicit packet sequence numbers, which are included in
the data on which the MAC is computed. ESP does not have TCP to depend on,
so packets could arrive out-of-order, and the receiver cannot predict the exact
sequence number of the next packet. Instead, ESP checks only for received
packets with sequence numbers that have already been received, and deletes
them. This is sufficient to defend against replay attacks, because an attacker
cannot change the sequence number of a packet it replays.

4.3.4 Uses of TLS and ESP

Properties of the protocols are summarized in Figure 8.

optional for initiator,
mandatory for
acceptor

performed by TLS
handshake

IP, TCP, and TLS
headers unencrypted

defends against all
tampering, including
replay, deletion, and
re-ordering

TLS

optional for both
endpoints

performed using
separate IKE protocol,
or unnecessary
because pre-
con�gured

IP and ESP headers
unencrypted, 
encapsulated IP
packet encrypted

defends against
replay attacks, not
deletion or re-
ordering

-

ENDPOINT 
AUTHENTICATION
using public/private
keys and certi�cates

KEY EXCHANGE DATA ENCRYPTION
using a di�erent 
symmetric key in each 
direction

MESSAGE 
AUTHENTICATION
using a di�erent 
authentication key in 
each direction

IP and ESP headers
unencrypted, TCP
header encrypted

ESP
tunnel
mode

ESP
transport
mode

Figure 8: Summary of protocol properties.

Use of TLS for Web traffic has been growing steadily, and now exceeds the
amount using TCP. TLS is also widely used by other application protocols. ESP
is most commonly used to make “virtual private networks” (see §6).

Not surprisingly, developers building applications on UDP are also interested
in endpoint security. For UDP transmission, there is a security protocol called
DTLS (Datagram Transport Layer Security) that is as similar as possible to
TLS. DTLS introduces the notion that a sequence of UDP packets go together
in a session, which is not present in plain UDP. It should be clear from the
previous sections that, because DTLS is not embedded in TCP, its designers
had to solve two problems: (i) the TLS handshake assumes reliable delivery
of the handshake messages, and (ii) DTLS message authentication cannot rely
on the property that packets are delivered reliably, in order, and duplicate-
free, so that packet sequence numbers can be computed independently at each
endpoint. DTLS solves the first problem by incorporating packet-loss detection
and retransmission into the DTLS handshake. DTLS solves the second problem
by using explicit sequence numbers, exactly as ESP does.

22



4.4 Interactions between cryptographic protocols and other
aspects of networking

Cryptographic protocols have significant interactions with other security pat-
terns, which will be discussed when the other security patterns have been pre-
sented. This section is concerned with the interactions of cryptographic proto-
cols that are relatively independent of other security patterns. In considering
architectural interactions, we will be looking at multiple composed networks as
well as protocols within a single network.

4.4.1 Performance

Data encryption and message authentication increase required bandwidth and
computational resources slightly, but no one seems to regard these as problems.

The direct and significant performance costs of cryptographic protocols are
incurred in the setup phase, by endpoint authentication and key exchange, which
consume compute resources and increase latency. For example, the TLS 1.2
handshake consumes two round-trip times (RTTs), added to the one for the
TCP handshake. Even with short RTTs, a small fraction of TLS 1.2 setups
take 300 ms or more [39], due to increased computation time.

TLS handshake overhead is enough to make Web servers more vulnerable
to denial-of-service attacks, as attackers can create a surge of new TLS ses-
sion requests. Attempts to optimize handshakes by caching and sharing secrets
among sessions have created new security vulnerabilities in TLS 1.2 [46]. In
the recently approved standard for TLS 1.3, typical TCP/TLS setup times are
reduced from three RTTs to two, although this may not affect the portion of
latency due to computation time.

The performance issue is much more serious in applications for the Internet
of Things (IoT), because these applications tend to have periodic or irregular
short communications from a large number of networked devices to centralized
analysis or publish/subscribe servers. Message Queuing Telemetry Transport,
a protocol for IoT applications, is well-designed from this perspective, because
many brief application messages can share the same TLS session. Even so,
group events (such as initialization of a fleet of vehicles) can easily create spikes
in the load on centralized servers [22].

For Message Queuing Telemetry Transport and all other application proto-
cols with short or bursty communications separated by intervals of inactivity,
it is most efficient for many communications to share a single, long-lived se-
cure channel. Long-lived Internet channels have been difficult to maintain in
the past, because various components in the path of the channel would time
out and close the channel during intervals of inactivity. It is easier now—TCP,
TLS, and DTLS all have keep-alive options, sending periodic keep-alive signals
to keep long-lived channels open.

Architecturally, there are two ways to implement the optimization of sharing
a secure channel. If TLS is being used, the application protocol could be em-
bedded in TLS; application headers and data would be the data portion of TLS

23



packets, as shown in Figure 7. Alternatively, an application network could be
layered on IP networks, as shown in Figure 9. The Session Initiation Protocol
(SIP) is used for control of multimedia applications. The layering alternative is
more flexible, because the span of each TLS session need not be the same as the
span of the application session. This is essential for SIP, because an end-to-end
SIP session always goes through a middlebox for each user endpoint. The two
optimization alternatives correspond to ESP transport mode and tunnel mode,
respectively.

alice@
atlanta.com atlanta.com biloxi.com

bob@
biloxi.com

SIP
 network

SIP session

AAC AC BC BBCbridged
IP

 networks  long-lived TLS sessions

secure links implemented by TLS sessions

Figure 9: A SIP application network layered on bridged IP networks.

4.4.2 Session protocols

The most significant issue for composition of cryptographic protocols is their
relationship to TCP, because TCP does so many things: congestion control,
reliability, and packet ordering. We have seen that TLS depends on being
embedded in TCP, while DTLS and ESP do not. This should not be a problem,
unless real or perceived implementation constraints cause designers to make bad
choices. For example, some network architectures use TCP as a session protocol
in an overlay network with secure links implemented by TLS. (In comparison,
in Figure 9, the overlay network uses SIP as the session protocol.) Because of
the dependence of TLS on TCP, this design is layering one instance of TCP
over another instance of TCP! This can cause the problem of “TCP meltdown”
[23], as follows.

TCP provides reliability by detecting lost packets by means of a timer, and
requesting retransmission of a packet when it does not arrive in time. For each
session, TCP sets the timeout interval independently and adaptively. It can
happen that the timeout interval on the upper-level instance of TCP becomes
shorter than the timeout interval on the lower-level instance. In this case the
lower-level session is experiencing reduced throughput, because it is waiting a

24



longer time for each packet. At the same time, the upper-level session is having
frequent timeouts, making frequent requests for retransmission, and therefore
demanding increased throughput. This mismatch drastically degrades the end-
to-end throughput.

The design of the IP protocol suite is accidentally inflexible with respect to
ESP. Because all networks need session identification, session identifiers should
be standardized in network headers. Yet IP groups session identifiers with
protocol headers, and they are not standardized across all protocols.

Specifically, the first 32 bits of a TCP header consists of two port numbers,
which distinguish the session’s packets from all other TCP packets with the
same source and destination names, and which can easily be matched with the
port numbers of reverse packets of the same session. In ESP, on the other hand,
the first 32 bits of the protocol header are a pointer to a security association (see
§4.3.2), which is completely different in the forward and reverse directions, and
cannot be used to associate them. The consequence is that a stateful firewall or
network-address translator (NAT) at the edge of a private network, configured
to only allow two-way sessions initiated in the outgoing direction, will not allow
ESP sessions.

In this case protocol composition enables a workaround to the problem. ESP,
whether in tunnel or transport mode, can be embedded in UDP with well-known
port 4500. (A well-known port for UDP/ESP composition is necessary because
UDP headers have no place for the “next header,” as IP and ESP headers do.)
In this way a two-way sequence of UDP packets forms an identifiable session,
and a stateful firewall or NAT does not see the ESP headers at all.

4.4.3 Mobility

In its strongest sense, mobility enables a session to persist even though the
network attachment of a device at its endpoint is changing. This usually means
that, at some level of the network hierarchy formed by layering, the network
member on the device is changing names within its network, or dying and being
replaced by a member of another network. For example, when a mobile phone
moves from one local cellular network to another, its IP address (for data service)
must change. Ideally the data sessions of the phone would persist across such
moves, as its voice sessions do.

There is usually no interaction between mobility and cryptographic proto-
cols, because the identity of a mobile machine is at a higher level than the names
that change. For instance, consider a Web server running on a virtual machine
in a cloud. Because of failures or resource changes, the virtual machine may
migrate to a different physical machine where it has a different IP address. But
the identity of the Web server is its domain name, which is at a higher level and
does not change. Similarly, more than one server can have the same identity, as
when a Web site of origin delegates its identity to a content-delivery server by
sharing its certificate and keys.

On the other hand, thinking about network mobility brings up a possibility
we might call “reverse mobility”—the higher-level identity moves or changes

25



while the lower-level name remains the same. This can be a security issue:
after Jane Q. Public enters her password (§4.1), she might walk away from her
machine, and then any other person who walks by could retrieve her personal
data and request transactions on her bank account. For this reason, secure
distributed applications require periodic re-authentications of the identity of
the person using them, especially after idle periods.

4.4.4 Infrastructure control protocols

Control protocols are used by network infrastructure to maintain and distribute
network state. It is important to protect these protocols against subversion
attacks (§2.2.2).

Unsurprisingly, some control protocols incorporate cryptography. For in-
stance, Border Gateway Protocol Security is a security extension to BGP that
provides cryptographic verification of messages advertising routes. Similarly,
Domain Name System Security Extension protects DNS lookups by returning
records with digital signatures.

In many cases, however, it is difficult for control protocols to rely on TLS
or ESP. An endpoint may not have a certificate or other credential to prove its
identity. The protocol might require high-speed, high-volume operation. Or,
the protocol might simply be too old to incorporate cryptography, even if it is
feasible.

In these cases there are lighter-weight measures that can help. Network
members that make requests should keep track of their pending requests and
not accept unsolicited replies. Replies should be checked for credibility, when-
ever that is possible. Most effectively, a network member can include a nonce or
random field value in a session-initiation or request packet. Subsequent packets
of the protocol must have the same nonce or random value, so that no attacker
without access to the previous packets of the session can send messages pur-
porting to be part of the session. Without the nonce, an attacker could do
something to trigger a query, then send a spurious answer to the query.

5 Packet filtering and resource replication

For packet filtering, the network infrastructure ensures that some or all packets
are forwarded through infrastructure members that perform filtering. A filter
looks for packets that satisfy its filtering criteria. On finding such packets, the
filter takes some action as an exception to or as an addition to merely forwarding
them. Packet filtering is performed by network infrastructure to defend against
the security threats of flooding attacks, subversion attacks, and policy violations.

Packet filtering expends a lot of network resources, so the detailed design of
a packet-filtering mechanism is resource-sensitive. For flooding attacks against
servers, the goal is to use filtering resources to reduce the load on server re-
sources. Because of this resource relationship, the design space of packet filtering
extends to designs that use fewer filtering resources, but instead allocate more

26



resources to the servers. With more server capacity, a flooding attack does less
damage. The network is usually involved, even in server-centric defenses, be-
cause the network can provide the service of distributing the load across servers.
This is why we consider resource replication to fit into the same general pattern
as packet filtering.

As in §4, the usual context of the discussion in this section will be a single
network of any kind, or a set of similar bridged networks all at the same level
of the layering hierarchy, for example the bridged IP networks of the Internet.
First we cover packet filtering as it is most commonly practiced today (§5.1).
The next subsection (§5.2) is mostly concerned with filtering techniques that are
not in widespread use today. Why are they interesting? Because the reasons
they are uncommon today have to do with the current moment in the flow
of technological evolution, causing certain trade-offs to be evaluated in certain
ways. Technological evolution is not finished, and plausible future changes might
make these filtering techniques attractive. Then, after a discussion of resource
replication (§5.3), we return to the compositional view, considering how packet
filtering interacts with other network mechanisms, and where it should be placed
in a compositional network architecture.

5.1 Ordinary packet filtering

5.1.1 Common packet filters

The oldest filters are firewalls, dedicated machines positioned at or near the
edges of an IP network. Their filtering criteria are Boolean combinations of
simple predicates such as destinationPort = 80 on the values of IP and IP-
session-protocol header fields. Their function is to drop disallowed packets.
For example, suppose that a firewall is intended to allow only outgoing Web
accesses, which of course require outgoing DNS queries. The direction of a
packet (inbound or outbound) can be determined from its source and destination
addresses or from the link on which it arrives. The firewall might be configured
with these four rules:

1. Drop all outbound TCP packets unless they have destination port 80.

2. Drop all inbound TCP packets unless they have source port 80 and the
TCP ACK bit is set.

3. Drop all outbound UDP packets unless they have destination port 53.

4. Drop all inbound UDP packets unless they have source port 53.

In the second rule, the ACK bit indicates that this packet is an acknowledgment
of a previous packet, meaning that it is not a TCP SYN packet.

These rules are sufficient for the purpose if all packets through the firewall
obey the TCP protocol exactly, but of course an attacker may not be so polite.
A safer approach would be to make the firewall stateful by having it maintain
a table of all ongoing TCP connections. Then the second rule above would be

27



replaced by “Drop all inbound TCP packets unless their source and destination
addresses and ports identify them as belong to an ongoing TCP session.” State-
ful firewalls are often combined with NATs (§4.4.2), because NATs sit at the
edges of networks and already maintain tables of ongoing sessions. If a firewall is
stateful, it is crucial that all packets of a session pass through the same firewall.
This property is called “session affinity.”

Figure 10 is a table summarizing some characteristics of four common types
of packet filter in IP networks. We want to stress that the classification is at least
as much historical and marketing-oriented as it is technical. The table should
not be read as prescriptive, but merely as an illustration of various options.

FIREWALLROUTER INTRUSION 
DETECTION
SYSTEM

INTRUSION
PREVENTION
SYSTEM

FILTERING
CRITERIA

predicates on IP
packet headers

drop packets

dedicated, high-
capacity machine

predicates on IP packet
headers; can have a
table of ongoing sessions

drop packets

dedicated, high-
capacity machine

any

raise an alarm, divert
packets for further
analysis

virtualized for
dynamic scale-out

ACTIONS
TAKEN

REQUIRE
SESSION
AFFINITY

CAPACITY

any

drop packets,
rate-limit packets,
refuse requests,
record packets

virtualized for
dynamic scale-out

no yes if stateful yes yes

Figure 10: Examples of common packet filters in IP networks.

“Capacity” in the table refers to filtering resources. How does a network
ensure that its packet filters themselves do not become traffic bottlenecks during
flooding attacks? Firewalls run on large machines, with capacity sufficient to
handle all their network’s traffic, even during a flooding attack.

Sometimes “routers” (the forwarders in an IP network) are also used to
filter packets because they are located on paths inside a network. Routers are
expected to work even faster than firewalls, so they do not perform stateful
filtering. Their collections of filtering rules are called “access control lists.”

For filtering that looks at packet data as well as headers, networks often use
commercial products known as “intrusion detection systems” and “intrusion
prevention systems.” The difference is that detection systems only raise alarms,
while prevention systems automatically take action against suspected attacks.
It might seem that automatic action is always better (it is certainly faster),
but there are good reasons for keeping operators and enterprise customers in
the decision loop. If a suspected attack is a false positive, much legitimate
traffic may be dropped. If an operator deploys additional resources on behalf
of an enterprise customer that is under attack, the customer will have to pay

28



for them. In rare cases, the defense against a suspected attack may even be a
counter-attack, which is wrong and even dangerous (in a military setting) if not
well-justified.

What actions are normally taken by intrusion prevention systems, other
than dropping packets? If there is uncertainty about the packets, a filter can
rate-limit them or downgrade their forwarding priority rather than dropping
them. Rather than dropping session-initiation requests, a filter could reply to
them with refusals, which would discourage retries. A refusal to a TCP SYN
(request) is a TCP RST (reset). A refusal to an HTTP request is an error code.
When filtering is being used to defend against policy violations, sometimes the
filter records packets for the purposes of investigation and legal evidence.

5.1.2 Filtering criteria

Filtering criteria choose the packets on which a filter takes action. Beyond the
simple header inspection performed by firewalls and routers, intrusion detection
and prevention systems usually look at packet data. The problem of finding
effective filtering criteria is different for the different purposes of filtering.

If the purpose of filtering is to prevent subversion attacks or find policy vio-
lations, then the filtering criteria must describe some characteristics of the sub-
version or violation. Firewall predicates describe policy violations. “Signature-
based” filters such as spam filters, virus scanners, and parental filters look for
keywords, sometimes keywords in specific positions, and other known attack
patterns. The criteria can include regular expressions matching fields of ar-
bitrary length. They can also be stateful, and check whether protocols are
being followed. These filters can be valuable commercial products because of
the intellectual property in their filtering criteria. Like all security software, to
be effective, they must be kept up-to-date. Even so, they cannot detect new
attacks.

In the common case that TCP sessions are being filtered for subversion at-
tacks or policy violations, the filter should reconstruct the correct byte stream
(restoring packet order, replacing lost bytes by retransmitted ones) before filter-
ing. If there is no reconstruction, attackers can hide attacks simply by splitting
attack data over multiple packets. Even if there is reconstruction, there may be
ambiguities exploitable by attackers. For example, if there are missing packets,
some bytes may be retransmitted and received twice. An attacker can engi-
neer the transmitted stream so that some bytes will have to be sent twice, and
place attack bytes only in the second transmission. The filter might check only
the first bytes, and the receiver might use only the second bytes. The surest
way to avoid all such ambiguities is to have a “traffic normalizer” middlebox
in the session path, before both filter and destination, to reconstruct a single
unambiguous packet stream received by both of them [21].

One advantage enjoyed by filters for preventing subversion attacks or finding
policy violations is that attackers cannot usually hide by spoofing. If the attack
requires communication in both directions, then the attacker’s source name must
usually be correct. It takes a very sophisticated attack, such as BGP hijacking

29



(§2.2.2), to get packets delivered to a spoofed source address.
If the purpose of filtering in IP networks is to prevent flooding attacks, it

must contend with the fact that packet source names can be false (the same
is true of other networks that allow spoofing, such as email application net-
works). On the other hand, at least having a false source name is a straight-
forward packet-filtering criterion, if the filter can detect it. “Ingress filters” in
IP networks check incoming packets to see if the prefixes of their source names
match expectations. This is an excellent addition to an access network, which
may have detailed knowledge of the user machines with members in it, or an
Internet service provider’s network, which knows the IP prefixes allocated to
each access network bridged with it. “Unicast reverse path forwarding” in a
forwarder accepts a packet’s source name as valid only if its forwarding table
specifies forwarding to the source name on the same two-way link on which
the packet arrived. Unfortunately reverse-path forwarding cannot be used in
the high-speed core of the Internet, because routes there are not necessarily
symmetric.

The individual packets of a flooding attack look benign, so attacks are de-
tected by means of statistical algorithms. These algorithms look for anomalies,
i.e., variations from normal patterns of bandwidth use, protocol use, and other
traffic attributes. Accurate detection of flooding attacks is difficult for many
reasons; in addition to the many ways that attackers can hide (§2.2.1), there
may be unavoidable congestion due to failures, or a legitimate flash crowd [36].
Detecting too many anomalies (“false positives”) causes collateral damage, as
many legitimate packets may be filtered out.

In general, the quality of filtering criteria is a limiting factor in the use of
filtering to handle IP flooding attacks. Consequently, some of the research on
flooding attacks aims to make filtering criteria precise by recognizing certain
packets as desirable and rejecting all other packets. We’ll call this approach
“positive filtering” because the default action on a packet is to drop it, and
matching a filtering criterion allows the packet to be delivered. In addition to
precision, positive filtering claims the advantage of preventing flooding attacks,
rather than reacting to them well after they have begun.

The limitation of positive filtering is that it only works in a constrained con-
text, where desirable packets can be recognized. For instance, Secure Overlay
Services [28] is a positive-filtering proposal for public emergencies, in which all
normal traffic is suspended and protected servers should be reached by emer-
gency responders only. Another example, Ethane [10], is intended for private
IP networks with software-defined control. An Ethane controller is a central
network member with very complete knowledge of its network, especially the
user members. For each user member the controller knows the IP and MAC
addresses, the forwarder port to which the member is directly attached, and
the user of its machine. It also has policies governing which user members can
reach which user members, the session protocols they can employ, and the mid-
dleboxes the sessions must pass through. When an Ethane forwarder receives
the first packet of a session, it sends the packet to the controller, which uses its
knowledge and policies to choose to either allow or disallow the session. If the

30



session is allowed, the controller installs a tuple for it in the forwarding table of
every forwarder in the path of the session.

In conclusion, the hardest attack target to protect is a public server, because
its job is to serve millions of previously unknown clients from all over the world,
and the business success of its enterprise depends on continuous high-quality
service.

A recent flooding attack on a number of DNS servers [15], including amplifi-
cation, generated traffic at 10-20 times normal volume, with bursts up to 40-50
times normal volume, and reportedly a maximum of 1.2 Tbps (1200 Gbps). To
provide some intuition about the resources needed to handle such attacks, the
table shows some typical capacities for servers and various kinds of packet filters.
Of course these numbers are subject to frequent change, as converting an algo-
rithm from software to programmable hardware increases its speed by a factor
of about 10, as does converting it from programmable hardware to conventional
hardware.

TYPE OF PACKET FILTER OR SERVER APPROXIMATE CAPACITY

target server

intrusion detection or prevention system
(reconstructs byte stream)

stateful �rewall (examines headers only)

IP router with access-control list

1 - 10 Gbps / core

10 - 20 Gbps / core

20 Gbps / core

100 Gbps / link

Figure 11: Data-processing capacities of common packet filters and servers.

5.2 Path-based packet filtering

Attack signature is our general term for a predicate that distinguishes packets
belonging to one attack, as best as network tools and operators are able to
diagnose it. Path-based packet filtering augments attack signatures based on
the contents of packets, as discussed in the previous section, with predicates
based on the path along which packets traveled.

There are two reasons for introducing path-based filtering, especially for
flooding attacks. The first reason is that path information can improve the pre-
cision of attack signatures, so that fewer good packets are accidentally included.
For example, say that the overall load on a server suggests a flooding attack,
and intrusion detection proposes a candidate attack signature based on packet
contents. If we know that most paths to the server are delivering a trickle of
these packets, and one path’s capacity is dominated by them, there is a good
chance that only the packets on the dominated path are attack packets.

The second reason for path-based filtering is that it may be possible to filter
out attack packets closer to their sources, which reduces the damage they do.

31



This section will discuss the trade-offs, why path-based filtering is not much
used today, and why it might be used more in the future.

5.2.1 Tracing attacks back to their sources

In IP networks, because of spoofing, the source name in a packet is not a reliable
indicator of where it came from. The purpose of a traceback mechanism is to
determine the path along which an attack packet travels. In other words, trace-
back associates path meta-data with packets. Note that the Accountable Inter-
net proposal (§4.2.1 recommends authenticated source names so that, among
other reasons, traceback is not needed.

From the viewpoint of a victim of a flooding attack, the network is a directed
acyclic graph with many possible packet sources and a single packet sink, which
is the victim. Often the graph is a tree, with the victim at the root. The interior
of the graph consists of forwarders and middleboxes, connected by links carrying
traffic toward the victim. Figure 12 shows such a graph for attack victim T . In
the figure, member names also stand for names of machines.

T

S2

S1

transit
network

access
network

of T

access
network

of S1

access
network

of S2

home
network

of S2

Figure 12: Paths from packet sources S1 and S2 to an attack victim T .

Figure 12 illustrates some distinctions that are relevant to path-based fil-
tering. The access network of a machine is the first network in all its outgoing
paths whose AA is different from the owner of the machine (assuming just for
simplicity of discussion that that there is only one such network). The access
network of a machine is significant because it is the first network that is able

32



to filter outgoing packets of the machine. Often the machine has a member of
its access network, as T and S1 do. Sometimes, however, the first network of
a machine (for example S2) is a home network whose AA is the same as the
owner of the machine. In this case the machine has separate home and access
networks.

The simplest traceback mechanism is the Internet Control Message Protocol
Traceback message. The idea is that each forwarder samples the packets it is
forwarding, with a very low sampling rate. When a packet is chosen, the for-
warder encloses the whole packet, along with the names of itself, the preceding
forwarder, and the succeeding one, in a Traceback message, and sends it to the
packet destination. The idea is that the victim or a nearby helper will recon-
struct whole paths and maintain a running view of where its packets are coming
from. In addition to cumulative overhead, the chief disadvantage of Traceback
messages is that attackers could forge them. To prevent this, the sources of
Traceback messages must be authenticated with public-key cryptography, in-
troducing significant additional overhead.

In other traceback mechanisms, forwarders mark the packets themselves with
path information as they are forwarded toward the victim. The markings allow
the victim or a helper near the victim to reconstruct the path along which
packets of an attack traveled.

The design of these traceback mechanisms entails many trade-offs. In the
remainder of this section we use representative proposals to illustrate the issues
and indicate some of the trade-offs, without declaring any particular winners.

Internet measurements from 2000 indicate that the average-length path has
15 forwarders, and 40 is a practical maximum [49]. It would take a large amount
of space in packets to represent full paths. One design allocates space in packets
to record only a single forwarder (32 bits for an IP name), and uses probabilis-
tic marking, in which each forwarder marks a packet with probability p, say
0.04 [44]. Because forwarders late in the path overwrite the marks of earlier
forwarders when they mark, the forwarders in a path can be ordered by the
frequency of their marks. The disadvantages of simple probabilistic marking
are:

• A path cannot be reconstructed until hundreds or thousands of attack
packets have been received.

• If an attack packet traverses its entire path without being marked, the
contents of its mark field is whatever the attacker put in it. The attacker
can put deceptive information in this field.

• The attack signature may very well include attack packets from more
than one source, because of botnets and coordinated attacks. In this
case simple probabilistic marking will fail, because mark frequency is not
enough information to reconstruct multiple paths.

The final IP Traceback design [44] deals with the problem of multiple attack
paths in simple probabilistic marking by encoding edges in the tree rather than

33



nodes. The resulting doubling of the space needed for marks is dealt with by very
aggressive compression techniques, primarily making each mark field contain
only a fragment of the full-size mark. This reduces the mark field to 16 bits,
but has the effect that many more packets must be received before the path can
be reconstructed. Even so, simulations show that a path of length 15 can almost
always be reconstructed after the victim or its representative has received 2500
attack packets. The disadvantages of IP Traceback include attacker deception,
as above. More importantly, the reconstructed tree of multiple attack paths
becomes the solution to a large combinatorial puzzle. The puzzle can be solved
only with data from many received packets, and only using a large amount of
memory in the component solving it.

The Pi design [49] has every forwarder (at least, within a specified path
segment) mark the packet. Because the mark encodes the entire path (or seg-
ment), the victim’s helper need only receive one marked packet to have all the
information available about the path. Deterministic marking is combined with
very aggressive compression of the mark field, again down to 16 bits. Primarily,
compression in this proposal means that more than one path can result in the
same mark. The disadvantages of Pi are:

• Marks do not have enough information to reconstruct paths, only to dis-
tinguish equivalence classes of paths (all the possible paths that happen
to map to the same mark). So marks are not helpful in locating or dis-
tributing packet filters—all the filtering must be done near the victim.

• Marking and filtering require choosing three parameters, each difficult
to choose in general and having interactions with many other factors,
including the ability of attackers to inject deceptive information.

In Active Internet Traffic Filtering [3], every packet is marked with full node
names, but usually only by the egress forwarder at the edge of the source’s
access network, and the ingress forwarder at the target’s access network. If
a source/destination pair seems to distinguish an attack, a controller in the
target’s network will request both the target-network forwarder and the source-
network forwarder to drop such packets (see below). The source-network for-
warder includes a nonce in the mark, and the controller copies it into the request,
which is how request messages are secured (as in §4.4.4).

5.2.2 Filtering upstream

In the Internet, at any given time, there is a relatively small number of targets
for active flooding attacks. To defend a target against these attacks, packet
filters can conceivably be placed in the graph of paths downstream, near the
target, or upstream, near packet sources. There are three main advantages to
placing packet filters upstream:

• If filtering is farther from the target, the damage done by attack traffic is
lessened, because attack traffic is carried for shorter distances along fewer
links. Note that the damage of a flooding attack is not limited to the

34



intended target, because traffic to many other destinations will also suffer
because of congested links.

• If a packet filter is close to sources of attack traffic, it may have more
information about the sources. The access network sees all of a suspected
source’s traffic, so attack patterns are more likely to be detectable. An
access network may also know more about the type and reputation of
its sources (device type is relevant because some operating systems and
vendor hardware are more easily penetrated than others). More precise
filtering means less collateral damage.

• Very often, attack packets are coming from a botnet, with a large num-
ber of sources well-distributed across the public Internet. So the total
amount of available filtering resources near sources greatly exceeds the
total amount of resources available near a target.

A third option, filtering in the topological core of the network, is never used
because the core is a region of high-speed links and high-speed routers handling
large numbers of packets. The required speed of filtering, and the potentially
large number of filtering rules to be checked, makes this option infeasible.

Pushback [36] is a simple scheme for reducing overall congestion by pushing
filtering upstream. At a forwarder, congestion on an outgoing link is diagnosed
when there is frequent packet loss (packets must be dropped because there is no
room for them in the link’s output queue). If a particular aggregate of packets
is responsible for a significant portion of the link’s traffic, then a predicate
describing the aggregate becomes an attack signature. The forwarder sends
upstream, on all its input links carrying packets in the aggregate, a request
to rate-limit these packets. Upstream forwarders can also request pushback
recursively, so pushback incorporates its own traceback mechanism. By rate-
limiting only specific aggregates along specific paths, pushback aims to do just
enough to protect other traffic, while limiting collateral damage.

The Active Internet Traffic Filtering proposal [3] employs upstream filtering
because it is particularly concerned with the botnet case, and with using the
many forwarders in the access networks of attackers to help filter. There are
several ways in which its basic idea (above) must be augmented to make it reli-
able and secure. First, the request and acknowledgment packets of the control
protocol itself could be used to flood a network, so they must be rate-limited.
Second, there is a set of mechanisms through which forwarders are monitored
to see if they are keeping their filtering promises, and through which filtering
can be delegated to other forwarders along an attack path.

5.2.3 Capabilities

In the long struggle to defend public servers against flooding attacks, researchers
have explored an alternative approach based on “capabilities” (a capability is
an unforgeable record showing the rights of the bearer). The idea behind capa-
bilities is that no source should be able to send Internet packets to a destination
unless the destination has already approved the transmission.

35



As applied to the protection of a public server accessed through TCP, the
TCP SYN is interpreted as a send request to the destination. Unless the source
is already on a blacklist, the server will grant permission to send a limited
number of packets in a limited period of time, and reply to the SYN with a
capability attesting to the permission. The sender includes the capability in
subsequent packets, and forwarders on the path enforce the capability policies.
The destination can grant permission for more packets later, if they are needed
and the source has been well-behaved. Packets with no capabilities, expired
capabilities, or incorrect capabilities may be delivered, but with the very lowest
priority.

An example of this approach is the Traffic Validation Architecture [50]. The
architecture includes elaborate mechanisms to ensure that capabilities cannot
be forged by attackers, and cannot be transferred to other attackers. It includes
mechanisms to reduce the amount of space needed in packets for capabilities,
which can be considerable. It also has mechanisms for reducing the amount of
state in forwarders required to implement the security measures and to track
packets sent and time elapsed.

The principal problem with capabilities is session requests, which cannot be
controlled with capabilities and can be used on their own to create flooding at-
tacks. The Traffic Validation Architecture handles this problem by rate-limiting
request packets to 5% of the total volume. It can be shown, however, that this
just turns a flood of request packets into a denial-of-capabilities attack, in which
legitimate senders cannot get their requests through [4].

5.2.4 Filtering downstream

The advantages of filtering upstream are balanced by two major disadvantages:

• Upstream networks may not have sufficient incentive to use their resources
to protect targets that are remote from them. It has been argued that
networks under attack might be more willing to accept incoming pack-
ets from cooperating upstream networks, which will give the users of the
upstream networks better service [3]. Historically, however, cooperation
between networks with different AAs has been scarce [20].

• Even if source networks are willing to cooperate with target networks, the
necessary coordination is not easy. Previous sections have illustrated many
forms of overhead and many security vulnerabilities introduced by the
coordination, and we have not even yet mentioned the issue of backward
compatibility.

The proposals for moving filtering toward the sources of attack traffic date
from the early 2000s. In the 2010s cloud computing advanced so far that it
altered the evaluation of trade-offs decisively. Now almost all packet filtering
is performed on behalf of the access networks of attack targets. It is usually
performed in clouds, with the filters running on virtual machines, so the number
of filters can expand and contract with fluctuations in load. The same routing

36



flexibility used in clouds to allocate more virtual machines to a task can also
be used to deploy sequenced filters. With sequenced filters, packets that sim-
ple filters find suspicious can be deflected to complex filters for more detailed
screening.

At this moment the reader might be wondering why we went through all the
detail of §5.2.1 through §5.2.3 if most of it is irrelevant today. The point is that it
was made irrelevant by technology changes that altered the evaluation of trade-
offs, and technology changes in networking are not finished. Future changes
could easily make old solutions interesting again. Here are three examples:

• If the Internet evolved to offer more paths with reserved bandwidth for
real-time applications, then capabilities might be an excellent approach to
securing the use of reserved paths.

• As individual IP networks grow in size and geographical scope, it will
become more common for both the upstream and downstream segments
of a path to an attack target to be controlled by the same AA. If so, then
the administrative barriers to upstream filtering will disappear.

• Most traceback proposals require IP forwarders to perform new functions—
marking and filtering packets in new ways. The logic in most IP forwarders
has been and still is fixed in the factory. Now that programmable for-
warders are coming into more common use, it will become much easier for
network operators to experiment with traceback and other such schemes.

5.3 Resource replication

Just as cloud computing has made filtering near attack targets scalable and
therefore attractive, cloud computing has also made it feasible to defend against
flooding attacks by replication of user resources. When a service is under attack,
it can quickly be granted more virtual machines.

It is even better if resource replicas are geographically distributed, so that
some replicas can be reached when other parts of the network are too congested.
Because attacks on DNS servers are so common and damaging, it is especially
important to have distributed authoritative DNS servers for popular domain
names. Queries are distributed across the replicas by means of IP anycast. If
there are five replicas sharing the load and one has been overwhelmed by an
attack, IP anycast may not be dynamic enough to redirect queries away from
the failed replica, but at least queries directed by anycast to the other four will
succeed. In Figure 13 there are three authoritative DNS servers for the domain
example.com; IP anycast directs the client’s query to the closest one.

A “content-delivery network” provides many replicas of its customers’ con-
tent, geographically distributed so that the latency of content delivery to each
client is minimized. In Figure 13 the authoritative DNS servers for customer
domain example.com are aware that its content is available at servers A through
D, and also maintain information about location and recent performance of the

37



client

author.
DNS

author.
DNS

author.
DNS

request
(example.com)

server
A server

B

server
Cserver

D

reply =
server D

content request

Figure 13: Resource replication in a content-delivery network. All member
labels symbolize IP addresses, so the three DNS servers have the same address.

servers. So each DNS server can return to a client the IP address of the best
content server for it to contact.

Replication of service resources is easiest when servers are responding to
queries based on fairly static data. When queries can update service data, the
service implementation must do extra work to keep the data replicas in some
adequate state of consistency. (The study of distributed computing has pro-
duced many algorithms for replicated data, satisfying many different definitions
of consistency.) In some cases dynamic data can be distributed across multiple
sites more easily by sharding, e.g., by partitioning the keys of a key-value store
so that each site is responsible for a subset of the keys. No one key-value pair
will be replicated, but the total resources available will be greater, as will the
expected availability of an arbitrary key.

Another way that a distributed system or service using a network can protect
itself against flooding attacks is by reducing the amplification factor on which
flooding attacks depend. For example, It has become common for servers to
defend themselves against SYN floods (§2.2.1) with “SYN cookies.” In this
defense, the server returns a SYN+ACK packet with a specially-coded initial
sequence number (the cookie). It then discards the SYN, using no additional
resources for it. If the SYN was an attack, it has not been amplified. If the
SYN was legitimate, on the other hand, it will elicit an ACK from the initiator
with the same initial sequence number incremented by one. By decoding the
sequence number, the server can reconstruct the original SYN and then set up
a real TCP connection.

There is another self-defense against SYN floods that is less efficient than
SYN cookies, but comes with fewer side-effects (see §5.4.4). This defense uses
a middlebox in the path to a Web server that stores and responds to SYN
packets, but does nothing else with a SYN packet until it receives the ACK that

38



completes the handshake. On receiving the ACK, the middlebox forms a new
session by sending the SYN to the server, and subsequently acts as a transparent
forwarder between the two sessions. If the middlebox does not receive a timely
ACK, then the SYN packet was part of an attack or the client has failed, so the
middlebox drops it.

For another example of service self-protection, a flood of DNS queries is
amplified when servers query other servers. A very effective defense against
these attacks is longer times-to-live for cache entries, perhaps 30 minutes, in
recursive and local DNS servers [38]. If local entries are cached longer, there
will be fewer queries and retries made to authoritative servers. There are many
good reasons for DNS cache entries with short times-to-live, but these can be
changed as an adaptive measure during attacks. The same idea would work for
many other services with caching.

5.4 Interactions between packet filtering and other as-
pects of networking

5.4.1 Routing

For a filtering tree or graph (as in Figure 12) to work correctly, all packets
destined for the protected target must pass through one or more forwarders or
middleboxes acting as filters, in accordance with the intended design. This is the
province of routing, which populates the forwarding tables used by forwarders.
Routing is performed in several different ways—sometimes by a distributed al-
gorithm that forwarders run among themselves, and sometimes by a centralized
algorithm running in a separate controller.

Routing packets through a filtering tree may seem straightforward, but there
is a different tree for each destination, and routing algorithms are also concerned
with reachability, performance, fault-tolerance, and other policy constraints.
For this reason, there has been considerable research on verifying that forward-
ing tables are correct, or on generating them correctly, where the correctness
criteria include “waypointing” constraints about steering packets through filters
[6, 7, 16, 27, 35].

Another issue that complicates routing through a filtering tree is the fact
that many packet filters require session affinity—all the packets of a session, in
both directions, must go through the same filter. Wide-area routing frequently
creates different paths for packets traveling in different directions between the
same two endpoints. Even packets traveling in the same direction may be spread
across multiple paths because there has been a failure in one of the paths, or a
need for better load-balancing. Within a cloud, where many virtual machines
are running the same filtering software for scalability, a session can be assigned
to any virtual machine. The assignment must be remembered, however, so that
all packets of the session are steered in the right direction. Shortcuts such as
“assign a session to one of four virtual machines based on the last two bits of
some identifier” work well in static situations, but fail when filtering resources
must be scaled up or down because of fluctuations in load.

39



5.4.2 Layering

Almost always, a packet arriving at a machine is being transmitted through
multiple layered networks simultaneously, for example an Ethernet LAN, an IP
network, and an application network. Figures 1 and 2 combined illustrate this
simple example. Amplification of a flooding attack, or damaging processing of
a malware packet, can take place at any of these levels. Filtering can also take
place at any of these levels.

The simple case is not necessarily the most common today. Layered between
the application network and the IP network there is often a virtual private
network (§6.2.2). If the machine is actually a virtual machine in a multi-tenant
cloud, there is sure to be at least one network between the tenant’s IP network
and the LAN, with the job of sharing cloud resources among all tenants.

In this section we discuss two interactions between packet filtering in a net-
work (or layer of bridged networks) and layering. The first interaction concerns
networks below the filtering network in the layer hierarchy, and the second in-
teraction concerns networks above the filtering network.

Imagine that you have designed a filtering mechanism within a network,
and proved that it is correct. Your proof concerns (among other things) paths
in the network to a potential attack target, and shows that routing places an
appropriate packet filter in every path.

Whether you remembered to state it or not, your proof that no (or a limited
number) of attack packets reach the target depends on the assumption that
attack packets do not suddenly appear inside the perimeter of packet filters. It
is easy enough to check that the network members inside the perimeter are part
of the network infrastructure and therefore trusted, but what about the links?
It must be ensured that no packet is received on trusted link that was not sent
on the link. If the link is implemented rather than physical, it must be proved
that the implementing network does not inject packets into the implementation
of the link.

This might seem like a fanciful concern, but it is not. It is easy to make a
penetrated Ethernet inject packets into the links of networks layered on it [30].
In a multi-tenant cloud, the links of a tenant’s network (where the filtering will
take place) are virtual links implemented by sessions in the lower-level network
that shares resources among tenants. If the cloud network does not isolate
tenants properly, then packets sent by virtual machines of a different tenant
could be delivered as part of this tenant’s sessions.

The second issue concerns layers in the architecture above the network where
filtering takes place. It is common to deploy IP-based intrusion detection sys-
tems that look into IP packets for attack signatures at the application level, for
example signs of application malware at particular locations in TCP payloads.
These systems are assuming there are no networks layered between the filtering
network and the application network. If there are additional networks, then the
filtering criteria will be useless. The ideal solution to this problem would be to
filter packets separately in each network, with each filter being attuned to the
protocols, vulnerabilities, and configuration of its particular network at its level

40



in the layer hierarchy. It should be possible to optimize network designs so that
filters at multiple levels are frequently located on the same machines.

5.4.3 Cryptographic protocols

A middlebox is a network member—other than a forwarder—in the path of a
session. Packet filters are middleboxes. Most middleboxes are infrastructure
members of a network, performing a wide range of useful functions for perfor-
mance optimization and interoperation as well as security.

There is a profound interaction between cryptographic protocols and packet
filtering in a network. If a user session is encrypted, then middleboxes in general,
and packet filters in particular, cannot read anything in the session packets
beyond their headers.

First we cover the interested parties, their powers, and how their powers
interact. Later we present specialized techniques for managing the interaction
in cooperative cases.

Interested parties and their powers

Because all the parties interested in a user session have different powers, we
can think of their interactions as a game, one instance of which is illustrated by
Figure 14. At the top of the figure we see what the initiating user can do. It
chooses the acceptor of the session, and if the acceptor cooperates, the data of
the session will be encrypted end-to-end.

encrypted
acceptorinitiator

for
perfor-
mance

against
users

against
users

against
users

for
acceptor

NETWORK
MIDDLEBOXES

MALICIOUS
USERS

A B

C

D E

initiator’s region acceptor’s region

Figure 14: A game: cryptographic protocols versus packet filtering.

At the second level of the figure, we see what the network can do. The
network has the power to insert middleboxes anywhere in the path of the user
session, simply by routing session packets through them. The figure shows some
common middleboxes, inserted in likely places, which are often in regions of the
session path near the two endpoints. A middlebox might have the purpose
of enhancing performance, for example by caching or compression (B). For
maximum effectiveness, it should be placed near the initiator, as shown. A
middlebox might be a packet filter, with the purpose of protecting the acceptor

41



from subversion attacks or policy violations that might damage it (E). This
middlebox will probably be placed near the acceptor. Finally, the network
might insert packet filters that are working against the interests of the initiator
and acceptor, either by preventing them from violating policies, or by spying on
or tampering with their communication (A and D). These middleboxes might
be placed in either region.

At the third level of the figure, we see that other malicious users can also
insert middleboxes in the path by various techniques such as wiretapping, for
the purposes of spying and tampering (C). Fortunately, physical security and
security mechanisms in other networks constrain such attacks. In the illustrated
example, a malicious user is able to eavesdrop in the middle of the session path,
but not near the endpoints.

It may be that encryption will prevent all five middleboxes from achieving
their goals. Middleboxes B and E may be the easiest to help, because the goals
of the middleboxes coincide with the interests of the users (see below).

For middleboxes D and E, the network could introduce another middlebox
that will act as endpoint for the initiator’s TLS session. A middlebox that
is a session-protocol endpoint is called a proxy. The proxy would accept the
initiator’s TLS session and make a TCP session between itself and the original
acceptor. The proxy would decrypt packets from the initiator and send their
contents in plaintext packets to the acceptor, so they could be read by any
middleboxes in the path of the TCP session. If the proxy is placed before D,
then both D and E will be able to do their jobs.

In all cases middleboxes A and C will be prevented from achieving their
goals, unless they can achieve them by reading headers alone.

Cooperative encryption

If network middleboxes are working on behalf of the user endpoints of an
encrypted session, and if they need to read data to do their work, then the
cleanest arrangement is to make the middleboxes part of an application-oriented
overlay network. This is illustrated by a SIP network in Figure 9. In the figure,
data traveling on the links of the SIP network is encrypted by TLS in the IP
networks, but each middlebox in the SIP network receives and sends plaintext.

If network middleboxes must belong exclusively to general-purpose IP net-
works, then another possible approach is represented by Middlebox TLS (mbTLS)
[40]. In this approach all middleboxes must be proxies, and they create a session
consisting of an end-to-end chain of simple TCP sessions. Along the chain from
initiator to acceptor, there is first a set of middleboxes inserted on behalf of the
initiator, followed by a set inserted on behalf of the acceptor (see Figure 15).

Within the end-to-end chain of TCP sessions, the initiator and acceptor first
have a normal end-to-end TLS handshake for endpoint authentication and key
exchange. Then each middlebox initiates a secondary TLS handshake with the
next element in the direction of its sponsoring endpoint. For example, if there
are two middleboxes M1 and M2 inserted on behalf of the initiator, M2 initiates a
secondary handshake with M1, and M1 with the initiator. The secondary hand-
shakes exchange symmetric and authentication keys for the individual simple

42



TCP session TCP session TCP session

TLS handshake 1

TLS handshake 2TLS handshake 2

initiator
endpoint

initiator’s
middlebox

acceptor
endpoint

acceptor’s
middlebox

Figure 15: Control signaling to set up an mbTLS session.

sessions. They can also perform endpoint authentication of middlebox identity
(in this case the responsible owner), software version and configuration, security
properties of the hardware/software platform, etc. This makes sense because
the middleboxes associated with each endpoint are working in cooperation with
it, even if they have an adversarial relationship with the middleboxes of the
other endpoint.

After the secondary TLS handshakes, data is transmitted. In each middle-
box data is decrypted, processed as plaintext by the middlebox application code,
then encrypted again for the next hop. Note that the “midpoint” simple session
between initiator and acceptor middleboxes has no secondary handshake; in this
simple session, the keys chosen by the primary TLS handshake are used. An ear-
lier version, Multi-Context TLS [41], allowed the endpoints to place constraints
on the read/write access of middleboxes.

The third approach is based on new results in cryptography. At one extreme,
fully homomorphic encryption [18] makes it possible to compute any function
on encrypted data without learning more about the data than the function’s
value. Although fully homomorphic encryption is currently impractical (it is
too expensive computationally, by orders of magnitude), there are less capable
algorithms for computing functions on encrypted data with performance that
may be feasible for current use.

BlindBox [47] is a proposal for allowing middleboxes to operate on encrypted
data. BlindBox middleboxes can apply detection rules of the kind commonly
used by virus scanners, intrusion-detection systems, and parental filters. These
rules often identify keywords and other exact strings at particular positions
in the data, which the middleboxes can search for. The scheme also allows a
middlebox that has found a keyword or other suspicious string, as probable
cause of a security violation, to decrypt the entire packet.

BlindBox is implemented as an extension of TLS. In addition to the basic
TLS handshake, endpoints must generate extra keys. The data must be sent
end-to-end twice (redundantly), once in the ordinary TLS form and once in a
reformatted and re-encrypted form suitable for the Blindbox algorithms.

The biggest overhead incurred by Blindbox is due to rule preparation, be-
cause the middlebox must have the rules themselves encrypted with a session-
dependent key. The endpoints must not know the rules (this would make them

43



easier to evade) and the middlebox must not know the key (otherwise the guar-
antee of confidentiality would be lost). So who can encrypt the rules? For
every keyword in every rule, both endpoints must generate and transmit to the
middlebox a special encryption function that incorporates yet obfuscates the
session-dependent key. The middlebox must first check the two for agreement
(in case one of the endpoints is insecure) and then apply the encryption function
to the rule. This results in very high performance overhead, which means that
Blindbox is currently practical only for long-lived sessions or small rule sets.

Although both Middlebox TLS and Blindbox are promising efforts, it seems
clear that their complexity and non-uniform communication among participants
are weaknesses. Complexity itself is a security vulnerability, because it provides
a larger “attack surface” for adversaries to probe.

5.4.4 Session protocols

There is a general problem affecting all protocols of the IP protocol suite: When
a new network feature requires additional information in packets, where can the
information be put? Inventors do not wish to increase packet size, and want
their proposals to have backward compatibility. So they generally choose to
fit their information into some “unused” field in current header formats. For
example, both IP Traceback [44] and Pi [49] squeeze traceback information into
the 16-bit identification field in the IP packet header. The original use of this
field is to group fragments of a fragmented packet so they can be re-assembled
at their destination. It is declared “unused” on the grounds that fragmentation
of IP packets is now rare.

The irony of such proposals is that so many new features and protocol vari-
ations use the same “unused” fields. At the same time, inventors of other
new functions have no compunction in deleting this “unused” information from
packets when it is convenient. For example, a server using SYN cookies (§5.3)
effectively drops all optional information in TCP SYN packets, which means
that any network feature relying on extensions to TCP is disabled. Note that
many servers using SYN cookies are Web servers, and many new features relying
on extensions to TCP (such as Multipath TCP [42], just to name one example)
have improved Web access as a major use case.

For those who harbor hope that the Internet will be better in the future,
even if the improvements are not backward-compatible, we believe that the right
solution to such problems is a generalized mechanism for composition of session
protocols. This mechanism would build on the structures of Figure 6. If all ses-
sion protocols could be composed freely, then all new features requiring space
in packets could be introduced—without fear of interference—as new, compos-
able session protocols. For instance, just as TLS is composed with (embedded
in) TCP, TCP could be composed with (embedded in) Multipath TCP. TCP
would control transmission of byte streams along individual paths, while Mul-
tipath TCP would coordinate the multiple byte streams. As for increases in
packet size, there are already well-established techniques for handling packets
that exceed the maximum packet size of a network.

44



6 Compound sessions and overlays for security

Like cryptographic protocols, compound session and overlays are mechanisms
employed by users to defend themselves against spying and tampering attacks.
Cryptography alone is not sufficient because it does not conceal packet headers
(§2.2.4).

The focus of this section is on middleboxes. So far the middleboxes we have
seen are infrastructure members of a network, and are inserted into session paths
by means of routing. Most importantly, packet filters are middleboxes.

It is also possible for a user member initiating a session to insert another
user member into the session path as a middlebox. To do this, the initiating
user must give the name of the middlebox as the destination name of its out-
going packets, as shown in Figure 16. The middlebox must learn the initiator’s
intended destination, for example by getting it from the payload of the session-
initiation packet. Then the middlebox changes the headers of the packets it
receives (source becomes its own name, destination becomes the initiator’s in-
tended) and sends them out. A middlebox that behaves in this way is called a
joinbox. Each joinbox accepts a session, initiates another session with a different
header, remembers the association between the two sessions, and relays packets
between them. A compound session is a chain of simple sessions associated by
joinboxes in this way.

initiator joinbox acceptor
A CB

src = B, dst = Csrc = A, dst = B

Figure 16: A compound session with two simple sessions.

A compound session can have more than one joinbox (as an example of how
to do this, the session-initiation packet can contain a list of joinboxes to visit,
ending with the final destination). Because of the names in forward packet
headers, return packets naturally pass through the same joinboxes in reverse
order, and have their headers re-translated in reverse order.

The behavior of a joinbox is not limited to the behavior described above.
In particular, often a joinbox is also a proxy (session-protocol endpoint) as
introduced in §5.4.3. If a joinbox is also a proxy, it can get the name of the
next joinbox or acceptor by using the session protocol to engage in a dialogue
with the initiator. If a joinbox is also a proxy, it can perform other kinds of
computation on packets, even translate from one session protocol to another, so
packets in its two associated simple sessions need not correspond one-to-one.

The security significance of compound sessions is that each simple session has
a different header, so compound sessions can be employed by users to obscure

45



header information (which is why they are complementary to cryptography).
In Figure 16, an observer between A and B cannot observe the true acceptor
of the compound session, at least from packet headers alone, and an observer
between B and C cannot observe the true initiator of the compound session.

Spying and tampering attacks can be launched by other user members of a
network (authorized or unauthorized), and, most importantly, by infrastructure
members of a network performing packet filtering. Thus the entire topic of this
section can be seen as an interaction between two patterns, namely compound
sessions and packet filtering.

We can think of this interaction as a game. Within a network in which
there is packet filtering, the user tries to evade filtering by creating a compound
session such that the simple session routed through a filter has a header ob-
scuring the relevant information. For example, if there is a destination-sensitive
filter between A and B in Figure 16, it will not see the true destination of the
compound session. The network tries to prevent this, either by detecting join-
boxes and blocking all traffic to them, or by placing filters in all simple sessions.
The game becomes much more interesting when a compound session traverses
bridged networks, because some transit networks may be friends of the initiating
user, while others are friends of the initiator’s access network. Considering all
the transit networks, and all their user members acting as joinboxes, the game
has many interested parties—some being adversaries of each other, and some
cooperating with each other.

Compound sessions are useful in many situations, but they have some limita-
tions. After covering compound sessions, we will introduce overlays for security.
These use explicit layering to create implicit compound sessions, and can do
more for users than compound sessions alone.

6.1 Compound sessions

6.1.1 Joinboxes in access networks

Perhaps the oldest example of a joinbox for evading packet filtering is an “ap-
plication gateway,” which is installed in a private IP network for the benign
purpose of evading the too-simple filtering imposed by the firewall. For exam-
ple, an enterprise firewall may block all outgoing sessions except Web accesses.
However, the enterprise may also wish to allow outgoing sessions of another
kind, when they are initiated by specific users. The firewall cannot enforce this
policy because it does not know the mapping between internal IP names and
users (and the mapping may not even be static).

An application gateway for the application, for instance Telnet, solves this
problem, as shown in Figure 17. To use it, a user initiates a Telnet session to
the application gateway inside the enterprise network. The gateway is a Telnet
proxy, as well as a joinbox. By means of an extension to the Telnet protocol,
which is embedded in TCP, the user supplies a password to authenticate himself
to the gateway, and also the name of the real Telnet acceptor. The gateway
initiates a Telnet session to the real acceptor outside the enterprise network,

46



and joins the two simple sessions in a compound session. The enterprise firewall
allows outgoing Telnet sessions from the application gateway only.

initiator Telnet
gateway acceptor

V PGW

private IP network public Internet

src = V, dst = GW,
dstPort = 23

src = GW, dst = P,
dstPort = 23

compound TCP session

�rewall

Figure 17: A Telnet application gateway inside the access network of V .

In this example, the AA of the enterprise network is cooperating with the
user by providing the gateway. For the AA, it is easier and more efficient to
provide the required user functions with an application gateway than with a
greatly-enhanced firewall.

In a similarly cooperative situation, the AA of a private network might
provide a proxy (with a public name) that session initiators outside the network
can connect to. The proxy authenticates the initiator as deserving the rights
of members of the private network. Then, through the proxy, the initiator can
connect to any member of the private network.

6.1.2 Joinboxes in transit networks

A user can evade filtering in his access network more easily by connecting to
a friendly joinbox in another network. This will be illustrated by the use of a
joinbox/proxy to reach a Web server. This kind of proxy is sometimes called a
“virtual private network.”1

In Figure 18 a secure dynamic link in a Web-based application network
is implemented by a compound TLS session in bridged IP networks. First the
browser’s request causes initiation of a proxied TLS session with a friendly proxy
outside the client’s access network. A proxied TLS session is like a normal TLS
session except that: (i) instead of looking up the domain name dangerous.com
and using its IP name as the destination of the session, the client’s IP interface
uses the proxy’s IP name as the destination of the session; (ii) the client’s IP
interface expects and verifies the certificate of the proxy, not the Web site; (iii)
the proxy decrypts the HTTP request in the TLS data, looks up the domain
name, and uses the result of the lookup as the destination of an outgoing TLS
session. After this the proxy relays packets between the two simple sessions of
the compound TLS session (note that the proxy must decrypt and re-encrypt
the data in each packet, because symmetric keys in the two simple sessions are
different).

1Calling a proxy a network is a misnomer. See §6.2.2 for the real thing.

47



[browser] dangerous.
com

Web-based
application

 network

client
joinbox
/proxy server

client’s
access network

public
Internet

dynamic link

HTTP session

client’s
machine

server’s
machine

proxied
TLS session

TLS session

src = client, dst = proxy src = proxy, dst = server

Figure 18: A proxied TLS session protects the client’s privacy in his access
network, and provides anonymity at the Web server.

Because of the compound session formed by the proxy, the client’s access
network does not know what server the client is connected to, so the client has
privacy from spying and tampering in his access network. The client also has
anonymity at the server, because the server has no information about the client.

One disadvantage of this mechanism is that the client has no privacy from
the proxy. Another disadvantage comes from the fact that the names of helpful
proxies are usually publicly available (so users can find them), which means that
they are available to the user’s adversaries as well. Consequently, if the clients’s
access network is censoring the network activity of its users, it can simply block
packets addressed to external proxies. These disadvantages are addressed in
subsequent sections.

The proxy in Figure 18 is specialized to handle TLS sessions. There can
be proxies for other session protocols as well. For example, a “recursive” DNS
resolver is just a proxy for the simple request/response session protocol used for
DNS lookups. ODNS [45] is a proposal for improving the privacy of users doing
lookups by introducing a proxy between local DNS resolvers and authoritative
resolvers.

To introduce the proxy, as shown in Figure 19, the user appends—to the
domain name it intends to send in its request—the extra high-level domain name
.odns. This will cause a local DNS resolver to send the request to an ODNS
proxy. To conceal the true desired domain D from the local DNS resolver, the
user generates a symmetric key k, encrypts D with k, and encrypts k with the
public key K of ODNS proxies. A concatenation of these two values is the
domain name it sends in its request. The ODNS proxy decrypts with its private
key to get k, and then decrypts with k to get D. After getting a response from
an authoritative server for D, with an IP name N for D, it encrypts both D
and N with k, and sends them in a response to the local DNS resolver. As a

48



result of this design, the local DNS resolver will not know what domain name is
being looked up, and the ODNS resolver will not know the identity of the user.

authoritative
resolver

ODNS
resolver

local DNS
resolver

user

request
[ k( D ) K( k ) .odns ]

request
[ k( D ) K( k ) .odns ] request [ D ]

response
[ D, N ]

response
[ k( D ), k( N ) ]

response
[ k( D ), k( N ) ]

Figure 19: Oblivious DNS lookup for user privacy.

6.1.3 Deflection

The problem that a censoring access network can block packets to known prox-
ies has been addressed by several similar proposals [24, 26, 48]. They all use
joinbox/proxies, but in a way that still works despite the blocking.

A typical compound session in these proposals is shown in Figure 20. The
access network of the session initiator is filtering out packets from users to
certain destinations, represented here by the “covert destination.” The initiator
cannot evade this censorship by using a false source name, because then replies
from the destination will not be delivered to the initiator (also, the network may
be blocking everyone’s access to the site). The critical mechanism is that session
packets are routed through a friendly network where a forwarder recognizes that
the packets must be treated specially, and deflects them to a proxy similar to
the proxy in Figure 18.

overt
destination

covert
destination

joinbox
/proxy

de�ecting
forwarder

censoring
�lter

initiator

simple session between initiator and proxy

censoring
network

1. simple session between
proxy and overt

2. simple session between
proxy and covert

friendly
network

Figure 20: A deflected compound session between an initiator and a covert
destination. In the simple session on the left, names in the IP header are those
of the initiator and overt destination; packets from the initiator are deflected to
the proxy as an exception to normal forwarding.

For deflection to work, the initiator must give a hidden signal to the de-
flecting forwarder—one that the censoring network is unlikely to recognize—so

49



the deflecting forwarder knows which packets to deflect. In Cirripede [24], the
user registers with the friendly network; while the registration is active, all ses-
sions initiated by the user are deflected. In decoy routing [26], this is done on
a session-by-session basis. Decoy routing assumes that the initiator and proxy
share a secret key, from which a set of nonces can be generated. As a hid-
den deflection signal for a session, the initiator places a generated nonce in a
pseudo-random field of the first TLS message.

The TLS-based session protocol between the initiator and the proxy is com-
plex. When the proxy first receives session packets, it initiates a TLS session to
the overt destination. The TLS handshake is completed end-to-end between ini-
tiator and overt destination, so that all packets (including a certificate in plain-
text) look normal to the censoring network. Once packet data can be encrypted,
the proxy signals to the initiator that it is in the session path, terminates the
session to the overt destination, gets the name of the covert destination from
the initiator, initiates a session to the covert destination, and relays packets
between the client and covert destination. During the entire compound session,
the packets seen by the censoring filter will have the overt destination in their
source or destination field.

The final problem to be solved is the placement of deflection forwarders
in friendly networks. This can be viewed as a game between the censoring
network (and its friends) and the session endpoints (and its friends). The AA of
the censoring network would like its outgoing packets to reach all or most of the
public Internet without passing through a network with deflection forwarding.

The Cirripede proposal favors deflection forwarders in networks close to the
censoring network, so that many paths from the censoring network go through
friendly networks, and the censoring network would suffer too much if it stopped
bridging to friendly networks. The decoy routing proposal favors widespread
deflection forwarders, in particular, in friendly networks close to a variety of
important overt destinations. This way an initiator in the censored network
can try several overt destinations until it finds one with deflection in the path,
which it knows when the proxy signals its presence after the TLS handshake.
In this game BGP inter-network routing helps the endpoints more than the
censoring network, because it gives the censoring network only a single route to
each destination.

The rules of this game may change in the future: new versions of the Internet
may give path-selection control to user members of networks, and there may be
explicit associations among sets of cooperating networks, both of which are
recommended by the SCION project [5]. Both now and in the future, when it
comes to security contests, it matters who (and where) your friends are. Social
forces will shape the Internet in their image, by defining its interest groups and
alliances.

6.2 Overlays

An overlay is a virtual network layered on top of an underlay network (§3.2).
We will first summarize the differences between overlays and compound sessions,

50



then show their use in three security designs.

6.2.1 Overlays versus compound sessions

Figure 21 shows a prototypical overlay session whose links are implemented by
sessions in one or more bridged underlay networks. All four machines belong to
user members of their underlay networks. From the viewpoint of the underlay
networks, this looks very similiar to a compound session with three simple ses-
sions connecting user members. Yet the sessions in the underlay are completely
independent of one another (b and c are not joinboxes), and the overlay offers
additional structures that are often useful, as follows:

• The overlay has its own namespace. Overlay names can be the same as
in the underlays, but new names can be used for multiple purposes. For
example, a member of a private IP network with a private, unreachable
name can have a public, reachable name in an overlay.

• The overlay has its own routing. Overlay routing can insert application-
specific middleboxes. In security designs, routing in an overlay is often
used to vary and conceal packet paths.

• The overlay has its own (geographical) span. It can unite allies in remote
underlay networks.

• Sessions in the overlay and underlays have different durations. Overlay
links—implemented by underlay sessions—are often long-lived and reused
by many overlay sessions, which minimizes setup time and computational
overhead (as in §4.4.1).

overlay
 network

underlay
 networks

a b c d

initiator forwarder forwarder acceptor

src = A, dst = B

src = a, dst = b src = b, dst = c src = c, dst = d

A B C D
link

implemented
by

session

Figure 21: A prototypical overlay session.

6.2.2 Virtual private networks

Strictly speaking, “virtual private networks” (VPNs) are not networks, but
rather a technology for widening the geographic span of a private IP network

51



such as an enterprise network. With VPN technology, an enterprise network is
composed with other public and private IP networks in two ways simultaneously:
(i) as usual, it is bridged with them, and (ii) it is layered on them, because
some links of the enterprise network are implemented by sessions spanning other
public and private IP networks. These relationships are illustrated by Figure 22.

enterprise
machine

employee
laptop

compute
client

VPN
 interface

IP interface NAT box IP interface

VPN server IP interface

compute
server

enterprise
machine

V5

PSPNAT

V4 V8

forwarder

private IP network in a co�ee shop public Internet

enterprise network

enterprise network

src = V5,  dst = V8

src = PNAT,  dst = PSscrc = V2,
dst = PS

TCP session

compound ESP session

secure dynamic link

V2

Figure 22: An enterprise network using VPN technology. A secure dynamic link
in the enterprise network is implemented by an ESP session in tunnel mode.

In the figure, there is a TCP session between an enterprise machine and
an employee laptop currently located in a coffee shop. The enterprise-network
member on the laptop is described as a “VPN interface,” because it is an IP
interface plus VPN client. Before initiating the TCP session, it must first create
a secure dynamic link to a VPN server in the enterprise network. To create the
dynamic link, the laptop’s VPN interface requests that its IP interface make
an ESP session (§4.3.2, §4.4.2) to public IP address PS, which is part of its
configuration. The employee must also enter a password to authenticate his
identity to the VPN server. The ESP session happens to be compound, because
it goes through a NAT box (a joinbox) in the coffee shop’s private IP network.

Viewed as an overlay network, the enterprise network uses VPN technology
to allow a laptop in an insecure location to participate fully in the enterprise
network. Most importantly, the VPN server assigns the laptop’s member the
name V5 in the network’s private namespace. This name can be chosen ac-
cording to the privileges the laptop’s owner has within the enterprise network.
Consequently, packet filters in the enterprise network can see from the source
and destination fields of packets which policies should apply to the laptop’s

52



sessions, and enforce them accordingly.

6.2.3 Overlays for positive filtering

In §5.1.2 we introduced positive filtering (filtering in which the default action
on a packet is to drop it) as an interesting technique with limited applicability,
because of the difficulty of finding precise filtering criteria. Positive filtering is
similar in spirit to capabilities, introduced in §5.2.3, but it turned out that denial
of capability is as much of a problem as denial of service. Several researchers
have explored whether the properties of overlays can be exploited to make a
success of positive filtering.

In both Mayday [1] and Secure Overlay Services (SOS) [28], the initiator
of a session is authenticated, and session packets are not transmitted unless
authentication succeeds. To understand these proposals, it is best to imagine
the perspective of an access network AA trying to protect a Web server within
the network from flooding attacks. The obvious problem with authentication
at the edge of the access network is that the authenticators are a limited re-
source, easily overcome by denial-of-capability attacks. Mayday and SOS use
overlays to extend the geographical span of the access network, enlisting allies
all over the public Internet to perform authentication. The authenticators are
the overlay ingress nodes in Figure 23. The idea is that there can be enough au-
thenticators, dispersed widely enough, to resist flooding and denial-of-capability
attacks. Even though the authenticators can be way upstream of the protected
target, this is different from upstream filtering (§5.2.2) because the authentica-
tors are user members of the IP networks in which they reside, not infrastructure
members.

protected
target T

�lter �lter

overlay
egress

overlay
egress

overlay
ingress

overlay
ingress

source
S1

source
S2

T’s  access
network

Figure 23: A network graph of Internet members involved in overlay-based
positive filtering. The members named in red are on overlay machines, i.e.,
their machines also have interfaces to the overlay network. The paths in red are
the only Internet paths to the protected target.

The general idea of Mayday and SOS is that packets of authenticated sessions
travel to the protected target through the overlay as well as the Internet. Packet
filters near the protected target can distinguish overlay packets, and discard all

53



other incoming packets. Details are given below.
Most importantly, these proposals make use of another overlay property in

addition to flexible span: because an overlay is a network, it has its own routing.
Overlay routing is used to vary and hide the paths of packets between ingress
members and the target. This keeps attackers from flooding the paths to the
target rather than the target itself. For instance, SOS uses a complex routing
scheme, with long paths computed from distributed hash tables, for path secrecy.
Other implications of overlay routing will be discussed further below.

In designing an overlay network for positive filtering, there are three impor-
tant choices to be made. SOS makes specific choices, while the Mayday paper
points out that there are other choices, and evaluates some combinations of
them. We now explain the three choices.

Source authentication

This choice concerns how a session initiator finds an ingress member and
authenticates itself to the overlay as a source of legimate packets. SOS is in-
tended for use during an emergency situation, when networks are so congested
that even benign ordinary traffic must be dropped. The members of SOS are
hosted by a peer group of machines cooperating to provide emergency services.
The only allowed packets to a given destination come from a few pre-configured
sources used by emergency responders. So in SOS the source is itself an overlay
member, i.e., it has special software. SOS source members know the Internet
names of many ingress members, well-distributed so that they cannot all be
overwhelmed by flooding attacks. It creates a secure link to an ingress member,
using ESP with endpoint authentication.

Mayday emphasizes an authentication option that is architecturally more
complex, but has broader applicability because the source need not be an overlay
member (both Figures 23 and 24 depict this option). In this option packets from
a source to target name T are routed to some machine with an ingress member
of the overlay. This can be accomplished by IP anycast, which will route packets
from any source to the destination with name T closest to them. The underlay
IP interface accepts the TCP session and passes control to the ingress member,
which can then authenticate the source by asking for a user name and password
associated with the target service. If the source is authentic, the ingress member
initiates a TCP session through the overlay to the target; these two TCP sessions
then become two parts of a compound application session.

Note from Figure 24 that the target server receives as source name the
underlay name of the initiator. This means that reverse packets, from the Web
server to the initiator, do not travel through the overlay. Although the path of
return packets is not shown in the figure, both SOS and Mayday work like this.

Lightweight authenticator

In addition to the overlay network, a potential target must be surrounded
in the Internet underlay by a ring of ordinary packet filters. These ordinary
filters, such as firewalls or filtering forwarders, must have the capacity to handle
flooding DoS attacks, and must be configurable by overlay machines or by people

54



source 
S1

IP
interface T’

protected
target T

IP
interface E

overlay
egress E

IP
interface I

overlay
ingress I

�lter

public Internet

overlay network

T’s access network

src = S1,  dst = T

src = E,  dst = T’src = I,  dst = Esrc = S1,  dst = T

compound
TCP session

implements
overlay link

implements
overlay link

TCP

TCP

Figure 24: A session with overlay-based positive filtering, illustrating the fol-
lowing options: source is not an overlay member, target has different names in
overlay and underlay, routing is singly-indirect.

representing the overlay.
Figure 24 is a session view of allowed access to protected target T . The

last overlay hop between an egress member of the overlay and the target is
implemented by an underlay path that goes through a filter. The lightweight
authenticator is the attribute of underlay packets from an egress member to the
target that causes the packet filter to recognize them as overlay packets and
allow them to pass. The simplest lightweight authenticator is the IP name of
the egress member (here E) in the source field of a packet; this is what SOS
uses. Other authenticators proposed by Mayday include the destination port,
destination name, and other header fields whose contents can be manipulated
by the egress member.

The critical property of a lightweight authenticator is that it must be a
secret—if attackers knew it, they could simply send underlay packets that match
it. You might think that the destination name is the worst possible authenti-
cator, but it can be a good one if the underlay name of the protected target is
different from its overlay name, as shown in Figure 24, and if it can be changed
easily and frequently by local control in the target’s access network.

Overlay routing

In addition to hiding whole packet paths, overlay routing keeps the identities
of egress nodes secret, which is indispensable if the lightweight authenticator is
the name of an egress node. SOS uses egress names as authenticators; this is
safe because of its elaborate overlay routing.

Mayday takes the position that effective overlay routing can be much sim-
pler, with options including no routing at all (ingress and egress nodes are the

55



same), and singly-indirect routing (one hop between ingress and egress nodes, as
in Figure 24). The Mayday paper reports on analysis showing that certain com-
binations of overlay routing and lightweight authenticator provide “best cases”
for trade-offs among performance and security. For example, it says that de-
signers who want moderate levels of both performance and security should use
singly-indirect routing with any authenticator other than egress name.

6.2.4 Overlays for anonymity

In §6.1.2 we showed how joinbox/proxies in transit networks can provide session-
initiating users with privacy within their access networks and anonymity at the
accepting endpoint. The weakness of this mechanism is that the user has no
privacy whatsoever from the proxy. The purpose of the public service Tor
[14, 43] is to add to the services above a high degree of privacy from the proxies.
This section describes the second, current Tor design [14].

Tor is an overlay network whose infrastructure members reside on the ma-
chines of volunteers world-wide. These infrastructure members are fully con-
nected by long-lived links, each of which is implemented by a TLS session in the
public Internet. This covers two of the ways Tor makes use of overlay properties:
its membership unites allies across the globe, and its links are long-lived and
reused by many overlay sessions (which minimizes setup time and computational
overhead).

An infrastructure member in Tor acts as a proxy within the overlay. Users
also have Tor members on their machines. Each proxy has a public key, which
it uses (along with a certificate) to authenticate itself when setting up links by
means of TLS sessions.2

Tor is layered between application networks and the public Internet. Appli-
cations use the same interface to get TLS service from Tor as they would from
the public Internet. User members query Tor directory servers to get lists of
available proxies, each described by its public key, IP name, and policies.

To make a TLS session for an application (when there is no prior state in
place), a Tor member first chooses a random route through several Tor proxies
(this is why the proxies themselves do no routing). As with other overlay routing
schemes, this varies and conceals packet paths. Next the user member creates
a compound session in Tor that goes through the chosen proxies, as shown in
Figure 25. The session protocol is the Tor “circuit” protocol, and each simple
session is a Tor circuit with its own circuit identifier.

The important thing about circuits is that each one has a unique security
association with the user member that created it. To make the compound session
in Figure 25, the user first creates a simple session (circuit) to A, and executes a
key-exchange protocol with A, so that each now knows a shared symmetric key
KUA. Next the user uses circuit(UA) to send to A an extend command telling
it to create a new circuit to proxy B. Through the two associated circuits, U
and B execute a key-exchange protocol, after which each has a shared key KUB .

2In Tor terminology, a proxy is an “onion router” and a user member is an “onion proxy.”
But Tor proxies do no routing, and user members do no proxying.

56



circuit(UA)

circuit(UB)
circuit(UC)

K     (d)
UB

UA

UC

K     (K     (d) )
UC

UB
K     (K     (K     (d) ) )

UC

TCP session

Tor
user

Tor
proxy

Tor
proxy

Tor
proxy

public
server

U

A

B

C

Figure 25: A compound session made by Tor. The first three simple sessions
use the Tor circuit protocol, and go through the Tor network. The last simple
session uses TCP, and goes through the public Internet.

Finally U tells B to extend the compound session by creating a new circuit to
C, with U/C key exchange. Once a compound session has been assembled in
Tor, it can be used to carry many TLS application sessions. In the background,
the compound session is reconfigured piece-by-piece about once a minute, to
confuse adversarial observers who are analyzing traffic patterns.

Tor users use the security associations to conceal packet data from all except
the last Tor proxy. The data transmitted on each circuit is multiply-encrypted
as shown in the figure. When A receives a packet from U , it decrypts it before
forwarding it to B, but it cannot read the packet because it is doubly encrypted
with keys KUB and KUC that are unknown to A. For a similar reason, B
cannot read it either.

To understand the rest of the Tor design, it is necessary to consider TLS as a
separate protocol embedded inside TCP. Tor has a second session protocol, the
stream protocol, which is embedded in the circuit protocol. Figure 26 shows all
the session protocols, with protocols above embedded in protocols below, used
for a single TLS application session through Tor.

circuit(UA) circuit(UB) circuit(UC)

Tor

Tor
user

Tor
proxy

Tor
proxy

Tor
proxy

public
serverU A B C

TCPstream

TLS

Figure 26: Session protocols and their embeddings, for a single TLS application
session made through Tor. Sessions of the circuit protocol last longer than
application sessions.

The stream protocol substitutes for TCP within Tor; there is a one-to-one

57



correspondence between external TCP sessions and Tor streams, and TCP data
is simply reformatted for streams. There are two reasons for using streams
instead of TCP inside Tor: (i) if the data sent on Tor circuits were TCP packets,
then proxy C would see their source and destination fields in plaintext; (ii) the
reliable, ordered packet delivery of TCP is not required within Tor, because all
of its links are implemented by TLS, and already have these properties.

When C has received enough stream packets to carry an HTTPS request
with a domain name, it can complete the compound session end-to-end. It
sends a TCP SYN packet with its own IP name as source and the IP name
of the domain name as destination. After the TCP handshake, it continues
converting data packets between the TCP and stream-protocol formats, and
forwarding them in both directions. The TLS handshake between U and the
server goes end-to-end, so that U can validate the server’s certificate.

Tor is a complex network in its own right. We have seen that it has its own
session protocols, compound sessions, and routing. It also has internal mecha-
nisms for denial-of-service protection and congestion control. Rate-limiting can
be managed on circuits or on streams.

Unfortunately the Tor design for privacy has one serious deficiency, which
is the fact that the final acceptor of the TCP session can know that Tor is
being used, because there are readily accessible lists of Tor nodes. Fraudsters,
spammers, and other criminals are big users of Tor, along with law-abiding
people in need of privacy. Consequently an increasing number of services are
rejecting or otherwise discriminating against Tor users [29]. Tor protects the
reputation of its volunteer machines by allowing them to restrict their exiting
TCP sessions or refuse to be exit proxies. Some volunteers must shoulder this
burden, however, or the service will not be available to those who really need it.

Although the Tor-exit problem appears to have no solution in today’s Inter-
net, privacy is so valuable that some researchers propose to replace much of IP
with the concepts of Tor [34]. If the use of Tor became much more widespread
as this proposal argues it should, then the stigma of using Tor would fade away.

7 Conclusion

From immersion in the literature on network security, one gets a strong impres-
sion. Each paper responds to a specific known or suspected security threat with
a specific defense—which is often complex. It is hard to believe that network
operators and users will ever be able to deploy all of these defenses, and trou-
bling to think that they will have to choose some arbitrary subset of them. Most
of these security papers are excellent, and they use careful and subtle reasoning
to enumerate possible attacks and discuss which ones their defenses should hold
against. But there are so many that one is driven to think, “What an insightful
list! But how do I know that they thought of everything?”

This is another way of saying that modeling and assurance of security are
tightly intertwined. Given a rigorous model of a network, security attacks,
and defenses, we can reason rigorously or even formally that the defenses will

58



prevent the attacks—or at least mitigate them. Where there are gaps in the
model, i.e., possible real-world behaviors that the model does not describe, there
are possible attacks against which the defenses are useless.

As networks have become increasingly important in most aspects of daily life,
their complexity has grown in proportion, and the early models have become
increasingly inadequate. In this tutorial we have used a new, compositional
model, which emphasizes that there are many networks in an overall network
architecture, each one being a microcosm of all the basic aspects of network-
ing. Because all networks are similar in important ways, they can be modeled
with common structures and common compositional interfaces. This modular-
ity greatly expands the range of network behaviors that can be modeled without
overwhelming complexity [51].

In this tutorial, the new model has enabled us to find a useful classification
of security attacks, and to explain all common defenses by means of just three
patterns. It has also helped us understand how the patterns interact, without
limiting where or how the patterns are used in an overall network architecture.

Not surprisingly, the modeling and defenses are not complete. The most
obvious gap concerns information leakage (§2.3), in which attackers correlate
observations from multiple locations, or from multiple explicit and implicit sig-
nals, to glean private information.

Nevertheless, this is a big step forward in modeling networks and their secu-
rity mechanisms, which we hope will stimulate progress in building and verifying
real defenses. It has been shown that real software can be made secure with
modularity and verified components [31]. Technological progress has made net-
work hardware increasingly programmable, so that flexibility and evolution are
achievable. The synergy of improved modeling, programmable networks, and
today’s verification tools could provide the world with notably better network
security.

References

[1] D. G. Andersen. Mayday: Distributed filtering for Internet services. In
Proceedings of the 4th USENIX Symposium on Internet Technologies and
Systems, 2003.

[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable Internet Protocol (AIP). In Proceedings of ACM
SIGCOMM, 2008.

[3] K. Argyraki and D. R. Cheriton. Active Internet traffic filtering: Real-time
response to denial-of-service attacks. In Proceedings of the USENIX Annual
Technical Conference, 2005.

[4] K. Argyraki and D. R. Cheriton. Network capabilities: The good, the
bad, and the ugly. In Proceedings of the 4th Workshop on Hot Topics in
Networks, 2005.

59



[5] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski. The
SCION Internet architecture. Communications of the ACM, 60(6):56–65,
June 2017.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In Proceedings of ACM SIGCOMM,
2017.

[7] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t
mind the gap: Bridging network-wide objectives and device-level configu-
rations. In Proceedings of ACM SIGCOMM, 2016.

[8] M. S. Blumenthal and D. D. Clark. Rethinking the design of the Internet:
The end-to-end arguments vs. the brave new world. ACM Transactions on
Internet Technology, 1(1):70–109, August 2001.

[9] R. Canetti. Universally Composable Security: A new paradigm for cryp-
tographic protocols. https://eprint.iacr.org/2000/067.pdf, 2018. Accessed
22 January 2019.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: Taking control of the enterprise. In Proceedings of SIGCOMM.
ACM, August 2007.

[11] D. D. Clark. The design philosophy of the DARPA Internet protocols. In
Proceedings of SIGCOMM. ACM, August 1988.

[12] D. D. Clark. Designing an Internet. Information Policy Series, MIT Press,
2018.

[13] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cy-
berspace: Defining tomorrow’s Internet. IEEE/ACM Transactions on Net-
working, 13(3):462–475, June 2005.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium,
2004.

[15] Dyn analysis summary of Friday October 21 attack.
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-
attack/. Accessed 10 November 2018.

[16] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-
hajan, and T. Millstein. A general approach to network configuration anal-
ysis. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, 2015.

[17] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov.
The most dangerous code in the world: Validating SSL certificates in non-
browser software. In ACM Conference on Computer and Communications
Security, 2012.

60



[18] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings
of Symposium on Theory of Computing. ACM, 2013.

[19] T. Grandison and M. Sloman. A survey of trust in Internet applications.
IEEE Communications Surveys and Tutorials, 3(4):2–16, 2000.

[20] M. Handley. Why the Internet only just works. BT Technology Journal,
24(3):119–129, July 2006.

[21] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics. In Pro-
ceedings of the 10th USENIX Security Symposium, 2001.

[22] How does TLS affect MQTT performance? https://www.hivemq.com/
blog/how-does-tls-affect-mqtt-performance/. Accessed 19 September 2018.

[23] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama. TCP over
TCP: Effects of TCP tunneling on end-to-end throughput and latency. In
Proceedings of SPIE, volume 6011, pages 138–146. International Society for
Optical Engineering, 2005.

[24] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N. Borisov. Cirri-
pede: Circumvention infrastructure using router redirection with plausible
deniability. In Proceedings of the ACM Conference on Computer and Com-
munications Security, 2011.

[25] ITU. Information Technology—Open Systems Interconnection—Basic Ref-
erence Model: The basic model. ITU-T Recommendation X.200, 1994.

[26] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P. Mankins,
and W. T. Strayer. Decoy routing: Toward unblockable Internet com-
munication. In Proceedings of the USENIX Workshop on Free and Open
Communications on the Internet. USENIX, 2011.

[27] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using Header Space Analy-
sis. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, 2013.

[28] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Ser-
vices. In Proceedings of SIGCOMM. ACM, August 2002.

[29] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, V. Paxson, S. J.
Murdoch, and D. McCoy. Do you see what I see? Differential treatment of
anonymous users. In Proceedings of the Network and Distributed Security
Symposium. Internet Society, 2016.

[30] T. Kiravuo, M. Sarela, and J. Manner. A survey of Ethernet LAN security.
IEEE Communications Surveys & Tutorials, 15(3):1477–1491, 2013.

61



[31] G. Klein, J. Andronick, M. Fernandez, I. Kuz, T. Murray, and G. Heiser.
Formally verified software in the real world. Communications of the ACM,
61(10):68–77, October 2018.

[32] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Ap-
proach, Seventh Edition. Pearson Education, Inc., 2017.

[33] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information
and System Security, 6(1):128–171, February 2003.

[34] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson. Tor instead of IP. In
Proceedings of the 11th Workshop on Hot Topics in Networks, 2011.

[35] N. P. Lopes, N. Bjorner, P. Godefroid, K. Jayaraman, and G. Varghese.
Checking beliefs in dynamic networks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, 2015.

[36] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Schenker. Controlling high bandwidth aggregates in the network. Com-
puter Communication Review, 32(3):62–73, July 2002.

[37] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic
Programming, 26(2):113–131, February 1996.

[38] G. C. M. Moura, J. Heidemann, M. Muller, R. de O. Schmidt, and
M. Davids. When the dike breaks: Dissecting DNS defenses during DDoS.
In Proceedings of the ACM Internet Measurement Conference, 2018.

[39] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Mu-
nafo, K. Papagiannaki, and P. Steenkiste. The cost of the ‘S’ in HTTPS.
In Proceedings of ACM CoNEXT, 2014.

[40] D. Naylor, R. Li, C. Gkantsidis, , T. Karagiannis, and P. Steenkiste. And
then there were more: Secure communication for more than two parties.
In Proceedings of ACM CoNEXT, 2017.

[41] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. Lopez,
K. Papagiannaki, P. R. Rodriguez, and P. Steenkiste. Multi-context TLS
(mcTLS): Enabling secure in-network functionality in TLS. In Proceedings
of ACM SIGCOMM, 2015.

[42] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How hard can it be? designing and
implementing a deployable Multipath TCP. In Networked Systems Design
and Implementation, 2012.

[43] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections
and onion routing. IEEE Journal on Selected Areas in Communications,
16(4):482–494, May 1998.

62



[44] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network
support for IP traceback. In Proceedings of SIGCOMM. ACM, 2000.

[45] P. Schmitt, A. Edmundson, A. Mankin, and N. Feamster. Oblivious DNS:
Practical privacy for DNS queries. arXiv:1806.00276v2, December 2018.

[46] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing known attacks on
Transport Layer Security (TLS) and Datagram TLS (DTLS). Internet
Engineering Task Force Request for Comments 7457, 2015.

[47] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep packet
inspection over encrypted traffic. In Proceedings of SIGCOMM. ACM, 2015.

[48] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex: An-
ticensorship in the network infrastructure. In Proceedings of the 20th
USENIX Security Symposium, 2011.

[49] A. Yaar, A. Perrig, and D. Song. Pi: A path identification mechanism to
defend against DDoS attacks. In Proceedings of the Symposium on Security
and Privacy. IEEE, 2003.

[50] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network archi-
tecture. In Proceedings of SIGCOMM. ACM, August 2005.

[51] P. Zave and J. Rexford. The compositional architecture of the Internet.
Communications of the ACM, 62(3), March 2019.

[52] L. Zhang, A. Afanasyev, J. Burke, and V. Jacobson. Named data network-
ing. ACM SIGCOMM Computer Communication Review, 44(3):66–73, July
2014.

63


