
Simple Failure Resilient Load Balancing
Martin Suchara∗, Dahai Xu†, Robert Doverspike†, David Johnson† and Jennifer Rexford∗

∗Computer Science Department †AT&T Labs Research
Princeton University, NJ 08544 Florham Park, NJ 07932
{msuchara, jrex}@cs.princeton.edu {dahaixu, rdd, dsj}@research.att.com

Abstract—To enable reliable data delivery and balance load
in the presence of failures, we propose a new mechanism that
combines path protection and traffic engineering. The key benefit
of our solution is its simplicity, allowing for fast recovery
while imposing minimal requirements on the routers. To provide
resilience against every failure scenario from a known set, we
advocate using a fixed set of parallel end-to-end paths for each
traffic demand. Upon detecting a path failure, the ingress router
uses a local rule to rebalance the outgoing traffic on the remain-
ing available paths. We describe several candidate rebalancing
algorithms, and analyze their performance. Although calculating
the optimal set of paths and the path-splitting parameters for
each router is NP-hard, our extensive simulations on a tier-1
IP backbone demonstrate that our easy-to-calculate heuristic
suffices to achieve nearly optimal load balancing. We believe that
a simple-to-implement solution with a fast recovery time, such
as ours, will appeal to Internet Service Providers as well as the
operators of data centers and enterprise networks.

I. INTRODUCTION

Failure recovery mechanisms [1] are used to ensure un-
interrupted data delivery in the presence of link or router
failures. Failure recovery is important for backbone network
operators who strive to meet availability requirements of
Service Level Agreements (SLAs), as well as the operators of
large data centers where the failures of individual components
are quite common. Failure recovery is a challenging problem
because of the need for balanced load after rerouting the traffic
affected by the failure. In addition, prompt failure handling
and rerouting of the affected traffic to alternate paths often
results in significant path restructuring, which is another major
challenge faced by network operators who use the existing
failure-recovery mechanisms.

Our work proposes a fast failure-recovery mechanism that
offers nearly optimal load balancing while using a static set
of paths. We exploit multipath routing between each pair of
ingress and egress routers. Such end-to-end routing has several
benefits. First, these routes do not need to change when a
failure is detected, which saves time, reduces overhead, and
improves path stability. Second, end-to-end load balancing
spreads the traffic in the network more effectively than local
rerouting. Finally, it enables faster recovery and lower protocol
overhead than conventional link-state routing protocols, like
OSPF, which not only rely on flooding link-state advertise-
ments and recomputing shortest paths but also suffer from
transient forwarding loops. Another benefit of our solution
is its simplicity, with most of the functionality incorporated
in the network-management software rather than the network

elements. The management software is responsible for se-
lecting the end-to-end paths and calculating the path-splitting
parameters for each router. Our design has a minimalist control
plane, used only for failure detection, which leads naturally to
a simpler network where smart, expensive routers are replaced
with cheaper switches with a limited feature set.

While our design enables the simplification of the network
elements, our solution is also readily deployable using tech-
nologies available in existing routers. Multi-Protocol Label
Switching (MPLS) [2] is particularly suitable because ingress
routers encapsulate packets with labels and direct them over
pre-established Label-Switched Paths (LSPs). This enables
flexible routing when multiple LSPs are established between
each ingress-egress router pair. Techniques for splitting traffic
over the multiple LSPs, with relatively flexible splitting ratios,
is already supported by the major router vendors [3], [4]. Our
solution, then, could be viewed as a particular application
of MPLS, where the network-management software computes
the LSPs, instructs the ingress routers to establish the paths
(say, using RSVP), and disables any dynamic recomputation
of alternate paths when primary paths fail.

In our architecture, the network-management software
solves an offline optimization problem to compute the paths
and the splitting ratios, given the traffic demands, the network
topology, and known failure scenarios. The objective is to
minimize congestion over all the failure scenarios, weighted by
their likelihood or importance. The congestion for a particular
failure case is determined as a sum of the congestion penalty
associated with each link. Since calculating the optimal paths
and splitting ratios is NP-hard, we propose several effective
heuristics that vary in the functionality they expect from the
network elements. The heuristics start with a common first step
that solves a simple multicommodity flow problem to compute
a small set of end-to-end paths. The heuristics differ in the
second step, which optimizes the (static) router configurations
that determine how traffic is split over multiple paths.

We evaluate our solution experimentally in the context of
MPLS on the IP backbone of a tier-1 ISP. We demonstrate
that our heuristics are nearly optimal in balancing traffic load
across a wide range of failure scenarios. We also show that
the number of paths connecting each ingress-egress router
pair is small, which is important for a scalable solution. Our
simulation achieves a high degree of accuracy by utilizing the
real topology, link capacities, link delays, traffic matrices, and
Shared Risk Link Groups (SRLGs) [5] (indicating which links

2

are likely to fail together) of the tier-1 ISP.
Our approach differs from previously published work. Most

of the literature considers either path protection or traffic en-
gineering [4] in isolation. MPLS path-protection mechanisms
aim to reduce the failure-recovery time by establishing backup
paths that carry traffic when the primary LSP fails. Local path
protection [6] reserves a backup path connecting the ends of
individual links in the network. While enabling fast recovery,
local path protection cannot fully exploit the available path
diversity, leading to suboptimal load balancing. Global path
protection [7] allows better load balancing through the use
of end-to-end backup LSPs, but the recovery is slow1. Our
approach addresses the optimality issue by utilizing dynamic
traffic splitting across multiple diverse LSPs, and its recovery
is faster than global path protection due to its simplicity.

The paper is organized as follows. Following a brief
overview of our proposed architecture in Section II, Section III
formulates the optimizaton problem and Section IV presents
several heuristic solutions. Next, Section V evaluates the
heuristics on realistic topology and traffic data. The paper
concludes in Section VII with a discussion of future research
directions. NP-completeness proofs appear in the Appendix.

II. LOAD BALANCING OVER MULTIPLE STATIC PATHS

Our network architecture is motivated by the need to:
(i) make network management easier and enable the use of
simpler, cheaper routers, (ii) balance load before, during, and
after failures to make efficient use of network resources,
and (iii) detect and respond to failures quickly to ensure
uninterrupted service. The resulting design places most of
functionality in a management system that performs optimiza-
tions in an offline fashion, as depicted in Figure 1. The routers
simply detect failed paths and automatically redistribute traffic
on the remaining paths based on their static configuration.
This simplifies network management, reduces router cost, and
removes dynamic state from the routers. In this section, we
discuss how ingress routers split traffic over multiple paths
and learn about path failures, and how the management system
pre-computes the paths and splitting ratios.

A. Flexible Load Balancing Over Pre-established Paths

Our architecture uses multiple paths between each ingress-
egress router pair in the network. Using preestablished end-to-
end paths allows fast failure recovery as the ingress router can
shift the load away from the failed paths, avoiding dynamic
path recalculation. Using multiple paths also allows the ingress
router to balance the load in the network which helps to
reduce congestion. In our architecture, the ingress router has a
simple static configuration that determines the traffic-splitting
ratios among the available paths, while intermediate routers
merely forward packets over pre-established paths. As a result,
our router is a simple device that does not need to collect
congestion feedback, participate in a routing protocol, interact

1Calculation of optimal backup LSPs and the switch over is so involved that
ISPs are currently considering deployment of a hybrid scheme that applies
local and global path protection in succession.

l d i• topology design
• list of shared risks
• demands• fixed paths

t

p
• splitting ratios

t

0.5

s
0.5

link cut0

Fig. 1. The management system calculates a fixed set of paths and splitting
ratios, based on the topology, traffic demands, and potential failures. The
ingress router learns about path failures and splits traffic over working paths.

with the management system upon failure detection, or solve
any computationally difficult problems.

In the context of MPLS, flexible traffic splitting is already
supported by both major router vendors [3], [4]. The routers
can be configured to hash packets based on port and address
information in the headers into several groups and forward
each group on a separate path. This provide path splitting
with relatively fine granularity (e.g., at the 1/16th level), while
ensuring that packets belonging to the same flow traverse
the same path. In a data center, the end-host servers could
encapsulate the packets, as suggested in [8], and choose
encapsulation headers that split the traffic over the multiple
paths with the desired splitting ratios. This further reduces the
complexity of the network elements, and also enables finer-
grain traffic splitting than today’s routers provide.

B. Path-level Failure Detection and Notification

The ingress router uses a path-level failure-detection mecha-
nism to avoid sending traffic on faileded path. This mechanism
could be implemented, e.g., using Bidirectional Forwarding
Detection (BFD) [9]. BFD establishes sessions between the
ingress-egress router pairs to monitor each of the paths. BFD
piggybacks on existing traffic and obviates the need to send
“hello” messages. A major advantage of this approach is that
the ingress router receives a faster failure notification than
would be possible using a routing protocol’s own local keep-
alive mechanism. Another advantage is that the packets are
handled by the hardware interfaces and do not use the router’s
CPU time. Although the ingress router doesn’t learn which link
failed, knowledge of end-to-end path failures is sufficient to
avoid using the failed path. In fact, since our design does not
require the routers to be aware of the topology, no control
protocol is needed to exchange topology information2.

2A backwards-compatible realization of our architecture could leverage
finer-grain topology information. For example, MPLS-capable routers can be
configured to learn about link failures from the interior gateway protocol (e.g.,
OSPF). If no alternate routes are specified for the affected path(s), the router
simply renormalizes the outgoing traffic on the remaining available paths.

3

C. Offline Route Optimizations in the Management System

Given the static network topology, shared-risk information
(i.e., sets of links with a shared vulnerability), and traffic
matrix (i.e., volume of exchanged traffic between each ingress-
egress router pair), the management system calculates multiple
diverse paths so that at least one of them works for each failure
scenario; this is possible as long as no failure partitions the
ingress-egress router pair. Moreover, the paths can be chosen
so that they allow load balancing in the network. These two
goals are complementary as both require path diversity. After
computing the paths and associated traffic-splitting parameters,
the management system installs them either by populating
forwarding tables in the routers or configuring the ingress
routers to signal the paths using a protocol like RSVP.

The management system has direct access to accurate in-
formation about the network topology and anticipated traffic
demands. The operator can easily provide the management
system with a list of potential or planned failures; correlated
link failures can be determined by considering sets of links
that share a common vulnerability [5]. Many failures in ISP
backbones are planned in advance, or involve a single link, and
most of these faiulres are short lived [10]. Our solution allows
the network to continue directing traffic over the working
paths, without incurring any protocol overheads to “withdraw”
or recompute paths; instead, the failed paths remain in the
forwarding tables, ready to be used upon recovery. Since the
network configuration is completely static, the management
system can calculate paths and splitting parameters offline,
and change them only in response to significant traffic shifts
or the planned long-term addition or removal of equipment.

III. NETWORK MODEL AND OPTIMIZATION OBJECTIVE

The network-management system solves an offline opti-
mization problem to select the paths and splitting ratios
for each ingress-egress pair. The exact formulation of the
optimization problem depends on how the network elements
represent and use the splitting ratios. In this section, we present
the common aspects of the problem formulation. First, we
describe how we model the network topology, traffic demands,
failure scenarios, and end-to-end paths. Then, we introduce
the objective that the management system tries to optimize.
Section IV presents the remaining details of the optimization
problems, along with our algorithms for solving them.

A. Topology, Shared Risks, Traffic Demands, and Paths

As shown in Figure 1, the management system has three
main inputs:

Fixed topology: The topology is represented by a graph
G(V,E) with a set of vertices V and directed edges E. The
capacity of edge e ∈ E is denoted by ce, and the propagation
delay on the edge is ye.

Shared risks: The shared risks are denoted by the set S,
where each s ∈ S consists of a set of edges that may fail
together. For example, a router failure is represented by the set
of its incident links, a fiber cut is represented by all links in the
affected fiber bundle, and the failure-free case is represented

by the empty set ∅. For simplicity, we assume that all demands
remain connected for each failure; alternatively, a demand can
be omitted for each failure case that disconnects it.

Traffic demands: Finally, each traffic demand d ∈ D is
represented by a triple (ud, vd, hd), where ud ∈ V is the
traffic source (ingress router), vd ∈ V is the destination (egress
router), and hd is the flow requirement (measured traffic).

The management system’s output is a set of paths Pd

for each demand d and the splitting ratios for each path.
Optimizing these outputs must consider the effects of each
failure state s on the paths available for demand d. Traffic
splitting by ingress router ud depends only on which paths
have failed, not which failure scenario s has occurred; in fact,
multiple failure scenarios may affect the same subset of paths
in Pd. To reason about the handling of a particular demand d,
we consider a set Od of “observable” failure states, where each
observable state o ∈ Od corresponds to a particular P o

d ⊂ Pd

representing the available paths. For ease of expression, we let
the function od(s) map to the failure state observable by node
ud when the network is in failure state s ∈ S. The amount of
flow assigned to path p in observable failure state o ∈ Od is
fo

p . The total flow on edge e in failure state s is lse, and the
flow on edge e corresponding to demand d is lse,d.

TABLE I
SUMMARY OF NOTATION

Variable Description

G(V,E) network with vertices V and directed edges E
ce capacity of edge e ∈ E
ye propagation delay on edge e ∈ E

S family of network failure states
s network failure state (set of failed links)
ws weight of network failure state s ∈ S

D set of demands
ud source of demand d ∈ D
vd destination of demand d ∈ D
hd flow requirement of demand d ∈ D

Pd paths available to demand d ∈ D
αp fraction of the demand assigned to path p

Od family of observable failure states for node ud
od(s) state observable by ud in network failure state s ∈ S
P od paths available to ud in observable failure state o ∈ Od

fsp flow on path p in network failure state s ∈ S
fop flow on path p in observable failure state o ∈ Od
lse total flow on edge e in network failure state s
lse,d flow of demand d on edge e in network failure state s

B. Minimizing Congestion Over the Failure States

The management system’s goal is to compute paths and
splitting ratios that minimize congestion over the range of
possible failure states. A common traffic-engineering objec-
tive [11] is to minimize

∑
e∈E Φ(lse/ce) where le is the load

on edge e and ce is its capacity. Φ() could be a convex function
of link load [11], to penalize the most congested links while
still accounting for load on the remaining links. To place more

4

emphasis on the common failure scenarios, each failure state
can be associated with a weight ws. To minimize congestion
across the failure scenarios, the final objective function is

obj(ls1
e1
/ce1 , ...) =

∑
s∈S w

s
∑

e∈E Φ(lse/ce). (1)

Minimizing this objective function is the goal in each of our
optimization problems in Section IV. However, the constraints
that complete the problem formulation differ depending on the
functionality placed in the underlying routers.

IV. OPTIMIZING THE PATHS AND SPLITTING RATIOS

The optimization problem the management system solves
depends on the capabilities of the underlying routers. On one
extreme, the network could support an optimal configuration
of paths and splitting ratios for every network failure scenario
s ∈ S. While not scalable in practice, the solution to this
optimization problem serves as a performance baseline and
as a way to compute a suitable set of paths Pd for each
demand d. A more practical alternative is to have each ingress
router ud store splitting ratios for every observable failure
o ∈ Od. After observing the path failure(s), router ud would
switch to the new splitting configuration for the remaining
paths. An even simpler alternative is to have a single splitting
configuration that is used across all failures. In this approach,
router ud simply renormalizes the splitting percentages for
the active paths. In this section, we present the management
system’s algorithm for each of these three scenarios. Since
several of the optimization problems are NP-hard (as proven in
the Appendix), we use heuristics that (as shown in Section V)
achieve nearly optimal performance in practice.

A. Optimal Solution: Per Network Failure Sate

The ideal solution would compute the optimal paths and
splitting ratios separately for each failure state. To avoid
introducing explicit variables for exponentially many paths,
we formulate the problem in terms of the amount of flow
lse,d from demand d traversing edge e for failure state s. The
optimal edge loads are obtained by solving the following linear
program:

min obj(ls1e1/ce1 , ...)

s.t. lse =
∑

d∈D lse,d ∀s, e
0 =

∑
i:e=(i,j)

lse,d −
∑

i:e=(j,i)
lse,d ∀d, s, j 6= ud, vd

hd =
∑

i:e=(ud,i)
lse,d −

∑
i:e=(i,ud)

lse,d ∀d, s

0 ≤ lse,d ∀d, s, e,
(2)

where lse and lse,d are variables. The first constraint defines the
load on edge e, the second constraint ensures flow conserva-
tion, the third constraint ensures that the demands are met, and
the last constraint guarantees flow non-negativity. An optimal
solution can be found in polynomial time using conventional
techniques for solving multicommodity flow problems.

After obtaining the optimal flow on each edge for all the
failure scenarios, we use a standard decomposition algorithm

to determine the corresponding paths Pd and the flow fs
p on

each of them. The decomposition starts with a set Pd that is
empty. New unique paths are added to the set by performing
the following decomposition for each failure state s. First,
annotate each edge e with the value lse,d. Remove all edges
that have 0 value. Then, find a path connecting ud and vd. If
multiple such paths exist, we use the path p with the smallest
propagation delay. Although we could choose any of the paths
from ud to vd, our goal is to obtain as short paths as possible.
Add this path p to the set Pd and assign to it flow fs

p equal to
the smallest value of the edges on path p. Reduce the values
of these edges accordingly. Continue in this fashion, removing
edges with zero value and finding new paths, until there are
no remaining edges in the graph. Note that we can show by
induction that this process completely partitions the flow lse,d

into paths. The decomposition yields at most |E| paths for
each network failure state s because the weight of at least one
edge becomes 0 whenever a new path is found. Hence the total
size of the set Pd is at most |E||S|. It is difficult to obtain
a solution with a tighter bound as we prove in the appendix
that it is NP-hard to solve problem (2) when the number of
allowed paths is bounded by a constant J .

The optimal solution solves the multicommodity flow prob-
lem, computes the resulting paths, and for each failure scenario
s ∈ S assigns flow fs

p to path p ∈ Pd. However, this solution
is not feasible in practice, because of the burden it imposes
on the underlying routers. Each ingress router would need
to store a splitting configuration for each failure scenario s.
The number of failure states s can be quite large, especially
when failure scenarios could involve multiple links. After a
failure, the ingress router would need to learn which link(s)
failed, identify the associated failure scenario s, and switch to
the appropriate splitting configuration. This adds considerable
complexity to the network elements.

Yet, the optimal solution is still interesting, for two reasons.
First, the solution provides an upper bound on the performance
of the more practical schemes, enabling us to judge how
effective they are. Second, the optimal paths and splitting
ratios are a useful building block in computing the network
configurations in our practical solutions.

B. State-Dependent Splitting: Per Observable Failure

To reduce the complexity of the network elements, each
ingress router ud could have a set of splitting ratios for each
observable failure state o ∈ Od. Since the path-splitting ratios
depend on which paths in Pd have failed, the the ingress
router must store splitting ratios for min(|S|, 2|Pd|) scenarios;
fortunately, the number of paths |Pd| is typically small in
practice. When the network performs such state-dependent
splitting, the management system’s goal is to find a set of
paths Pd for each demand and the flows fo

p on these paths in
all observable states o ∈ Od. If the paths Pd are known and
fixed, the problem can be formulated as a linear program:

5

min obj(ls1e1/ce1 , ...)

s.t. lse =
∑
d∈D

∑
p∈Po

d
,e∈p

fop ∀e, s, o = od(s)

hd =
∑

p∈Po
d

fop ∀d, o ∈ Od

0 ≤ fop ∀d, o ∈ Od, p ∈ Pd,

(3)

where lse and fo
p are variables. The first constraint defines

the load on edge e, the second constraint guarantees that the
demand d is satisfied in all observable failure states, and the
last constraint ensures non-negativity of flows assigned to the
paths. The solution of the optimization problem (3) can be
found in polynomial time.

The problem becomes NP-hard if the sets of paths {Pd} are
not known in advance. In fact, as we show in the Appendix, it
is NP-hard even to tell if two paths that allow an ingress router
to distinguish two network failure states can be constructed.
Therefore, it is NP-hard to construct the optimal set of paths
for all our formulations that assume the sources do not have
information about the network failure state s. Therefore, we
propose a simple heuristic to find the paths: we use the
paths that are found by the decomposition of the optimal
solution (2). This approach guarantees that the paths are
sufficiently diverse to ensure traffic delivery in all failure states
s. Moreover, since those paths allow optimal load balancing
for the optimal solution (2), they are also likely to enable good
load balancing for the optimization problem (3).

C. State-Independent Splitting: Across All Failure Scenarios

To further simplify the network elements, each ingress
router could have a single configuration of splitting ratios
that are used under any combination of path failures. Each
path p is associated with a splitting fraction αp. When one or
more paths fail, the ingress router ud renormalizes the splitting
parameters for the working paths to compute the fraction of
traffic to direct to each of these paths. If the network elements
implement such state-independent splitting, and the paths Pd

are known and fixed, the management system needs to solve
the following non-convex optimization problem:

min obj(ls1e1/ce1 , ...)

s.t. fop = hd
αp∑

q∈P o
d

αq
∀d, o ∈ Od, p ∈ Pd

lse =
∑
d∈D

∑
p∈Po

d
,e∈p

fop ∀e, s, o = od(s)

hd =
∑

p∈Po
d

fop ∀d, o ∈ Od

0 ≤ fop ∀d, o ∈ Od, p ∈ Pd,

(4)

where lse, fo
p and αp are variables. The first constraint ensures

that the flow assigned to every available path p is proportional
to αp. The other three constraints are the same as in (3).

Unfortunately, no standard optimization techniques allow us
to compute an optimal solution efficiently, even when the paths
Pd are fixed. Therefore, we have to rely on heuristics to find
both the candidate paths Pd and the splitting ratios αp. To
find the set of candidate paths Pd, we again use the optimal
paths obtained by decomposing (2). To find the splitting ratios

we mimic the behavior of the optimal solution as closely as
possible. We find the splitting ratios for all paths p by letting
αp =

∑
s∈S

wsfs
p

hd
where fs

p is the flow assigned by the optimal
solution to path p in network failure state s. Since

∑
ws = 1,

the calculated ratio is the weighted average of the splitting
ratios used by the optimal solution (2).

V. EXPERIMENTAL EVALUATION

To evaluate the algorithms described in the previous section,
we wrote a simulator in C++ that calls the CPLEX linear
program solver in AMPL and solves the optimization prob-
lems (2) and (3). We compare our two heuristics to the optimal
solution, a simple “equal splitting” configuration, and OSPF
with the link weights set using state-of-the-art optimization
techniques. Finally, we show that our two heuristics do not
require many paths and only slightly increase end-to-end
propagation delay.

A. Experimental Setup
Our simulations use a variety of synthetic topologies,

the Abilene topology, as well as the city-level IP backbone
topology of a tier-1 ISP with a set of failures provided by the
network operator. The parameters of the topologies we used
are summarized in Table II.
Synthetic topologies: the synthetic topologies include 2-level
hierarchical graphs, purely random graphs, and Waxman
graphs. 2-level hierarchical graphs are produced using the
generator GT-ITM [12], for random graphs the probability of
two edges being connected is constant, and the probability
of having an edge between two nodes in the Waxman graph
decays exponentially with the distance of the nodes. These
topologies also appear in [13].
Abilene topology: the topology of the Abilene network and
a measured traffic matrix are used. We use the true edge
capacities of 10 Gbps.
Tier-1 IP backbone: the city-level IP backbone of a tier-1
ISP is used. In our simulations, we use the real link capacities
and measured traffic demands. We also obtained the link
propagation delays.

Name Topology Nodes Edges Demands

hier50a hierarchical 50 148 2,450
hier50b hierarchical 50 212 2,450
rand50 random 50 228 2,450
rand50a random 50 245 2,450
rand100 random 100 403 9,900
wax50 Waxman 50 169 2,450
wax50a Waxman 50 230 2,450

abilene backbone 11 28 253
tier-1 backbone 50 180 625

TABLE II
SYNTHETIC AND REALISTIC NETWORK TOPOLOGIES.

The collection of network failures S for the synthetic
topologies and the Abilene network contains single edge

6

failures and the no-failure case. Two experiments with dif-
ferent collections of failures are performed on the tier-1 IP
backbone. In the first experiment, single edge failures are
used. In the second experiment, the collection of failures also
contains Shared Risk Link Groups (SRLGs), link failures that
occur simultaneously. SRLGs were obtained from the network
operator’s database that contains 954 failures with the largest
failure affecting 20 links simultaneously. The failure weights
ws were set to 0.5 for the no-failure case, and the other failure
weights were set equal so that the sum of all the weights is 1.

The set of demands D in the Abilene network and the tier-1
backbone were obtained by sampling Netflow data measured
on Nov. 15th 2005 and May 22nd 2009, respectively. For the
synthetic topologies, we chose the same traffic demands as
in [13].

To simulate the algorithms in environments with increasing
congestion, we repeat all experiments several times while
uniformly increasing the traffic demands. For the synthetic
topologies we start with the original demands and scale them
up to twice the original values. As the average link utilization
in Abilene and the tier-1 topology is lower than in the synthetic
topologies, we scale the demands in these realistic topologies
up to three times the original value.

In our experiments we use the piecewise linear penalty
function defined by Φ(0) = 0 and its derivatives:

Φ′ (`) =



1 for 0 ≤ ` < 0.333
3 for 0.333 ≤ ` < 0.667
10 for 0.667 ≤ ` < 0.9
70 for 0.9 ≤ ` < 1
500 for 1 ≤ ` < 1.1
5000 for 1.1 ≤ ` <∞

This penalty function was introduced in [11]. The function
can be viewed as modeling retransmission delays caused by
packet losses. The cost is small for low utilization, increases
progressively as the utilization approaches 100%, and explodes
above 110%.

Our simulation calculates the objective value of the optimal
solution, state-independent and state-dependent splitting, and
equal splitting. Equal splitting is a variant of state-independent
splitting that splits the flow evenly on the available paths.
We also calculate the objective achieved by the shortest path
routing of OSPF with optimal link weights. These link weights
were calculated using the state-of-the-art optimizations de-
scribed in [13], and these optimizations take into consideration
the set of failure states S. To demonstrate that our solution
does not increase the propagation delay significantly, we also
calculate the average propagation delay weighted by the load
on the routes in the tier-1 IP backbone.

Our simulations were performed using CPLEX version 11.2
on a 1.5 GHz Intel Itanium 2 processor. Solving the linear
program (2) for a single failure case in the tier-1 toplogy
takes 4 seconds, and solving the optimization (3) takes about
16 minutes. A tier-1 network operator could perform all the
calculations required to obtain an optimal set of paths and
router configurations for the entire city-level network topology
in less than 2 hours.

 0

 2e+05

 4e+05

 6e+05

 8e+05

 1e+06

 1.2e+06

 1 1.2 1.4 1.6 1.8 2

ob
je

ct
iv

e
va

lu
e

network traffic

OSPF
equal splitting

state indep. splitting
state dep. splitting

global optimum

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 1 1.5 2 2.5 3

ob
je

ct
iv

e
va

lu
e

network traffic

OSPF
equal splitting

state indep. splitting
state dep. splitting

global optimum

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1 1.5 2 2.5 3

ob
je

ct
iv

e
va

lu
e

network traffic

OSPF
equal splitting

state indep. splitting
state dep. splitting

global optimum

Fig. 2. From top to bottom the traffic engineering objective in the hierarchical
topology hier50a, tier-1 topology with single edge failures, and tier-1 topology
with SRLGs, respectively. The performance of the optimal solution and state-
dependent splitting is nearly identical.

B. Performance Evaluation

Avoiding congestion and packet losses during planned and
unplanned failures is the central goal of traffic engineering.
Our traffic engineering objective measures congestion across

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

cd
f

number of paths

abilene
wax50

tier-1
hier50a

tier-1 (SRLGs)
 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

cd
f

number of paths

traffic=1.0
traffic=1.8
traffic=2.6

Fig. 3. The number of paths used in various topologies on the left, and in the tier-1 topology with SRLGs on the right. The cumulative distribution function
shows that the number of paths is almost independent of the traffic load in the network, but is larger for bigger more well-connected topologies.

all the considered failure cases. The objective as a func-
tion of the scaled-up demands is depicted in Figure 2. The
results which were obtained on the hierarchical and tier-1
topologies are representative, we made similar observations
for all the other topologies. In Figure 2, the performance of
state-dependent splitting and the optimal solution is virtually
indistinguishable in all cases. State-independent splitting is
less sophisticated and does not allow custom load balancing
ratios for distinct failures, and therefore its performance is
worse compared to the optimum. However, the performance
compares well with that of OSPF. The benefit of state-
independent splitting is that it uses the same set of diverse
paths as the optimal solution. It is not surprising that the simple
equal splitting algorithm achieves the worst performance.

We observe that OSPF achieves a somewhat worse per-
formance than state-independent and state-dependent splitting
as the load increases. We made this observation despite the
fact that we obtained a custom set of OSPF link weights
for each network load we evaluated. A possible explanation
is that OSPF routing, in which each router splits the load
evenly between the smallest weight paths, does not allow
much flexibility in choosing diverse routes and does not allow
uneven splitting ratios.

Solutions with few paths are preferred as they decrease the
number of tunnels that have to be managed, and reduce the
size of the router configuration. However, a sufficient number
of paths must be available to each commodity to avoid failures
and to reduce congestion. We observe that the number of
paths used by our algorithms is small. We record the number
of paths used by each demand, and plot the distribution in
Figure 3. Not surprisingly, the number of paths is greater for
larger and more diverse topologies. 92% of the demands in the
hierarchical topology use 7 or fewer paths, and fewer than 10
paths are needed in the tier-1 backbone topology for almost
all demands. Further, Figure 3 shows that the number of paths
only increases slightly as we scale up the amount of traffic in
the networks. This small increase is caused by shifting some

Single edge failures SRLG failures
Algorithm avg (ms) stdev avg (ms) stdev

Optimum 30.99 0.23 31.03 0.22
State dep. splitting 30.86 0.21 30.96 0.17
State indep. splitting 31.00 0.23 31.11 0.22
Equal splitting 33.82 0.22 39.70 0.69
OSPF (optimized) 30.70 0.54 30.71 0.50
OSPF (current) 28.45 0 28.49 0

TABLE III
PROPAGATION DELAY (AVERAGE AND STANDARD DEVIATION) IN THE

TIER-1 BACKBONE NETWORK

traffic to longer paths as the short paths become congested.
Minimizing the delay experienced by the users is one of the

important goals of network operators. Therefore, we calculated
the average propagation delays of all the evaluated algorithms.
These results, which exclude congestion delay, are summarized
in Table III. We observe that the delay of OSPF with optimized
link weights, state-dependent and state-independent splitting
is almost identical at around 31 ms. These values would
satisfy the 37 ms requirement specified in the SLAs of the
tier-1 network. Moreover, we demonstrate that these values
are not significantly higher than these experienced by the
network users today. We repeated our simulation on the tier-1
topology using the real OSPF weights which are used by the
network operator. These values are chosen to provide a tradeoff
between traffic engineering and shortest delay routing, and
resulted in average delays of 28.45 and 28.49 ms for the two
tier-1 failure sets.

In sum, we observe that the objective value of state-
dependent splitting very closely tracks the optimal objective.
For this reason, this solution is our favorite. Although state-
independent splitting has a somewhat worse performance
especially as the network load increases beyond current levels,
it could be attractive due to its simplicity.

8

VI. RELATED WORK

Most of the related work considers either failure recovery
or traffic engineering alone. Traffic engineering without failure
recovery in the context of MPLS is studied in [14]–[18]. [14]
utilizes traffic splitting to minimize end-to-end delay and loss
rates. However, an algorithm for optimal path selection is not
provided. [15] and [16] minimize the maximum link utilization
while satisfying the requested traffic demands. [17] and [18]
avoid network congestion by adaptively balancing the load
among multiple paths based on measurement and analysis of
path congestion.

Local and global path protection in MPLS has been a fruitful
area of research. In local protection the backup path takes
the shortest path that avoids the outage location from a point
of local repair to the tail-end router or to the merge point
with the primary path. The IETF RFC 4090 [6] focuses on
defining signaling extensions to establish the backup paths,
but leaves the issues of bandwidth reservation and optimal
route selection open. In [1] the shortest path that avoids the
failure is used, and [19] and [20] attempt to find an optimal
backup paths with the goal of reducing network overbuild.
While these proposals achieve certain success in reducing the
network overbuild, local protection is necessarily less effective
at reducing overbuild than global protection because it does
not allow proper load balancing on end-to-end paths.

Global path protection in MPLS allows rerouting on end-
to-end paths as is outlined in IETF RFC 3469 [7]. Work that
describes how to manage restoration bandwidth and select
optimal paths is [21], [22] and [23]. While our solution
also uses global protection to reroute around failures, the
biggest difference is that most of the related work distinguishes
primary and backup paths and only uses a backup path when
the primary path fails. In contrast, our solution balances the
load across many paths even before failures occur.

The only attempts to integrate failure recovery and load
balancing across multiple paths either only use alternate paths
when primary routes do not work [24], or they require explicit
congestion feedback from the network and do not provide
algorithms to find the optimal set of paths [25], [26].

Computational complexity results of the optimization prob-
lems related to failure recovery are of great interest both to the
network algorithm designers and to the theory community. NP-
completeness of optimization problems with failure recovery
have been studied, e.g., in [27] and [28].

VII. CONCLUSION

In this paper we propose a mechanism that combines path
protection and traffic engineering to enable reliable data deliv-
ery in the presence of link failures. We formalize the problem
by providing several optimization theoretic formulations that
differ in the capabilities they require of the network routers.
For each of the formulations, we present algorithms and
heuristics that allow the network operator to find a set of
optimal end-to-end paths and load balancing rules.

Our extensive simulations on the IP backbone of a tier-1
ISP and on a range of synthetic topologies demonstrate the

attractive properties of our solutions. First, state-dependent
splitting achieves load balancing performance close to the the-
oretical optimum, while state-independent splitting often offers
comparable performance and a very simple setup. Second,
using our solutions does not significantly increase propagation
delay compared to the shortest path routing of OSPF. We
are currently extending our simulations to include a range of
measured traffic matrices, and to evaluate the solutions on a
realistic datacenter topology.

In addition to failure resilience and favorable traffic engi-
neering properties which we demonstrate, our architecture has
the potential to simplify router design and reduce operation
costs for ISPs as well as operators of datacenters and enterprise
networks.

REFERENCES

[1] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protec-
tion and Restoration of Optical, SONET-SDH, IP, and MPLS, pp. 397–
422. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2004.

[2] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” 2001. IETF RFC 3031.

[3] “JUNOS: MPLS fast reroute solutions, network operations guide,” 2007.
[4] E. Osborne and A. Simha, Traffic Engineering with MPLS. Indianapolis,

IN: Cisco Press, 2002.
[5] I. P. Kaminow and T. L. Koch, The Optical Fiber Telecommunications

IIIA. New York: Academic Press, 1997.
[6] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE

for LSP tunnels,” 2005. IETF RFC 4090.
[7] V. Sharma and F. Hellstrand, “Framework for multi-protocol label

switching (MPLS)-based recovery,” 2003. IETF RFC 3469.
[8] A. Greenberg et al., “VL2: A scalable and flexible data center network,”

in Proceedings of ACM SIGCOMM, 2009. To appear.
[9] D. Katz and D. Ward, “Bidirectional forwarding detection.” IETF

Internet Draft, February 2009.
[10] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,

Y. Ganjali, and C. Diot, “Characterization of failures in an operational
IP backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–
762, 2008.

[11] B. Fortz and M. Thorup, “Increasing Internet capacity using local
search,” Computational Optimization and Applications, vol. 29, no. 1,
pp. 13–48, 2004.

[12] E. W. Zegura, “GT-ITM: Georgia Tech internetwork topology models
(software),” 1996.

[13] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” IEEE Journal on Selected Areas in Communications, vol. 20,
pp. 756–767, May 2002.

[14] E. Dinan, D. Awduche, and B. Jabbari, “Analytical framework for
dynamic traffic partitioning in MPLS networks,” in IEEE International
Conference on Communications, vol. 3, pp. 1604–1608, 2000.

[15] Y. Seok, Y. Lee, Y. Choi, and C. Kim, “Dynamic constrained multipath
routing for MPLS networks,” in International Conference on Computer
Communications and Networks, pp. 348–353, 2001.

[16] Y. Lee, Y. Seok, Y. Choi, and C. Kim, “A constrained multipath
traffic engineering scheme for MPLS networks,” in IEEE International
Conference on Communications, vol. 4, pp. 2431–2436, 2002.

[17] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proceedings of INFOCOM, vol. 3, pp. 1300–
1309, 2001.

[18] J. Wang, S. Patek, H. Wang, and J. Liebeherr, “Traffic engineering
with AIMD in MPLS networks,” in IEEE International Workshop on
Protocols for High Speed Networks, pp. 192–210, 2002.

[19] H. Saito and M. Yoshida, “An optimal recovery LSP assignment scheme
for MPLS fast reroute,” in International Telecommunication Network
Strategy and Planning Symposium (Networks), pp. 229–234, 2002.

[20] D. Wang and G. Li, “Efficient distributed bandwidth management for
MPLS fast reroute,” IEEE/ACM Trans. Netw., vol. 16, no. 2, pp. 486–
495, 2008.

9

[21] M. Kodialam and T. V. Lakshman, “Dynamic routing of restorable
bandwidth-guaranteed tunnels using aggregated network resource usage
information,” IEEE/ACM Trans. Netw., vol. 11, no. 3, pp. 399–410, 2003.

[22] G. Li, D. Wang, C. Kalmanek, and R. Doverspike, “Efficient distributed
restoration path selection for shared mesh restoration,” IEEE/ACM
Trans. Netw., vol. 11, no. 5, pp. 761–771, 2003.

[23] Y. Liu, D. Tipper, and P. Siripongwutikorn, “Approximating optimal
spare capacity allocation by successive survivable routing,” IEEE/ACM
Trans. Netw., vol. 13, no. 1, pp. 198–211, 2005.

[24] H. Saito, Y. Miyao, and M. Yoshida, “Traffic engineering using mul-
tiple multipoint-to-point LSPs,” in Proceedings of INFOCOM, vol. 2,
pp. 894–901, 2000.

[25] B. A. Movsichoff, C. M. Lagoa, and H. Che, “End-to-end optimal
algorithms for integrated QoS, traffic engineering, and failure recovery,”
IEEE/ACM Trans. Netw., vol. 15, pp. 813–823, Nov. 2007.

[26] C. M. Lagoa, H. Che, and B. A. Movsichoff, “Adaptive control al-
gorithms for decentralized optimal traffic engineering in the Internet,”
IEEE/ACM Trans. Netw., vol. 12, no. 3, pp. 415–428, 2004.

[27] A. Tomaszewski, M. Pioro, and M. Zotkiewicz, “On the complexity of
resilient network design,” Networks, 2009 (in press).

[28] D. Coudert, P. Datta, S. Perennes, H. Rivano, and M.-E. Voge, “Shared
risk resource group: Complexity and approximability issues,” Parallel
Processing Letters, vol. 17, no. 2, pp. 169–184, 2007.

[29] S. Fortune, J. Hopcroft, and J. Wyllie, “The directed subgraph homeo-
morphism problem,” Theor. Comput. Sci., vol. 10, no. 2, pp. 111–121,
1980.

APPENDIX

In this Appendix, we show that two problems are NP-hard:
FAILURE STATE DISTINGUISHING
INSTANCE: A directed graph G = (V,E), a source and
destination vertices u, v ∈ V , and two sets s, s′ ⊆ E.
QUESTION: Is there a simple directed path P from u to v that
contains edges from one and only one of the sets s and s′?
BOUNDED PATH LOAD BALANCING
INSTANCE: A directed graph G = (V,E) with a positive
rational capacity ce for each edge e ∈ E, a collection S of
subsets s ⊆ E of failure states with a rational weight ws

for each s ∈ S, a set of triples (ud, vd, hd), 1 ≤ d ≤ k,
corresponding to demands, where hd units of demand d need
to be sent from source vertex ud ∈ V to destination vertex
vd ∈ V , an integer bound J on the number of paths that
can be used between any source-destination pair, a piecewise-
linear increasing cost function Φ(`) mapping edge loads ` to
rationals, and an overall cost bound B.
QUESTION: Are there J (or fewer) paths between each source-
destination pair such that the given demands can be partitioned
between the paths in such a way that the the total cost (sum
of Φ(`) over all edges and weighted failure states as described
in the text) is B or less?

To prove that a problem X is NP-hard, we must show that
for some known NP-hard problem Y , any instance y of Y can
be transformed into an instance x of X in polynomial time,
with the property that the answer for y is yes if and only if
the answer for x is yes. Both our problems can be proved NP-
hard by transformations from the following problem, proved
NP-hard by Fortune, Hopcroft, and Wyllie [29].
DISJOINT DIRECTED PATHS
INSTANCE: A directed graph G(V,E) and distinguished ver-
tices u1, v1, u2, v2 ∈ V .
QUESTION: Are there directed paths P1 from u1 to v1 and P2

from u2 to v2 such that P1 and P2 are vertex-disjoint?

Theorem 1: The FAILURE STATE DISTINGUISHING prob-
lem is NP-hard.

Proof. Suppose we are given an instance G =
(V,E), u1, v1, u2, v2 of DISJOINT DIRECTED PATHS. Our
constructed instance of FAILURE STATE DISTINGUISHING
consists of the graph G′ = (V,E′), where E′ = E ∪
{(v1, u2)}, with u = u1, v = v2, s = φ, and s′ = {(v1, u2)}.

Given this choice of s and s′, a simple directed path from
u to v that distinguishes the two states must contain the edge
(v1, u2). We claim that such a path exists if and only if there
are vertex-disjoint directed paths P1 from u1 to v1 and P2 from
u2 to v2. Suppose a distinguishing path P exists. Then it must
consist of of three segments: a path P1 from u = u1 to v1, the
edge (v1, u2), and then a path P2 from u2 to v = v2. Since it is
a simple path, P1 and P2 must be vertex-disjoint. Conversely,
if vertex-disjoint paths P1 from u1 to v1 and P2 from u2 to
v2 exist, then the path P that concatenates P1 followed by
(v1, u2) followed by P2 is our desired distinguishing path. �

Theorem 2: The BOUNDED PATH LOAD BALANCING
problem is NP-hard even if there are only two commodities
(k = 2), only one path is allowed for each (J = 1), and there
is only one failure state s.

Proof. For this result we use the variant of DISJOINT
DIRECTED PATHS in which we ask for edge-disjoint rather
than vertex-disjoint paths. The NP-hardness of this variant is
easy to prove, using a construction in which each vertex x of
G is replaced by a pair of new vertices inx and outx, and
each edge (x, y) is replaced by the edge (outx, iny).

Suppose we are given an instance G = (V,E), u1, v1, u2, v2
of the edge-disjoint variant of DISJOINT DIRECTED PATHS.
Our constructed instance of BOUNDED PATH LOAD BALANC-
ING is based on the same graph, with each edge e given
capacity ce = 1, with the single failure state s = φ (i.e.,
the state with no failures), with ws = 1, and with demands
represented by the triples (u1, v1, 1) and (u2, v2, 1). The cost
function Φ has derivative Φ′(`) = 1, 0 ≤ ` ≤ 1, and
Φ′(`) = |E|, ` > 1. Our target overall cost bound is B = |E|.

Note that if the desired disjoint paths exist, then we can use
P1 to send the required unit of traffic from u1 to v1, and P2

to send the required unit of traffic from u2 to v2. Since the
paths are edge-disjoint, no edge will carry more than one unit
of traffic, so the cost per edge used will be 1, and the total
number of edges used can be at most |E|. Thus the specified
cost bound B = |E| can be met. On the other hand, if no such
pair of paths exist, then we must choose paths P1 and P2 that
share at least one edge, which will carry two units of flow, for
an overall cost of at least |E|+ 1, just for that edge. Thus if
there is a solution with cost |E| or less, the desired disjoint
paths must exist. �

It is not difficult to see that adding more paths, failure
states, or commodities cannot make the problem easier. Note,
however, that this does not imply that the problem for the
precise cost function Φ presented in the text is NP-hard. It
does, however, mean that, assuming P 6= NP, any efficient
algorithm for that Φ would have to exploit the particular
features of that function.

