Not So Predictable Mining Pools Attacking Solo Mining Pools by Bagging Blocks and Conning Competitors

Jordan Holland, R. Joseph Connor, Parker Diamond, Jared M. Smith, Max Schuchard

University of Tennessee VOLSEC – COMPUTER SECURITY LAB –

Outline

- Predictable Solo Mining is a new payout scheme being used in realworld cryptocurrency mining pools
- Our work examines the security of the Predictable Solo Mining payout scheme
- We introduce three attacks on the payout scheme
 - One attack exploiting cheap rewards in the pool
 - Two attacks increasing the cost others pay for rewards

BACKGROUND

Mining Pools

- The number of miners means solo mining is realistically unprofitable due to variability in profits
- Variability in profits goes down with larger miner hashrates
- Mining pools aggregate computational power, receive more consistent rewards, and distribute rewards to the members of the pool

Payout Scheme

- Determines how to allocate the pools revenue between individual miners
- Ideally we want a mining pool scheme to exhibit:
 - Incentive Compatibility
 - Proportional Fairness
- Mining pool operators want competitive advantage, leading to different payout schemes being used that aren't vetted

Payout Schemes: Details

- Users submit partial proofs of work to receive "shares"
 - Higher difficulty proofs of work worth more shares
- Example: Pay Per Last N Shares (PPLNS)
 - Only the last N shares submitted are considered when calculating rewards after a block is found
- More in use today, prior work shows that some violate incentive compatibility and fairness properties

Predictable Solo Mining (PSM)

- Each submitted share will increase the credit of the miner who submitted the share by the share difficulty
 - Miners with higher hash rates move up the leaderboard faster
- PSM is unique in that it **does not** divide the block reward to the pool
 - Share leader receives entirety of the reward
- Post Reward Shares = Pre Reward Shares Runner Up Shares

Simple PSM Example

- 1. A 10,000
- 2. B 8,000
- 3. C 4,000
- 4. D 3,000
- 5. E 1,000

ATTACKS

Key Insights

- "Cost" of a block reward can be characterized by the number of shares held by the second place miner
- PSM Claim: The average block cost is equal to the network difficulty
- The amount of shares expended winning two different blocks, which have the *same monetary value*, varies by up to a factor of *four*

Cost of Blocks in PSM

Distribution of block costs with 100 miners over 10000 rounds

Exploiting Cheap Blocks

Distribution of block costs with 100 miners over 10000 rounds

Share-Cost Minimization

- Honest miners submit all of their work to the pool, driving themselves up the leaderboard
- Attacker only wants to win "cheap" blocks
- A malicious miner can refuse to place any more than *n* shares into their account, and only win blocks at a cost of *at most n* shares
- Violates proportional fairness

Share-Cost Minimization: Example

Leftover Computing Power

- Only submitting a set number of shares to the pool leads to leftover computing power
 - Spend this computational power in the same pool
 - Spend this computational power in other pools
- Violates incentive compatibility

Exploiting Expensive Blocks

Distribution of block costs with 100 miners over 10000 rounds

Malicious Share Donation

• Many pools do not authenticate share submissions

- A malicious miner can submit shares to the 2^{nd} place miner to minimize the gap between 1^{st} and 2^{nd} place

• Effectively maximizes the average cost the target miner pays for each block

Malicious Share Donation: Example

Shares Pre-Donation

- 1. **T** 10,000
- 2. B 9,000
- 3. C 4,000

Shares Post-Donation

- 1. **T** 10,000
- 2. B 9,999
- 3. C 4,000

Multiple Account Idling

- Share Donation Attack is intuitive and effective
 - Relies on lack of authentication in pools
- We can increase the average block cost for a target miner in pools with authentication
 - Do not need to donate to other miners
- Use multiple accounts, idle one account until target miner in range

Multiple Account Idling: Example

EVALUATION

Simulation

- Important to test attacks with real-world pool hashrates
- Collected active miners via Ethpool and Ethermine API
- Built discrete mining pool simulator from collected hashrates
- Mining pool simulator runs with both honest and malicious miners using current network difficulty
- Code Available at: <u>https://github.com/VolSec/aminingpoolsimulator</u>

Share-Cost Minimization

Share-Cost Minimization

Malicious Share Donation

Multiple Account Idling

Attacker / Target Ratio	% Decrease in Average Winning Difference
1.2	.03
4.2	5.02
7.5	6.31
9.0	5.6
14.2	8.36

Conclusions

- Payout schemes need to be vetted for incentive compatibility and fairness before being used in practice
- In any payout scheme, a single miner should not be able to influence the price of the reward of another miner
- Authentication in pools can help reduce future attacks

Questions?

Jordan Holland jholla19@vols.utk.edu

University of Tennessee VOLSEC – COMPUTER SECURITY LAB –

