
Specifying and Verifying a
Real-World Packet
Error-Correction System
Josh Cohen
Princeton University
VSTTE 2023
10/23/23
With Andrew Appel

Network Verification

2

Network Verification

3

E.g.
Minesweeper [SIGCOMM 17],
Tiramisu [NSDI 20],
Hoyan [SIGCOMM 20],
SRE [SIGCOMM 22],
Katra [NSDI 22],
Flash [SIGCOMM 22]

● Model network as simpler
abstraction (e.g. graph)

● Use SMT solvers to prove network
properties

○ Reachability, fault tolerance,
routing convergence

● No proof of model ↔code

Network Verification

4

if (p.src in blocked):
drop p

else:
forward p

● Verify implementation of per-packet
network functions

○ e.g. NAT, firewall, load balancer
● Generally semi-automated
● Specifications are functional programs
● Describe how packet headers change

E.g. Vigor [SOSP 19],
VigNAT [SIGCOMM 17],
Klint [NSDI 22],
Gravel [NSDI 20],
Verifiable P4 [ITP 23]

Network Verification

5

● What about end-to-end network
functions?

● E.g. packet reordering, congestion
control, flow control, error
correction

● Generally at transport layer
● Per-packet specifications not

sufficient

Example - Packet Reordering

6

Sender Reorderer

Queue:

12345 Network6

Input Output

● Want illusion of in-order delivery
● Reorderer maintains queue, outputs next

packets in order
● Also outputs packets if they have timed out

Next packet: 1

Example - Packet Reordering

7

Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 2

1

1 1

Example - Packet Reordering

8

Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 2

1

1 11

3

3

3

Example - Packet Reordering

9

Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 4

1

1 11

3

3

3

2

2 2

Example - Packet Reordering

10

Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 4

1

1 11

3

3

3

2

2 2

5

5

5

Example - Packet Reordering

11

Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 7

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Example - Packet Reordering

12

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

D

O

Example - Packet Reordering

13

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets

R

D

O

Example - Packet Reordering

14

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

D

O

Example - Packet Reordering

15

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is sorted
● Spec does not hold
● Spec very weak

D

O

Example - Packet Reordering

16

Sender Reorderer12345 Network6

Input Output

1

11

3

3

2

2

5

5

6

6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is sorted
● Spec does not hold
● Spec very weak

D

O

Example - Packet Reordering

17

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

2

2

5

5

6

6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is sorted
● Spec does not hold
● Spec very weak

1

1

1

1

D

O

Example - Packet Reordering

18

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is O
● Stronger but does not hold

due to network delay/loss

D

O

Example - Packet Reordering

19

Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear
3. Strong specification needs to reason about network

conditions: reordering, duplication, delay, loss

R

Spec: Stream D is O
● Stronger but does not hold

due to network delay/loss

Goals

● Develop a methodology for specifying and verifying these kinds of end-to-end
network functions

● Extended case study - real world packet error-correction system
● All done using machine-checked proofs in Coq proof assistant

20

Forward Error Correction

● Send data over network (or any noisy channel) - some may not arrive
● Usual solution, retransmit missing data
● In many cases, infeasible or impossible due to latency requirements, storage at

sender
● Solution: use Error-Correcting code to create additional parity packets,

enabling recovery of lost data

21

A Real-World FEC System

● C implementation originally written by Anthony McAuley of Bellcore in ‘90s, in
active use since

● Algorithm is modified Reed-Solomon, developed by Rabin [Journal of the
ACM 1989], McAuley [SIGCOMM 90], and others

○ Block code: k data packets + h parity packets, can correct if at most h total losses
● 2 parts: core encoder/decoder and larger packet/buffer management system
● Core encoder/decoder verified [CAV 2022], larger system more difficult to

specify

22

FEC System Architecture

23

FEC System Architecture

24

Part 1: Core
Encoder/Decoder

Part 2: Packet
Management
System

FEC System Architecture

25

Group packets
into batches
of k, generate
h parities,
send all as
stream E

FEC System Architecture

26

Store packets in
assigned
batches, when
enough packets
received in a
batch,
regenerate
original packets

FEC Verification

27

producer.c

Producer
Coq model

encoder.c

Encoder Coq
model

decoder.c

Decoder Coq
model

consumer.c

Consumer
Coq model

Encoder/
Decoder

Spec

Producer/
Consumer

Spec

Cohen, J.M., Wang, Q., Appel, A.W. (2022). Verified Erasure Correction in Coq with MathComp and VST. In:
Shoham, S., Vizel, Y. (eds) Computer Aided Verification. CAV 2022. Lecture Notes in Computer Science, vol
13372. Springer, Cham.

FEC Verification

28

producer.c

Producer
Coq model

encoder.c

Encoder Coq
model

decoder.c

Decoder Coq
model

consumer.c

Consumer
Coq model

Encoder/
Decoder

Spec

Producer/
Consumer

Spec

If at least k packets of (k+h)
data+parity packets given to

decoder, can reconstruct
missing packets

Proofs about
finite fields,

Vandermonde
matrices,

polynomials

FEC Verification

29

producer.c

Producer
Coq model

encoder.c

Encoder Coq
model

decoder.c

Decoder Coq
model

consumer.c

Consumer
Coq model

Encoder/
Decoder

Spec

Producer/
Consumer

Spec

????

Surprises in the Implementation

Current implementation satisfies no reasonable spec in 3 ways:

1. Memory leaks, implicit casting between signed and unsigned ints
2. Does not handle sequence number wraparound
3. Timeout mechanism causes unrelated packets to be dropped, can affect

behavior of packets in other batches, some packets dropped unnecessarily
○ Violates locality - behavior should be per-batch

30

A program without a specification
cannot be right or wrong, it can only
be surprising.

- Paraphrase of J. J. Horning, 1982

Surprises in the Implementation

Current implementation satisfies no reasonable spec in 3 ways:

1. Memory leaks, implicit casting between signed and unsigned ints
2. Does not handle sequence number wraparound
3. Timeout mechanism causes unrelated packets to be dropped, can affect

behavior of packets in other batches, some packets dropped unnecessarily
○ Violates locality - behavior should be per-batch

31

A program without a specification
cannot be right or wrong, it can only
be surprising.

- Paraphrase of J. J. Horning, 1982

Bugs under any
possible

specification

Surprises in the Implementation

Current implementation satisfies no reasonable spec in 3 ways:

1. Memory leaks, implicit casting between signed and unsigned ints
2. Does not handle sequence number wraparound
3. Timeout mechanism causes unrelated packets to be dropped, can affect

behavior of packets in other batches, some packets dropped unnecessarily
○ Violates locality - behavior should be per-batch

32

A program without a specification
cannot be right or wrong, it can only
be surprising.

- Paraphrase of J. J. Horning, 1982

Bugs depending on
the program’s

environment (i.e.
how many packets

are expected)

Surprises in the Implementation

Current implementation satisfies no reasonable spec in 3 ways:

1. Memory leaks, implicit casting between signed and unsigned ints
2. Does not handle sequence number wraparound
3. Timeout mechanism causes unrelated packets to be dropped, can affect

behavior of packets in other batches, some packets dropped unnecessarily
○ Violates locality - behavior should be per-batch

33

A program without a specification
cannot be right or wrong, it can only
be surprising.

- Paraphrase of J. J. Horning, 1982
Bugs if the program

is expected to
guarantee packet

recovery

A New FEC Implementation

34

producer.c

Producer
Coq model

encoder.c

Encoder Coq
model

decoder.c

Decoder Coq
model

consumer.c

Consumer
Coq model

Encoder/
Decoder

Spec

Producer/
Consumer

Spec

Layers of Specification

● Spec relies on external network conditions (reordering, duplication, delay, loss)
● One spec is not enough!
● Different behavior/guarantees based on external network conditions
● Want to know: guarantees in good/normal conditions as well as (weaker)

guarantees in bad/adversarial ones

35

Layers of Specification

36

producer.c

Producer
Coq model

encoder.c

Encoder
Coq model

decoder.c

Decoder
Coq model

consumer.c

Consumer
Coq model

Encoder/
Decoder

Spec

Unconditional
Spec

Strong
Spec

Conditional
Spec

Network
Behavior

Layers of Specification

Unconditional specification:

1. The program has no memory leaks, signed integer overflow, or undefined
behavior

A bit stronger - FEC should not make things worse than doing nothing at all

2. If a data packet arrives in stream R, it appears in the outputted stream D
3. Every packet in D must have been in the original stream O

This is violated because of sequence number wraparound issue - we change to 64
bit sequence numbers and use serial number arithmetic [RFC 1982]

37

Towards a Stronger Spec

● Those specs are not enough: can satisfy by dropping all parities
● Want guarantee: with normal network conditions, FEC helps by recovering lost

packets
● Simplest: if at least k packets per batch (packets i(k+h) to (i+1)(k+h) in the

encoded stream) are received, all data packets in batch recovered

38

i(k+h) i(k+h) + k (i+1)(k+h)

Towards a Stronger Spec

● Not true: timeouts caused by reordering, duplication, delay
● Would like to assume: packets “close” in E (encoded) are “close” in R

(received) - then batch arrives before timing out
● We will formalize metrics for measuring these network conditions and prove (in

Coq) that under reasonable bounds, this is true and so we can guarantee
packet recovery

● Specifically, need to formalize bounds on reordering, duplication, and delay

39

Formalizing Properties of Packet Streams - Reordering

● Many existing metrics for measuring packet reordering [RFC 4737, 5236]

● We use Reorder Density (RD) [NETWORKING 2005] - comprehensive, good performance,
robust [International Journal of Communication Systems 2008]

● Idea: measure displacement - difference between arrival sequence number and expected
sequence number (RI)

● We will assume a global bound on the displacement
○ In measured experiments, displacement tends to be quite small (≈ 50)

● Note: intentionally ignores duplicate and missing packets

40

seq[i] 1 2 3 6 4 5 7

RI[i] 1 2 3 4 5 6 7

d[i] 0 0 0 -2 1 1 0

seq[i] 1 4 3 5 3 8 7 6

RI[i] 1 3 4 5 x 6 7 8

d[i] 0 -1 1 0 x -2 0 2

Formalizing Properties of Packet Streams -
Duplicates/Timeouts
● Very few existing metrics for duplicates, difficult to use with reordering metrics

○ Want: displacement bound ⇒ packets arrive close together, not true with duplicates
○ Only get weak, multiplicative bounds

● We use metric inspired by RD: every pair of duplicate packets have at most m
packets in between them

○ If view duplicates as sent in sequence, this is essentially the difference between the
displacements

● Timeouts are difficult - we need assumptions about network speeds and time
between packets

● Instead, use alternate approach - measure time in packets, not seconds

41

A New Timeout Mechanism

Change implementation to count (estimate) the number of unique packets
received, use this to measure time, and always delete expired blocks

● Keeps data structures (provably) small, size does not depend on network
speeds

● No overhead: program already checks for duplicate packets
● Allows Producer to delay
● Consumer no longer needs external state (system time)
● Performance more predictable, no space leaks
● Spec becomes much cleaner: duplication and reordering both count unique

packets; we get strong additive bounds

42

A Strong Spec

Suppose that the packet streams satisfy the following conditions:

1. k and h (the FEC parameters) are fixed for all packets
2. For all packets, the magnitude of the displacement between E (encoded) and R

(received) is bounded by d
3. Any two identical packets in R have at most m packets between them
4. The timeout threshold is at least k+h+2d+m and less than 231

5. All sequence numbers are unique and less than 2^63, 0<k≤127, 0<h≤128

Let i be between 0 and |O|/k, and suppose that at least k packets of the k+h packets
between positions i(k+h) and (i+1)(k+h) in stream E appear in stream R

Then, all packets in batch i (packets i*k to (i+1) *k) appear in D, the decoded stream

Corollary: if all of these conditions hold for all such i, streams O and D have the same
packets

43

Proving the Program Correct

44

Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition

After writing new C program, we
write a close functional model of
the system in Coq and prove it
correct according to the 3 levels of
specification above

Proving the Program Correct

45

Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition
With no timeouts, eventually enough packets

in batch arrive (by loss condition), so the
decoder recovers missing packets and

therefore all packets in batch appear in D

Proving the Program Correct

46

Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition

These bounds imply that all packets in a batch
arrive before the batch times out, so this is

equivalent to the no-timeout version

Proving the Program Correct

47

Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition

We formalize serial number arithmetic and
prove that all integer comparisons occur

between values within 231, which means that
comparison is exactly mathematical integer

comparison

int seq_cmp(unsigned int i1, unsigned int i2) {
return ((int)(i1−i2)); }

Theorem: Suppose | z1 - z2 | < 231.
Then, seq_cmp(z1 % 232, z2 % 232) < 0 iff z1 < z2.

Conclusion

● We proved correct in Coq a close model of a real-world packet error-correction
system, developing a simpler, more predictable, provably correct program that
recovers more packets

● We developed a methodology for specifying and verifying such end-to-end network
functions, including

○ Different layers of specifications to identify stronger guarantees in “good” scenarios and weaker ones
in worst-case scenarios

○ Formalizing external network behavior (reordering, duplication, delay, and loss) and proving spec
assuming bounds on this behavior

○ Formalizing and using serial number arithmetic to handle long-running programs with integer
wraparound

○ Using refinement to simplify proofs and identify specific assumptions necessary for each guarantee
● Proofs available at

https://github.com/verified-network-toolchain/Verified-FEC/tree/end-to-end

48

References

Abhashkumar, A., Gember-Jacobson, A., Akella, A.: Tiramisu: Fast multilayer network verification. In: 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). pp. 201–219. USENIX Association, Santa Clara, CA (Feb 2020)

Bare, A.A., Jayasumana, A.P., Banka, T.: Metrics for degree of reordering in packet sequences. In: Proceedings LCN 2002. 27th Annual IEEE Conference
on Local Computer Networks. p. 0333. IEEE Computer Society, Los Alamitos, CA, USA (Nov 2002).

Beckett, R., Gupta, A.: Katra: Realtime verification for multilayer networks. In: 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). pp. 617–634. USENIX Association, Renton, WA (Apr 2022)

Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network configuration verification. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. p. 155–168. SIGCOMM ’17, Association for Computing Machinery, New York, NY, USA (2017)

Bush, R., Elz, R.: Serial Number Arithmetic. RFC 1982 (Aug 1996).

Cohen, J.M., Wang, Q., Appel, A.W.: Verified erasure correction in Coq with MathComp and VST. In: Shoham, S., Vizel, Y. (eds.) Computer Aided
Verification. pp. 272–292. Springer International Publishing, Cham (2022)

Guo, D., Chen, S., Gao, K., Xiang, Q., Zhang, Y., Yang, Y.R.: Flash: Fast, consistent data plane verification for large-scale network settings. In: Proceedings
of the ACM SIGCOMM 2022 Conference. p. 314–335. SIGCOMM ’22, Association for Computing Machinery, New York, NY, USA (2022).

Jayasumana, A., Piratla, N., Banka, T., Bare, A., Whitner, R.: Improved packet reordering metrics. RFC 5236, RFC Editor (June 2008)

49

References

McAuley, A.J.: Reliable broadband communication using a burst erasure correcting code. In: Proceedings of the ACM Symposium on Communications Architectures & Protocols.
p. 297–306. SIGCOMM ’90, New York, NY, USA (1990).

Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S., Perser, J.: Packet reordering metrics. RFC 4737, RFC Editor (November 2006)

Piratla, N.M., Jayasumana, A.P.: Metrics for packet reordering—a comparative analysis. International Journal of Communication Systems 21(1), 99–113 (2008).

Piratla, N.M., Jayasumana, A.P., Bare, A.A.: Reorder density (RD): A formal, comprehensive metric for packet reordering. In: Boutaba, R., Almeroth, K., Puigjaner, R., Shen, S.,
Black, J.P. (eds.) NETWORKING 2005. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless
Communications Systems. pp. 78–89. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

Pirelli, S., Valentukonytė, A., Argyraki, K., Candea, G.: Automated verification of network function binaries. In: 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). pp. 585–600. USENIX Association, Renton, WA (Apr 2022)

Zaostrovnykh, A., Pirelli, S., Iyer, R., Rizzo, M., Pedrosa, L., Argyraki, K., Candea, G.: Verifying software network functions with no verification expertise. In: Proceedings of the 27th
ACM Symposium on Operating Systems Principles. p. 275–290. SOSP ’19, New York, NY, USA (2019).

Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki, K., Candea, G.: A formally verified NAT. In: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. p. 141–154. SIGCOMM ’17, New York, NY, USA (2017).

Zhang, K., Zhuo, D., Akella, A., Krishnamurthy, A., Wang, X.: Automated verification of customizable middlebox properties with Gravel. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). pp. 221–239. USENIX Association, Santa Clara, CA (Feb 2020)

50

