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E.g.
Minesweeper [SIGCOMM 17],
Tiramisu [NSDI 20], 
Hoyan [SIGCOMM 20], 
SRE [SIGCOMM 22], 
Katra [NSDI 22], 
Flash [SIGCOMM 22]

● Model network as simpler 
abstraction (e.g. graph)

● Use SMT solvers to prove network 
properties

○ Reachability, fault tolerance, 
routing convergence

● No proof of model ↔code
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if (p.src in blocked):
drop p

else:
forward p

● Verify implementation of per-packet 
network functions

○ e.g. NAT, firewall, load balancer
● Generally semi-automated
● Specifications are functional programs
● Describe how packet headers change

E.g. Vigor [SOSP 19], 
VigNAT [SIGCOMM 17],
Klint [NSDI 22], 
Gravel [NSDI 20],
Verifiable P4 [ITP 23]
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● What about end-to-end network 
functions?

● E.g. packet reordering, congestion 
control, flow control, error 
correction

● Generally at transport layer
● Per-packet specifications not 

sufficient
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Sender Reorderer

Queue:

12345 Network6

Input Output

● Want illusion of in-order delivery
● Reorderer maintains queue, outputs next 

packets in order
● Also outputs packets if they have timed out

Next packet: 1
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Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 2

1

1 1
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Sender Reorderer

Queue:

12345 Network6

Input Output
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Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 4

1
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3
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Sender Reorderer

Queue:

12345 Network6

Input Output

Next packet: 7

1

1 11

3

3

3

2

2 2
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5
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6 5 6
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Sender Reorderer12345 Network6

Input Output
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1 11

3

3
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2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful
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○ Need to reason about entire streams of packets
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Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3
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2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is sorted
● Spec does not hold
● Spec very weak
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Sender Reorderer12345 Network6

Input Output

1

11

3

3

2

2

5

5

6

6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is sorted
● Spec does not hold
● Spec very weak
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Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

2

2

5

5

6

6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is sorted
● Spec does not hold
● Spec very weak

1

1

1

1
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Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear

R

Spec: Stream D is O
● Stronger but does not hold 

due to network delay/loss
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Sender Reorderer12345 Network6

Input Output

1

1 11

3

3

3

2

2 2

5

5

6

6 5 6

Challenges
1. Per-packet specifications not helpful

○ Need to reason about entire streams of packets
2. Specification is unclear
3. Strong specification needs to reason about network 

conditions: reordering, duplication, delay, loss

R

Spec: Stream D is O
● Stronger but does not hold 

due to network delay/loss



Goals

● Develop a methodology for specifying and verifying these kinds of end-to-end 
network functions

● Extended case study - real world packet error-correction system
● All done using machine-checked proofs in Coq proof assistant

20



Forward Error Correction

● Send data over network (or any noisy channel) - some may not arrive
● Usual solution, retransmit missing data
● In many cases, infeasible or impossible due to latency requirements, storage at 

sender
● Solution: use Error-Correcting code to create additional parity packets, 

enabling recovery of lost data

21



A Real-World FEC System

● C implementation originally written by Anthony McAuley of Bellcore in ‘90s, in 
active use since

● Algorithm is modified Reed-Solomon, developed by Rabin [Journal of the 
ACM 1989], McAuley [SIGCOMM 90], and others

○ Block code: k data packets + h parity packets, can correct if at most h total losses
● 2 parts: core encoder/decoder and larger packet/buffer management system
● Core encoder/decoder verified [CAV 2022], larger system more difficult to 

specify 

22



FEC System Architecture
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Part 1: Core 
Encoder/Decoder

Part 2: Packet 
Management 
System



FEC System Architecture

25

Group packets 
into batches 
of k, generate 
h parities, 
send all as 
stream E
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Store packets in 
assigned 
batches, when 
enough packets 
received in a 
batch, 
regenerate 
original packets
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producer.c

Producer 
Coq model

encoder.c

Encoder Coq 
model

decoder.c

Decoder Coq 
model

consumer.c

Consumer 
Coq model

Encoder/
Decoder 

Spec

Producer/
Consumer 

Spec

Cohen, J.M., Wang, Q., Appel, A.W. (2022). Verified Erasure Correction in Coq with MathComp and VST. In: 
Shoham, S., Vizel, Y. (eds) Computer Aided Verification. CAV 2022. Lecture Notes in Computer Science, vol 
13372. Springer, Cham.
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producer.c

Producer 
Coq model

encoder.c

Encoder Coq 
model

decoder.c

Decoder Coq 
model

consumer.c

Consumer 
Coq model

Encoder/
Decoder 

Spec

Producer/
Consumer 

Spec

If at least k packets of (k+h) 
data+parity packets given to 

decoder, can reconstruct 
missing packets

Proofs about 
finite fields, 

Vandermonde 
matrices, 

polynomials
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producer.c

Producer 
Coq model

encoder.c

Encoder Coq 
model

decoder.c

Decoder Coq 
model

consumer.c

Consumer 
Coq model

Encoder/
Decoder 

Spec

Producer/
Consumer 

Spec

????



Surprises in the Implementation

Current implementation satisfies no reasonable spec in 3 ways:

1. Memory leaks, implicit casting between signed and unsigned ints
2. Does not handle sequence number wraparound
3. Timeout mechanism causes unrelated packets to be dropped, can affect 

behavior of packets in other batches, some packets dropped unnecessarily
○ Violates locality - behavior should be per-batch

30

A program without a specification 
cannot be right or wrong, it can only 
be surprising.

- Paraphrase of J. J. Horning, 1982
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A program without a specification 
cannot be right or wrong, it can only 
be surprising.

- Paraphrase of J. J. Horning, 1982

Bugs under any 
possible 

specification
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A program without a specification 
cannot be right or wrong, it can only 
be surprising.

- Paraphrase of J. J. Horning, 1982

Bugs depending on 
the program’s 

environment (i.e. 
how many packets 

are expected)



Surprises in the Implementation

Current implementation satisfies no reasonable spec in 3 ways:

1. Memory leaks, implicit casting between signed and unsigned ints
2. Does not handle sequence number wraparound
3. Timeout mechanism causes unrelated packets to be dropped, can affect 

behavior of packets in other batches, some packets dropped unnecessarily
○ Violates locality - behavior should be per-batch
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A program without a specification 
cannot be right or wrong, it can only 
be surprising.

- Paraphrase of J. J. Horning, 1982
Bugs if the program 

is expected to 
guarantee packet 

recovery
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producer.c

Producer 
Coq model

encoder.c

Encoder Coq 
model

decoder.c

Decoder Coq 
model

consumer.c

Consumer 
Coq model

Encoder/
Decoder 

Spec

Producer/
Consumer 

Spec



Layers of Specification

● Spec relies on external network conditions (reordering, duplication, delay, loss)
● One spec is not enough!
● Different behavior/guarantees based on external network conditions
● Want to know: guarantees in good/normal conditions as well as (weaker) 

guarantees in bad/adversarial ones

35
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producer.c

Producer 
Coq model

encoder.c

Encoder 
Coq model

decoder.c

Decoder 
Coq model

consumer.c

Consumer 
Coq model

Encoder/
Decoder 

Spec

Unconditional 
Spec

Strong
Spec

Conditional 
Spec

Network 
Behavior



Layers of Specification

Unconditional specification:

1. The program has no memory leaks, signed integer overflow, or undefined 
behavior

A bit stronger - FEC should not make things worse than doing nothing at all

2. If a data packet arrives in stream R, it appears in the outputted stream D
3. Every packet in D must have been in the original stream O

This is violated because of sequence number wraparound issue - we change to 64 
bit sequence numbers and use serial number arithmetic [RFC 1982]

37



Towards a Stronger Spec

● Those specs are not enough: can satisfy by dropping all parities
● Want guarantee: with normal network conditions, FEC helps by recovering lost 

packets
● Simplest: if at least k packets per batch (packets i(k+h) to (i+1)(k+h) in the 

encoded stream) are received, all data packets in batch recovered

38

i(k+h) i(k+h) + k (i+1)(k+h)



Towards a Stronger Spec

● Not true: timeouts caused by reordering, duplication, delay
● Would like to assume: packets “close” in E (encoded) are “close” in R 

(received) - then batch arrives before timing out
● We will formalize metrics for measuring these network conditions and prove (in 

Coq) that under reasonable bounds, this is true and so we can guarantee 
packet recovery

● Specifically, need to formalize bounds on reordering, duplication, and delay

39



Formalizing Properties of Packet Streams - Reordering

● Many existing metrics for measuring packet reordering [RFC 4737, 5236]

● We use Reorder Density (RD) [NETWORKING 2005] - comprehensive, good performance, 
robust [International Journal of Communication Systems 2008]

● Idea: measure displacement - difference between arrival sequence number and expected 
sequence number (RI)

● We will assume a global bound on the displacement
○ In measured experiments, displacement tends to be quite small (≈ 50)

● Note: intentionally ignores duplicate and missing packets

40

seq[i] 1 2 3 6 4 5 7

RI[i] 1 2 3 4 5 6 7

d[i] 0 0 0 -2 1 1 0

seq[i] 1 4 3 5 3 8 7 6

RI[i] 1 3 4 5 x 6 7 8

d[i] 0 -1 1 0 x -2 0 2



Formalizing Properties of Packet Streams - 
Duplicates/Timeouts
● Very few existing metrics for duplicates, difficult to use with reordering metrics

○ Want: displacement bound ⇒ packets arrive close together, not true with duplicates
○ Only get weak, multiplicative bounds

● We use metric inspired by RD: every pair of duplicate packets have at most m 
packets in between them

○ If view duplicates as sent in sequence, this is essentially the difference between the 
displacements

● Timeouts are difficult - we need assumptions about network speeds and time 
between packets

● Instead, use alternate approach - measure time in packets, not seconds
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A New Timeout Mechanism

Change implementation to count (estimate) the number of unique packets 
received, use this to measure time, and always delete expired blocks

● Keeps data structures (provably) small, size does not depend on network 
speeds

● No overhead: program already checks for duplicate packets
● Allows Producer to delay
● Consumer no longer needs external state (system time)
● Performance more predictable, no space leaks
● Spec becomes much cleaner: duplication and reordering both count unique 

packets; we get strong additive bounds
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A Strong Spec

Suppose that the packet streams satisfy the following conditions:

1. k and h (the FEC parameters) are fixed for all packets
2. For all packets, the magnitude of the displacement between E (encoded) and R 

(received) is bounded by d
3. Any two identical packets in R have at most m packets between them
4. The timeout threshold is at least k+h+2d+m and less than 231

5. All sequence numbers are unique and less than 2^63, 0<k≤127, 0<h≤128

Let i be between 0 and |O|/k, and suppose that at least k packets of the k+h packets 
between positions i(k+h) and (i+1)(k+h) in stream E appear in stream R 

Then, all packets in batch i (packets i*k to (i+1) *k) appear in D, the decoded stream

Corollary: if all of these conditions hold for all such i, streams O and D have the same 
packets

43



Proving the Program Correct
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Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition

After writing new C program, we 
write a close functional model of 
the system in Coq and prove it 
correct according to the 3 levels of 
specification above
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Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition
With no timeouts, eventually enough packets 

in batch arrive (by loss condition), so the 
decoder recovers missing packets and 

therefore all packets in batch appear in D
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Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition

These bounds imply that all packets in a batch 
arrive before the batch times out, so this is 

equivalent to the no-timeout version



Proving the Program Correct
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Model 3: int, timeouts

Model 2: Z, timeouts

Model 1: Z, no timeouts

Strong Spec

Overflow conditions

Reordering+dup bounds

Loss condition

We formalize serial number arithmetic and 
prove that all integer comparisons occur 

between values within 231, which means that 
comparison is exactly mathematical integer 

comparison

int seq_cmp(unsigned int i1, unsigned int i2) { 
return ((int)(i1−i2)); }

Theorem: Suppose | z1 - z2 | < 231.
Then, seq_cmp(z1 % 232, z2 % 232) < 0 iff z1 < z2.



Conclusion

● We proved correct in Coq a close model of a real-world packet error-correction 
system, developing a simpler, more predictable, provably correct program that 
recovers more packets

● We developed a methodology for specifying and verifying such end-to-end network 
functions, including

○ Different layers of specifications to identify stronger guarantees in “good” scenarios and weaker ones 
in worst-case scenarios

○ Formalizing external network behavior (reordering, duplication, delay, and loss) and proving spec 
assuming bounds on this behavior

○ Formalizing and using serial number arithmetic to handle long-running programs with integer 
wraparound

○ Using refinement to simplify proofs and identify specific assumptions necessary for each guarantee
● Proofs available at 

https://github.com/verified-network-toolchain/Verified-FEC/tree/end-to-end
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