
Verified Erasure Correction in
Coq with MathComp and VST

Josh Cohen
Princeton University
8/9/2022
With Qinshi Wang and Andrew Appel

Error-Correcting Codes

● When we send data over network, some
may not arrive

● In some cases, retransmission infeasible
or impossible

○ low latency applications, satellite
communications, RAID

● Solution: add additional “parity”
packets/bits and reconstruct of lost data

● Parities chosen using Error-Correcting
Code

● Lots of ECCs exist (Hamming,
Reed-Solomon, Convolutional, BCH, etc),
most based on fairly sophisticated math

● Correctness is difficult to formally prove

2

k disks

h parity disks

k
packets

h parity
packets

Project Goals

● Formally verify real-world C implementation of FEC with
Coq and the Verified Software Toolchain (VST)

● C code was originally written by Anthony McAuley of
Bellcore in ‘90s, in active use since

● Algorithm is modified Reed-Solomon, developed by Rabin
[Journal of the ACM 1989], McAuley [SIGCOMM 90], and
others

○ Includes unpublished optimizations, correctness unknown to authors

● Intriguing target for verification
○ Need to connect high-level correctness with low-level implementation
○ Algorithm based on finite fields, polynomials, linear algebra, low level

uses clever C programming tricks

3

Verification Overview

● Layered verification - separate proofs with a
functional model

● CompCert (Leroy) - C compiler written and
verified in Coq

● VST (Appel) - C program logic and proof
automation

○ Proved sound wrt CompCert C

● Mathematical Components - large library of
formalized math

○ Ex: groups, rings, fields, matrices, polynomials +
theorems

● Very different ecosystem, types, tactics
○ Unclear if VST+MathComp could be used together

4

Functional Model

C Code

CompCert

Reed-Solomon Coding

● Interpret data as a polynomial over a finite
field

○ ie:

● Evaluate polynomial at k+h distinct points
in the field

● Equivalently, multiply by Vandermonde
matrix

● To make systematic, multiply by
row-reduced Vandermonde matrix

● Decoder is a bit complicated, but not as
bad as full Reed-Solomon

● Will be able to recover data if receive at
least k packets of k+h total

5

Verification Details

● We really need 2 functional models
1. Define high-level functional model with

MathComp types
2. Prove correctness properties of

functional model (MathComp/Coq)
3. Define low-level functional model with

VST/CompCert types and prove
equivalence

4. Prove that C code refines low-level
functional model (VST)

● Allows us to use VST and Mathcomp
together

6

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation
and equivalence

lemmas
(Mathcomp + VST)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness
Properties

(Mathcomp)

Verification Example - Gaussian elimination

● Standard algorithm in linear algebra to row reduce a matrix over a field
○ transform using row swaps, scalar multiplication, and adding multiples of rows

● Can be used to calculate inverses, determinants, solve systems of linear
equations

● In this application - used to create weight matrix and invert matrix in decoder

7

Verification Example - Gaussian elimination

8

Verification Example - Gaussian elimination

1. Define functional model and prove
correctness properties

9

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation
and equivalence

lemmas
(Mathcomp + VST)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness
Properties

(Mathcomp)

Verification Example - Gaussian elimination

2. Define low-level functional model and
prove equivalence

10

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation
and equivalence

lemmas
(Mathcomp + VST)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness
Properties

(Mathcomp)

Verification Example - Gaussian elimination

11

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation
and equivalence

lemmas
(Mathcomp + VST)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness
Properties

(Mathcomp)
3. Define and prove VST spec using low-level functional model

11

Challenge - Restricted Gaussian Elimination

● C code implements “restricted”
Gaussian elimination

○ no swaps, assumes all elements in current
column are nonzero

● Only works of all elements in rth column
are nonzero!

● C code returns errors if this condition is
violated

○ “FEC: swap rows (not done yet!)”

● Suggests that authors were unclear
whether this was sufficient

12

Challenge - Restricted Gaussian Elimination

● Determined and proved in Coq: Restricted Gaussian Elimination equal to full
Gaussian Elimination iff a certain m2 submatrices (for m x n matrix) are all
invertible

○ VERY strong condition - does not hold of identity, diagonal, triangular, etc

● In this application: run Gaussian Elim on Vandermonde matrix and submatrices
of row-reduced Vandermonde matrix

● Property holds of these matrices (nontrivially) due to properties of
Vandermonde matrices and polynomials

13

Verifying the C Code

● Difficult to verify - written over 25 years ago, never designed to be verified
● One challenge: represents matrices as 2D global arrays, partially-filled 2D local

arrays, 1D arrays, pointers, and pointer to array of pointers
○ Need lemmas and tactics to convert between these, added to VST

● Found 1 bug

14

Bug in Implementation

● In loop; when i=0, m points to p-1
● n > m is undefined behavior!
● VST will not let us prove this program correct without modifying it
● VST gives strong guarantees about program behavior - no undefined behavior,

no extra IO/system calls/etc

15

q = (p + (i * j_max) + j_max - 1);
m = q - j_max;
for (n = q; n > m; n--) {

//loop body
}

Related Work

● In Network Function Verification, VigNAT [Zaostrovnykh et al., SIGCOMM
2017], Vigor [Zaostrovnykh et al., SOSP 2019], and Gravel [Zhang et al., NSDI
2020] use more automated methods to verify NAT, load balancer, firewall, and
more, but have restrictions on state and cannot handle things like unbounded
loops

● Various Error-Correcting Codes have been formalized in Coq [Affeldt et al.,
Journal of Automated Reasoning 2020 and others], Lean [Hagiwara et al.,
ISITA 2015 and Kong et al., ISITA 2018], and ACL2 [Nasser et al., Journal of
Electronic Testing 2020]

● Our work is the first to connect a sophisticated ECC with a real-world, efficient
implementation

16

Conclusion and Future Work

● Core FEC code is fully verified
(https://github.com/verified-network-toolchain/Verified
-FEC)

● Ongoing - code that handles buffer and packet
management (calls core FEC code)

○ Specification is much more difficult - need to deal with streams
of packets and define usable spec

● Possible future work - implement incremental FEC
encoding and decoding at line rate on an FPGA, verify
correctness according to same functional model

● Other future projects connecting MathComp and VST
(numerical methods)

17

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Low-Level
Functional Model
list(list byte), Z, list bool

C Code FPGA

https://github.com/verified-network-toolchain/Verified-FEC
https://github.com/verified-network-toolchain/Verified-FEC

Questions?

Thanks for listening!

18

