Verified Erasure Correction in Coq with MathComp and VST

Josh Cohen
Princeton University
8/9/2022
With Qinshi Wang and Andrew Appel
Error-Correcting Codes

- When we send data over network, some may not arrive
- In some cases, retransmission infeasible or impossible
 - low latency applications, satellite communications, RAID
- Solution: add additional “parity” packets/bits and reconstruct of lost data
- Parities chosen using Error-Correcting Code
- Lots of ECCs exist (Hamming, Reed-Solomon, Convolutional, BCH, etc), most based on fairly sophisticated math
- Correctness is difficult to formally prove
Project Goals

- Formally verify real-world C implementation of FEC with Coq and the Verified Software Toolchain (VST)
- C code was originally written by Anthony McAuley of Bellcore in ‘90s, in active use since
- Algorithm is modified Reed-Solomon, developed by Rabin [Journal of the ACM 1989], McAuley [SIGCOMM 90], and others
 - Includes unpublished optimizations, correctness unknown to authors
- Intriguing target for verification
 - Need to connect high-level correctness with low-level implementation
 - Algorithm based on finite fields, polynomials, linear algebra, low level uses clever C programming tricks
Verification Overview

- **Layered verification** - separate proofs with a functional model
- **CompCert (Leroy)** - C compiler written and verified in Coq
- **VST (Appel)** - C program logic and proof automation
 - Proved sound wrt CompCert C
- **Mathematical Components** - large library of formalized math
 - Ex: groups, rings, fields, matrices, polynomials + theorems
- **Very different ecosystem, types, tactics**
 - Unclear if VST+MathComp could be used together
Reed-Solomon Coding

- Interpret data as a polynomial over a finite field
 \[(a_0, a_1, \ldots, a_{k-1}) \rightarrow a_0 + a_1 x + \ldots + a_{k-1} x^{k-1} \]

- Evaluate polynomial at \(k+h\) distinct points in the field

- Equivalently, multiply by Vandermonde matrix

- To make systematic, multiply by row-reduced Vandermonde matrix

- Decoder is a bit complicated, but not as bad as full Reed-Solomon

- Will be able to recover data if receive at least \(k\) packets of \(k+h\) total
Verification Details

- We really need 2 functional models
 1. Define high-level functional model with MathComp types
 2. Prove correctness properties of functional model (MathComp/Coq)
 3. Define low-level functional model with VST/CompCert types and prove equivalence
 4. Prove that C code refines low-level functional model (VST)

- Allows us to use VST and Mathcomp together
Verification Example - Gaussian elimination

- Standard algorithm in linear algebra to row reduce a matrix over a field
 - transform using row swaps, scalar multiplication, and adding multiples of rows
- Can be used to calculate inverses, determinants, solve systems of linear equations
- In this application - used to create weight matrix and invert matrix in decoder

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & x_1 & x_2 & x_3 \\
0 & 1 & 0 & x_4 & x_5 & x_6 \\
0 & 0 & 1 & x_7 & x_8 & x_9
\end{pmatrix}
\]
Verification Example - Gaussian elimination

```c
int fec_matrix_transform(fec_sym * p, fec_sym i_max, fec_sym j_max) {
  fec_sym *n, *q, *r, inv;
  fec_sym i, j, k, w;
  for (k = 0; k < i_max; k++) {
    for (i = 0; i < i_max; i++) {
      q = (p + (i * j_max) + j_max - 1);
      r = (p + (k * j_max) + j_max - 1);
      w = (r * q);
      while (*w == 0) {
        if (++w == i_max) {
          return (FEC_TRANS_FAILED);
        }
        if (*w == 0) {
          return (FEC_TRANS_SWAP_NOT_DONE); /* Not done yet */
        }
      }
      inv = fec_invecf(*w); /* Not done yet */
      for (n = q; n < m; n++) {
        *n = FEC_GF_MULT (*n, inv);
      }
      r = (p + (k * j_max) + j_max - 1);
      for (i = 0; i < i_max; i++) {
        if (i == k) {
          q = (p + (i * j_max) + j_max - 1);
          for (j = 0; j < j_max; j++) {
            if (*q > -1) {
              *q = (*q - r[j]) - (*r - j);
            }
          }
          for (i = 0; i < j_max - 1; i++) {
            n = q - j_max;
            inv = fec_invecf(*q - j);
            for (n = q; n < m; n++) {
              *n = FEC_GF_MULT (*n, inv);
            }
          }
        }
      }
      return (0);
    }
  }
}
```
1. Define functional model and prove correctness properties

```
Definition gaussian_elim {m n} (A: 'M[F]_`(m, n)) :=
all_lc_1 (gauss_all_steps A (insub 0%N) (insub 0%N)).
```

```
[A | I] \xrightarrow{\text{Gaussian}} [I | A^{-1}]
```

```
Definition find_invmx {n} (A: 'M[F]_n) :=
rsbmx (gaussian_elim (row_mx A 1\%:M)).
```

```
Lemma gaussian_finds_invmx: forall {n} (A: 'M[F]_`(n, n)),
A \in unitmx -> find_invmx A = invmx A.
```
Verification Example - Gaussian elimination

2. Define low-level functional model and prove equivalence

Functional Model

\[M_F(m, n), I_n, \{\text{poly } F} \]

Correctness Properties (Mathcomp)

Type translation and equivalence lemmas (Mathcomp + VST)

Low-Level Functional Model

list(list byte), Z, list bool

Refinement Proof (VST)

C Code

Definition lmatrix := list (list byte).

Definition gauss_restrict_list m n (mx: lmatrix) :=

all lc_one_partial m n (gauss_all_steps_list_partial m n mx m) (m-1).

Lemma gauss_restrict_list_equiv: forall {m n} (mx: lmatrix) (Hmn: m <= n),

wf_lmatrix mx m n ->

lmatrix_to_mx m n (gauss_restrict_list m n mx) =

gaussian_elim_restrict_noop (lmatrix_to_mx m n mx) (le Z N Hmn).
Verification Example - Gaussian elimination

3. Define and prove VST spec using low-level functional model

```c
int fec_matrix_transform (fec_sym * p, fec_sym i_max, fec_sym j_max)
```

Definition
```c
define fec_matrix_transform_spec :=
DECLARE _fec_matrix_transform
WITH gv: globals, m : Z, n : Z, mx : list (list byte), s : val, sh: share
PRE [ tptr tuchar, tuchar, tuchar]
  PROP (0 < m <= n; n <= Byte.max_unsigned; wf_lmatrix mx m n;
    strong_inv_list m n mx; writable_share sh)
PARAMS (s; Vbyte (Byte.repr m); Vbyte (Byte.repr n))
GLOBALS (gv)
SEP (FIELD_TABLES gv;
  data_at sh (tarray tuchar (m * n)) (map Vbyte (flatten_mx mx)) s)
POST [tint]
PROP()
RETURN (Vint Int.zero)
SEP(FIELD_TABLES gv;
  data_at sh (tarray tuchar (m * n))
    (map Vbyte (flatten_mx (gauss_restrict_list m n mx)))) s).
```

Lemma
```c
body_fec_matrix_transform : semax_body Vprog Gprog.
f_fec_matrix_transform fec_matrix_transform_spec.
```
Challenge - Restricted Gaussian Elimination

- C code implements “restricted” Gaussian elimination
 - no swaps, assumes all elements in current column are nonzero
- Only works if all elements in rth column are nonzero!
- C code returns errors if this condition is violated
 - “FEC: swap rows (not done yet!)”
- Suggests that authors were unclear whether this was sufficient

\[
\begin{pmatrix}
 a & 0 & b & c \\
 0 & d & e & f \\
 0 & 0 & g & h \\
 0 & 0 & i & j \\
\end{pmatrix} \rightarrow \begin{pmatrix}
 a & 0 & 1 & c \\
 0 & d & 1 & f \\
 0 & 0 & 1 & c \\
 0 & 0 & 1 & h \\
\end{pmatrix} \rightarrow \begin{pmatrix}
 a & 0 & 0 & c - \frac{h}{g} \\
 0 & d & 0 & f - \frac{h}{g} \\
 0 & 0 & 1 & \frac{c}{h} - \frac{g}{i} \\
 0 & 0 & 0 & \frac{i}{i} - \frac{h}{g} \\
\end{pmatrix}
\]

```c
while (*q - k == 0) {
    /* if zero */
    if (w == i_max) {
        return (FEC_ERR_TRANS_FAILED); /* failed */
    }
    if (*q + (w * i_max) + i_max - 1 - k) != 0) {
        /* swap rows */
        printf("FEC: swap rows (not done yet!)\n");
        return (FEC_ERR_TRANS_SWAP_NOT_DONE); /* Not done yet */
    }
    /* ... */
}
```
Challenge - Restricted Gaussian Elimination

- Determined and proved in Coq: Restricted Gaussian Elimination equal to full Gaussian Elimination iff a certain m^2 submatrices (for $m \times n$ matrix) are all invertible
 - VERY strong condition - does not hold for identity, diagonal, triangular, etc
- In this application: run Gaussian Elim on Vandermonde matrix and submatrices of row-reduced Vandermonde matrix
- Property holds of these matrices (nontrivially) due to properties of Vandermonde matrices and polynomials
Verifying the C Code

● Difficult to verify - written over 25 years ago, never designed to be verified
● One challenge: represents matrices as 2D global arrays, partially-filled 2D local arrays, 1D arrays, pointers, and pointer to array of pointers
 ○ Need lemmas and tactics to convert between these, added to VST
● Found 1 bug
Bug in Implementation

```c
q = (p + (i * j_max) + j_max - 1);
for (n = q; n > m; n--) {
    // loop body
}
```

- In loop; when \(i = 0 \), \(m \) points to \(p - 1 \)
- \(n > m \) is undefined behavior!
- VST will not let us prove this program correct without modifying it
- VST gives strong guarantees about program behavior - no undefined behavior, no extra IO/system calls/etc
Related Work

- In **Network Function Verification**, VigNAT [Zaostrovnykh et al., SIGCOMM 2017], Vigor [Zaostrovnykh et al., SOSP 2019], and Gravel [Zhang et al., NSDI 2020] use more automated methods to verify NAT, load balancer, firewall, and more, but have restrictions on state and cannot handle things like unbounded loops.

- Various **Error-Correcting Codes** have been formalized in Coq [Affeldt et al., Journal of Automated Reasoning 2020 and others], Lean [Hagiwara et al., ISITA 2015 and Kong et al., ISITA 2018], and ACL2 [Nasser et al., Journal of Electronic Testing 2020].

- Our work is the first to connect a sophisticated ECC with a real-world, efficient implementation.
Conclusion and Future Work

- Core FEC code is fully verified (https://github.com/verified-network-toolchain/Verified-FEC)
- Ongoing - code that handles buffer and packet management (calls core FEC code)
 - Specification is much more difficult - need to deal with streams of packets and define usable spec
- Possible future work - implement incremental FEC encoding and decoding at line rate on an FPGA, verify correctness according to same functional model
- Other future projects connecting MathComp and VST (numerical methods)
Questions?

Thanks for listening!