Targeting Skewed Workloads With the Smelter Distributed Database

Jennifer Lam, Jeffrey Helt, Haonan Lu*, and Wyatt Lloyd; Princeton University and University at Buffalo*

Motivation
- Distributed DBs are not designed to handle skewed workloads, which are common in real applications.
- Leads to distributed DBs’ throughputs < single-machine DBs’ throughputs by an order of magnitude.
 -
 -
 -
- Because distributed DBs lack single-machine DBs’ throughput multipliers:
 - Local optimizations are only applicable to systems that exist on one server.
 - Short transaction lifetimes shorten the duration for which conflicting accesses are blocked.

Design Insight
- Embed a single-machine DB into a distributed DB.
- Distributed DB exploits single-machine DB’s throughput multipliers on skewed workloads.
 - Of servers, s-1 replicated cool shards run a distributed DB.
 - 1 replicated hotshard runs a single-machine DB.
- Co-locate popular, contended hotkeys on hotshard, whose throughput multipliers target the hardest part of the workload.

Challenges
- **Challenge:** guarantee process-ordered serializability WITHOUT neutralizing hotshard’s throughput.
- **Solution:** Alloy Concurrency Control Protocol.
 - Forcibly non-conflicting orders on both distributed and single-machine DBs.
 - One-Touch commit: txns touch hotshard once, hotshard unilaterally commits txns on both DBs.
- **Challenge:** replicate a single-machine DB (the hotshard) in a distributed setting WITHOUT neutralizing its performance.
- **Solution:** Welder Replication Protocol.
 - Primary replica freely executes txns, decoupled from replication and buffers results until txns are replicated to all backups.
 - Safe timestamp: regularly updated global timestamp determines which buffered txns can be safely returned.

Contributions
1. **Smelter**, the first distributed database that:
 - Scales storage capacity and throughput for non-skewed parts of a workload, and
 - Approaches the throughput of a networked, replicated single-machine DB under skewed workloads.
2. Novel **dual-DB architecture** that introduces:
 - A specialized concurrency control (CC) protocol that fuses a single-machine DB’s local CC with a distributed DB’s distributed CC, and
 - A specialized replication protocol that replicates a high-throughput single-machine database without neutralizing performance.
3. Evaluation that shows an order of magnitude better throughput than a state-of-the-art distributed database under skewed workloads.

Evaluation
- How does Smelter’s throughput compare to a baseline state-of-the-art distributed DB?
- How well does Smelter scale throughput, compared to its baseline? Baselines: CockroachDB v20.1.9, Cicada.

Implementation
- Fuses together:
 - CockroachDB (SIGMOD ’20) is an open-source, production-ready distributed DB written in Go.
 - Cicada (SIGMOD ’17) is a research single-machine DB written in C++.
 - Added networking and Welder replication.

Results
- **(a) Throughput varying skew**
 - Throughput (tps) varies with different levels of skew.
 - Uniform skew: 19K
 - Medium skew: 13K
 - High skew: 8K
- **(b) Scalability under high skew (zipf s=1.2)**
 - Throughput (tps) scales with increasing numbers of servers.
 - CockroachDB max: 83K
 - Smelter max: 48K
 - Cicada (single-machine DB) max: 8K
