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Abstract

Entry level categories – the labels people will use to
name an object – were originally defined and studied by
psychologists in the 1980s. In this paper we study entry-
level categories at a large scale and learn the first mod-
els for predicting entry-level categories for images. Our
models combine visual recognition predictions with proxies
for word “naturalness” mined from the enormous amounts
of text on the web. We demonstrate the usefulness of our
models for predicting nouns (entry-level words) associated
with images by people. We also learn mappings between
concepts predicted by existing visual recognition systems
and entry-level concepts that could be useful for improv-
ing human-focused applications such as natural language
image description or retrieval.

1. Introduction
Computational visual recognition is beginning to work.

Although far from solved, algorithms have now advanced
to the point where they can recognize or localize thousands
of object categories with reasonable accuracy [17, 4, 3, 12].
While we could predict any one of many relevant labels for
an object, the question of “What should I actually call it?” is
becoming important for large-scale visual recognition. For
instance, if a classifier were lucky enough to get the exam-
ple in Figure 1 correct, it might output grampus griseus,
while most people are more likely to simply say dolphin.

This is closely related to ideas of basic and entry level
categories formulated by psychologists such as Eleanor
Rosch [18] and Stephan Kosslyn [11]. While objects are
members of many categories – e.g. Mr Ed is a palomino,
but also a horse, an equine, an odd-toed ungulate, a placen-
tal mammal, a mammal, and so on – most people looking
at Mr Ed would tend to call him a “horse”, his entry level
category (unless they are fans of the show). More generally
such questions are very relevant to recent work on the con-
nection between computer vision outputs and (generating)
natural language descriptions of images [8, 13, 16, 14].

In this paper we consider two related problems 1) learn-
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Figure 1. Example translation between a WordNet based object
category prediction and what people might call the depicted object.

ing a mapping from specific categories – e.g., leaf nodes in
WordNet [9] – to what people are likely to call them and 2)
learning to map from outputs of thousands of noisy com-
puter vision classifiers/detectors evaluated on an image to
what a person is likely to call the image.

Our proposed methods take into account several sources
of structure and information: the structure of WordNet, fre-
quencies of word use from Google n-grams, outputs of a
large-scale visual recognition system, and large amounts of
paired image and text data. In particular, we make use of
the SBU Captioned Photo Dataset [16], which consists of 1
million images with natural language captions, as a source
of natural image naming patterns. Taken together, we are
able to study patterns for choice of basic level categories at
a much larger scale than previous psychology experiments.

On a technical level, our work is related to recent work
from Deng et al. [6] that tries to “hedge” predictions of vi-
sual content by optimally backing off in the WordNet hierar-
chy. One key difference is that our approach allows a reward
function over the WordNet hierarchy that is not monotonic
along paths from the root to leaves. This allows reward
based on factors including frequency of word use that are
not monotonic along such paths in WordNet. This also al-
lows mappings to be learned from a WordNet leaf node, l, to
natural word choices that are not along a path from l to the
root, “entity”. In evaluations, our results significantly out-
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perform those of Deng et al. [6] because although optimal
in some abstract sense, they are not optimal with respect to
how people describe image content.

Our work is also related to the growing challenge of har-
nessing the ever increasing number of pre-trained recogni-
tion systems, thus avoiding always “starting from scratch”
in developing new applications. It is wasteful not to take ad-
vantage of the CPU weeks [10, 12], months [3, 6], or even
millennia [15] invested in developing recognition models
for increasingly large labeled datasets [7, 19, 22, 5, 20].
However, for any specific end user application, the cate-
gories of objects, scenes, and attributes labeled in a par-
ticular dataset may not be the most useful predictions. One
benefit of our work can be seen as exploring the problem of
translating the outputs of a vision system trained with one
vocabulary of labels (WordNet leaf nodes) to labels in a new
vocabulary (commonly used visually descriptive nouns).

Evaluations show that our models can effectively em-
ulate the naming schemes of human observers. Further-
more, we show that using noisy vision estimates for image
content, our system can output words that are significantly
closer to human annotations than either the raw noisy vision
estimates or the results of using the state of the art hedging
system from Deng et al. [6].

1.1. Insights into Entry-Level Categories

At first glance, the task of finding the entry-level cate-
gories may seem like a linguistic problem of finding a hy-
pernym of any given word. Although there is a consider-
able conceptual connection between entry-level categories
and hypernyms, there are two notable differences:

1. Although “bird” is a hypernym of both “penguin”,
and “sparrow”, “bird” may be a good entry-level cat-
egory for “sparrow”, but not for “penguin”. This phe-
nomenon — that some members of a category are more
prototypical than others — has been discussed in Pro-
totype Theory [18].

2. Entry-level categories are not confined by (inherited)
hypernyms, in part because encyclopedic knowledge
is different from common sense knowledge. For ex-
ample “rhea” is not a kind of “ostrich” in the strict
taxonomical sense. However, due to their visual sim-
ilarity, people generally refer to a “rhea” as an “os-
trich”. Adding to the challenge is that although ex-
tensive, WordNet is neither complete nor practically
optimal for our purpose. For example, according to
WordNet, “kitten” is not a kind of “cat”, and “tulip”
is not a kind of “flower”.

In fact, both of the above points have a connection to vi-
sual information of objects, as visually similar objects are
more likely to belong to the same entry-level category. In
this work, we present the first extensive study that (1) char-
acterizes entry-level categories in the context of translating

encyclopedic visual categories to natural names that people
commonly use, and (2) provides approaches that infer entry-
level categories from a large scale image corpus, guided by
semantic word knowledge.

1.2. Paper Overview

Our paper is divided as follows. In section 2 we run ex-
periments to gather entry-level category labels directly from
people. In section 3 we learn translations between leaf node
concepts and entry-level concepts. In section 4 we propose
two models and a joint model that can take an image as in-
put and predict entry-level concepts. Finally, in section 5
we provide experimental evaluations.

2. Obtaining Natural Categories from Humans

We use Amazon Mechanical Turk to crowd source trans-
lations of ImageNet synsets into entry-level categories D =
{xi, yi | xi is a leaf node, yi is a word}. Our experiments
present users with a 2x5 array of images sampled from
an ImageNet synset, xi, and users are asked to label the
depicted concept. Results are obtained for 500 ImageNet
synsets and aggregated across 8 users per task. We found
agreement (measured as at least 3 of 8 users in agreement)
among users for 447 of the 500 concepts, indicating that
even though there are many potential labels for each synset
(e.g. Sarcophaga carnaria could conceivably be labeled as
fly, dipterous insect, insect, arthropod, etc) people have a
preference for particular entry-level categories.

This experiment expands on previous studies in psychol-
ogy [18, 11]. Cheap and easy online crowdsourcing enables
us to gather these labels for a much larger set of (500) con-
cepts than previous experiments. Furthermore, we use the
results of our experiments to automatically learn general-
izations to a substantially larger set of ImageNet synsets in
section 3.

3. Translating Encyclopedic Concepts
to Entry-Level Concepts

Our objective in this section is to discover mappings
between encyclopedic concepts (ImageNet leaf categories,
e.g. Chlorophyllum molybdites) to output concepts that are
more natural (e.g. mushroom). In section 3.1 we present an
approach that relies on the wordnet hierarchy and frequency
of words in a web scale corpus. In section 3.2 we follow an
approach that uses visual recognition models learned on a
paired image-caption dataset.

3.1. Language-Only Translation

For comparison purposes, we first consider a translation
approach that relies only on language-based information.
We hypothesize that the frequency of terms computed from



massive amounts of text on the web reflects the “natural-
ness” of concepts. We use the n-gram counts of the Google
1T corpus [2] as a proxy for term “naturalness”. Specifi-
cally, for a synset w, we quantify “naturalness” as the max-
imum log count φ(w) of all of the terms in the synset.

To control the degree of naturalness, we constrain the
translation using the hyponym/hypernym structure of Word-
Net. More specifically, we define ψ(w, v) as a function
that measures the distance between leaf node v and node
w in the hypernym structure. Then the translation function
τ(v, λ) : V 7→ W maps a leaf node v to a target node w by
maximizing a trade-off between naturalness and semantic
proximity.

τ(v, λ) = arg max
w

[φ(w)− λψ(w, v)], w ∈ Π(v) (1)

Π(v) is the set of (inherited) hypernyms including v. We
find the optimal λ based on a sub-set of translation pairs
D = (xi, yi) collected using MTurk (section 2).

Φ(D,λ) =
∑
i

1[word(τ(xi, λ)) = yi] (2)
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Figure 2. Left: shows the relationship between parameter λ and
the target vocabulary size. Right: shows the relationship between
parameter λ and agreement accuracy with human labeled synsets
evaluated against the most agreed human label (red) and any hu-
man label (cyan).

We show the relationship between λ and the size of the
output vocabulary |W | on the left side of Fig. 2 and the re-
lationship between λ and Φ(D,λ) on the right side. The
size of the output vocabulary increases monotonically with
λ. At a high level, increasing λ serves to encourage map-
pings to be close to the input node in the WordNet hier-
archy, thereby increasing the vocabulary size and limiting
the generalization of concepts. Conversely, “naturalness”,
Φ(D,λ), increases initially and then decreases as too much
specificity or generalization hurts the naturalness of the out-
puts. For example, generalizing from “grampus griseus” to
“dolphin” is good for “naturalness”, but generalizing all the
way to “entity” decreases “naturalness”. In Figure 2 the red
line shows accuracy for predicting the most agreed upon
word for a synset, while the cyan line shows the accuracy
for predicting any word collected from any user.

Input Concept Ngram-
translation 

SVM-
translation 

Human - 
translation 

1 eastern kingbird bird bird bird 
2 cactus wren bird bird bird 
3 buzzard, Buteo buteo hawk bird hawk 
4 whinchat, Saxicola rubetra chat bird bird 
6 Weimaraner dog dog dog 
7 Gordon setter dog dog dog 
8 numbat, banded anteater, anteater anteater cat anteater 
9 rhea, Rhea americana bird grass ostrich 
10 Africanized bee, killer bee, Apis mellifera bee flower bee 
11 conger, conger eel eel water fish 
12 merino, merino sheep sheep dog sheep 

13 Europ. black grouse, heathfowl, Lyrurus 
tetrix 

bird duck bird 

14 yellowbelly marmot, rockchuck, Marm. 
flaviventris 

marmot rock squirrel 

15 snorkeling, snorkel diving swimming water snorkel 

Figure 3. Translations from ImageNet leaf node synset categories
to entry level categories using our automatic approaches from sec-
tions 3.1 (Ngram-) and 3.2 (SVM-) and crowd-sourced human an-
notations from section 2 (Human-).

3.2. Visually-Informed Translation

In this approach, for a given leaf synset v we sam-
ple a set of n = 100 images s = {I1, I2, ..., In} and
each image is automatically annotated with nouns Ni =
{ni1, ni2, ..., nim} using the models learned in section 4.2.
We use the set of labels N = N1 ∪N2... ∪Nn as keyword
annotations for synset v and rank them using a TFIDF in-
formation retrieval where we consider each category v in
our experimental setting as a document for the inverse doc-
ument frequency term. We pick the most relevant keyword
for each node v as the entry-level categorical translation.

4. Predicting Entry-Level Concepts for Images
Our objective in this section is to explore approaches that

can take an image as input and predict its entry-level la-
bels. The models we propose are: 1) a method that com-
bines “naturalness” measures computed from the web with
direct estimates of visual content computed at leaf nodes
and inferred for internal nodes (section 4.1), 2) a method
that learns models for entry-level recognition from a large
collection of images with associated captions (section 4.2),
and 3) a joint method combining the two approaches (sec-
tion 4.3).

4.1. Prediction using Propagated Visual Estimates

As our first method for predicting entry level categories
for an image, we present a variation on the hedging ap-
proach [6]. In the hedging work, the output is the node with
the maximum expected reward, where the reward is mono-
tonic in the hierarchy and has been smoothed by adding a
carefully chosen constant to the reward for all nodes. In our
modification, we construct a non-monotonic reward γ based



on naturalness and a smoothing offset that is scaled by the
position in the hierarchy.

The image content for an image, I , is estimated using
trained models from [6]. These models predict presence or
absence of 7404 leaf node concepts in the ImageNet hierar-
chy. Following the approach of [6], we compute estimates
of visual content for internal nodes by hierarchically accu-
mulating all predictions below a node:1

f(v, I) =

 f̂(v, I), if v is a leaf node∑
v′∈Z(v)

f̂(v′, I), if v is an internal node

(3)
Where Z(v) is the set of all leaf nodes under node v and
f̂(v, I) is the output of a Platt-scaled decision value from a
linear SVM trained for the category corresponding to input
leaf node v. Each linear SVM is trained on sift features
with locally-constrained linear coding and spatial pooling
on a regular 3x3 grid. Following our approach from section
3.1, we define for every node in the ImageNet hierarchy
a trade-off function between “naturalness” (ngram counts)
and specificity (relative position in the wordnet hierarchy):

γ(v, λ̂) = [φ(v)− λ̂ψ̃(v)] (4)

Where ψ̃(v) = maxw∈Z(v) ψ(v, w) measures the max
height over Z(v), the set of leaf nodes under v. We param-
eterize this trade-off by λ̂.

For entry-level category prediction on images, we would
like to maximize both “naturalness” and content estimates.
For example, text based “naturalness” will tell us that both
cat and dog are good entry level categories, but a confident
visual prediction for German shepherd for an image tells us
that dog is a much better entry-level prediction than cat for
that image.

Therefore, for an input image, we want to output a set of
concepts that have a large prediction for both “naturalness”
and content estimate score. For our experiments we output
the top 5 Wordnet synsets according to:

fnat(v, I, λ̂) = f(v, I)γ(v, λ̂) (5)

fnat(v, I, λ̂) = f(v, I)[φ(v)− λ̂ψ̃(v)] (6)

As we change λ̂ we expect similar behavior to our web
based concept translations (section 3.1). Again, we can tune
λ̂ to control the degree of specificity while trying to preserve
“naturalness” using n-gram counts. We compare our frame-
work to hedging [6] for different settings of λ̂. For a side
by side comparison we modify hedging to output the top 5
synsets based on their scoring function. Here, the working
vocabulary is the unique set of predicted labels output for

1This function might bias decisions toward internal nodes. Other alter-
natives could be explored to estimate internal node scores.
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Figure 4. Relationship between average precision agreement and
working vocabulary size (on a set of 1000 images) for the hedging
method [6] (blue) and our direct translation method (red).

each method on this test set. Results demonstrate (Figure 4)
that under different parameter settings we consistently ob-
tain much higher levels of precision for predicting entry-
level categories than hedging [6].

4.2. Prediction using Supervised Learning

In the previous section we rely on wordnet structure to
compute estimates of image content, especially for inter-
nal nodes. However, this is not always a good measure of
content because: 1) The wordnet hierarchy doesn’t encode
knowledge about some semantic relationships between ob-
jects (i.e. functional or contextual relationships), 2) Even
with the vast coverage of 7404 ImageNet leaf nodes we are
missing models for many potentially important entry-level
categories that are not at the leaf level.

As an alternative, we directly train models for entry-level
categories from data where people have provided entry-
level labels – in the form of nouns present in visually de-
scriptive image captions. We postulate that these nouns
represent examples of entry-level labels because they have
been naturally annotated by people to describe what is
present in an image. For this task, we leverage the large
scale dataset of [16], containing 1 million captioned im-
ages. We transform this dataset into a setD = {X(i), Y (i) |
X(i) ∈ X, Y (i) ∈ Y}, where X = [0–1]S is an input space
of estimates of visual content for S = 7404 ImageNet leaf
node categories and Y = [0, 1]D is a set of binary output
labels for D target categories.

For estimating the presence of objects from our set of
7404 ImageNet leaf node categories we use the same mod-
els as the previous section with one additional considera-
tion. We run the classifiers on a set of bounding boxes
B = {bk} for each training image using the window selec-
tion method of [21]. We then aggregate the results across
multiple bounding boxes by max pooling of visual concepts
scores. So the feature descriptor for an image I(i) is:

X(i) = {x(i)j | x
(i)
j = max(f̂(vj , I

(i), bk)} (7)

Where f̂(vj , I
(i), bk) is the output score for the presence



tree 

snag  
shade tree  
bracket fungus, shelf fungus  
bristlecone pine, Rocky Mountain bristlecone pine, Pinus aristata  
Brazilian rosewood, caviuna wood, jacaranda, Dalbergia nigra  
redheaded woodpecker, redhead, Melanerpes erythrocephalus  
redbud, Cercis canadensis  
mangrove, Rhizophora mangle  
chiton, coat-of-mail shell, sea cradle, polyplacophore  
crab apple, crabapple  
papaya, papaia, pawpaw, papaya tree, melon tree, Carica papaya  
frogmouth  
olive, European olive tree, Olea europaea  

desk 

laptop, laptop computer  
computer keyboard, keypad  
workstation  
bookshelf  
cigarette case  
roller blind  
computer monitor  
field-emission microscope  
jackknife  
television room, tv room  
sewing room  
wallet, billfold, notecase, pocketbook  
Abyssinian, Abyssinian cat  

water 

water dog  
surfing, surfboarding, surfriding  
manatee, Trichechus manatus  
punt  
dip, plunge  
cliff diving  
fly-fishing  
sockeye, sockeye salmon, red salmon, blueback salmon, 
Oncorhynchus nerka  
sea otter, Enhydra lutris  
American coot, marsh hen, mud hen, water hen, Fulica americana  
booby  
canal boat, narrow boat, narrowboat  

Figure 5. Entry-level categories with their corresponding top
weighted leaf node features after training an SVM on our noisy
data and a visualization of weights grouped by an arbitrary cate-
gorization of leaf nodes. vegetation(green), birds(orange), instru-
ments(blue), structures(brown), mammals(red), others(black).

of the visual concept represented by the leaf node vj and
bounding box bk on image I(i).

For training our D target categories, we obtain labels
Y from the million captions by running a POS-tagger [1]
and defining Yi = [yj | image i has noun j]. The POS-
tagger helps cleans up some word sense ambiguity due to
polysemy. |D| is determined experimentally from data by
learning models for the most frequent words in this dataset.
This provides us with a target vocabulary that is both likely
to contain entry-level categories (because we expect entry-
level category nouns to commonly occur in our visual de-
scriptions) and to contain sufficient images for training ef-
fective recognition models. We use up to 10000 images for
training each model. Since we are using human labels from
real-world data, the frequency of words in our target vo-
cabulary follows a power-law distribution. Hence we only
have a very large amount of training data for a few most
commonly occurring noun concepts. Specifically, we learn
linear SVMs subject to platt scaling for each of our target
concepts. We keep 800 of the best performing models. Our
combined scoring prediction function is then (note that the
operations here are pointwise operators):

Fsvm(I,Θ) = [fsvm(vi, I, θi)] (8)

Fsvm(I,Θ) =
1

1− exp(aΘ>X + b)
(9)

R(θi) =
1

2
‖θi‖+ c

|D|∑
j=1

max(0, 1− y(j)i θ>i X
(j))2 (10)

We minimize the squared hinge-loss with `1 regularization
(eqn 10). The latter provides a natural way of modeling the
relationships between the input and output label spaces that
encourages sparseness2. See examples in Figure 5. Since
we learn each linear SVM independently, θi represents a
row in the joint matrix Θ. We fit Platt scaling parameters
a = [ai] and b = [bi] for each target label i on a held out
validation set.

One of the drawbacks of using the ImageNet hierarchy
to aggregate estimates of visual concepts (section 3) is that
it ignores more complex relationships between concepts.
Here our data-driven approach to the problem implicitly dis-
covers these relationships. For instance a concept like tree
has a co-occurrence relationship with bird that may be use-
ful for prediction. A chair is often occluded by the objects
sitting on the chair, but evidence of those types of objects,
e.g. people or cat or co-occurring objects, e.g. table can
help us predict the presence of a chair. See figure 5 for
some example learned relationships.

Given this large dataset of images with noisy visual pre-
dictions and text labels, we manage to learn quite good pre-
dictors of high-level content, even for categories with rel-
atively high intra-class variation (e.g. girl, boy, market,
house). We show some results of images with predicted
output labels for a group of images in Figure 6.

4.3. Joint Prediction

Finally, we explore methods to combine our two ap-
proaches from section 4.1 and section 4.2. We start by asso-
ciating the SVM based scores fsvm (section 4.2) to synsets
in the ImageNet hierarchy. Here we map words from our

2We find c = 0.01 to yield good results for our problem and use this
value for training all individual models.

PR curve Most confident correct predictions Most confident wrong predictions 

house 

market 

girl 

boy 

Figure 6. Sample predictions from our experiments on a test set for
each type of category. Note that image labels come from caption
nouns, so some images marked as correct predictions might not
depict the target concept whereas some images marked as wrong
predictions might actually depict the target category.



Dataset A Dataset B
Method Precision Recall N+ Precision Recall N+
Flat classifier 1.85± 0.45 0.92± 0.24 1635 2.63± 0.58 1.41± 0.32 1652
Hedging [6] 10.21± 1.10 5.44± 0.67 705 13.26± 1.46 7.55± 0.73 823
Ngram-biased Mapping 14.20± 1.28 7.60± 0.81 447 17.59± 1.36 10.11± 1.01 576
SVM Mapping 19.13± 1.91 9.95± 1.04 207 24.17± 2.63 14.27± 1.48 244
Ngram-biased + SVM 19.87± 1.21 10.44± 0.69 336 25.08± 2.37 14.42± 1.35 415

Table 1. Performance at predicting the union of labels provided by 3 Turkers on dataset A (random images) and Dataset B (images with
high confidence scores). Precision/Recall are computed per image and averaged across each dataset, computed over 10 splits.

Dataset A Dataset B
Method Precision Recall N+ Precision Recall N+
Flat classifier 0.95± 0.40 1.67± 0.89 1635 1.42± 0.43 2.37± 0.96 1652
Hedging [6] 6.28± 1.01 10.92± 1.86 705 8.96± 0.96 16.96± 2.44 823
Ngram-biased Mapping 9.06± 1.47 16.35± 2.96 447 11.66± 1.18 22.01± 2.79 576
SVM Mapping 11.85± 1.55 20.23± 2.24 207 15.93± 2.05 30.25± 3.91 244
Ngram-biased + SVM 12.68± 1.49 21.96± 2.77 336 16.95± 1.83 31.52± 3.76 415

Table 2. Performance at predicting the labels agreed upon by 2 (of 3) Turkers on dataset A (random images) and Dataset B (images with
high confidence scores). Precision/Recall are computed per image and averaged across each dataset, computed over 10 splits.

𝑓𝑠𝑣𝑚(𝑣3, 𝐼, Θ) 
𝑓𝑛𝑎𝑡 𝑣3, 𝐼, 𝜆  

𝑓𝑠𝑣𝑚(𝑣1, 𝐼, Θ) 

𝑓𝑛𝑎𝑡 𝑣1, 𝐼, 𝜆  

𝑓𝑛𝑎𝑡 𝑣2, 𝐼, 𝜆  

𝑓𝑠𝑣𝑚(𝑣4, 𝐼, Θ) 

𝑓𝑛𝑎𝑡 𝑣4, 𝐼, 𝜆  

𝑓𝑛𝑎𝑡 𝑣7, 𝐼, 𝜆  𝑓𝑠𝑣𝑚(𝑣6, 𝐼, Θ) 

𝑓𝑛𝑎𝑡 𝑣6, 𝐼, 𝜆  

𝑓𝑛𝑎𝑡 𝑣5, 𝐼, 𝜆  

Figure 7. For every node in the tree we have estimates of visual
content coming from two sources a) naturalness and hierarchical
aggregation fnat and b) supervised learning fsvm.

target nouns D to the best matching synset concept. For
each synset, v, we also associate its direct translation score,
fnat(v, I, λ̂) (section 4.1), illustrated in Fig 7. This means
that for all WordNet synsets we have a direct translation
score, and for some synsets we have a mapped SVM score
fsvm(v, I, θv) (for nodes not appearing in D we set this
score to be zero). Likewise the SVM scoring function in-
troduces some new concepts not present in the WordNet
hierarchy that have a value of zero for fnat(v, I, λ̂). We
redefine the domain of our scoring function (eqns 11 and
12) and use a parameter α to control for tradeoff between
the two models (13).

f̃nat(v) =

{
fnat(v, I, λ̂), if v ∈ dom(fnat)

0 otherwise
(11)

f̃svm(v) =

{
fsvm(v, I, θv), if v ∈ dom(fsvm)

0 otherwise
(12)

fjoint(v, α) = αf̃nat(v) + f̃svm(v) (13)

We define our prediction function that associates a set of
ImageNet nodes v1, v2, ..., vn to an input image based on
the joint scores (13) as follows:

v̂1, v̂2, ..., v̂n = argmax
v̂1,v̂2,...,v̂n

∑
i

fjoint(vi, α) (14)

This means we can select the set of n nodes that have the
highest scores. We use n = 5 and find α that minimizes
the error on the average annotation F1 score per image on a
training set of 1000 images with human labels.

5. Experimental Evaluation
We evaluate learning general translations from encyclo-

pedic to entry-level concepts (section 5.1) and predicting
entry-level concepts for images (section 5.2).

5.1. Evaluating Translations

We show sample results from each of our methods to
learn concept translations in Figure 3 (more are included
in the supplemental material). In some cases Ngram-
translation fails. For example, whinchat (a type of bird)
translates to “chat” most likely because of the inflated
counts for the most common use of “chat”. SVM trans-
lation fails when it learns to weight context words highly,
for example “snorkeling” → “water”, or “African bee” →
“flower” even when we try to account for common con-
text words using IDF. Finally, even humans are not always
correct, for example “Rhea americana” looks like an os-
trich, but is not taxonomically one. Even for categories
like “marmot” most people named it “squirrel”. Overall,
ngram translation agrees 37% of the time with human sup-
plied translations and the SVM translation agrees 21% of
the time, indicating that translation learning is non-trivial.

5.2. Evaluating Image Entry-Level Predictions
We measure the accuracy of our proposed entry-level

category prediction methods by evaluating how well we can
predict nouns freely associated with images by users on
MTurk. We select two evaluation image sets. Dataset A:
contains 1000 images selected at random from the million
image dataset. Dataset B: contains 1000 images selected
from images displaying high confidence in concept predic-
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Figure 8. Example translations. 1st col shows images. 2nd col shows MTurk associated nouns. These represent the ground truth annotations
(entry-level categories) we would like to predict (colored in blue). 3rd col shows predicted nouns using a standard multiclass flat-classifier.
4th col shows nouns predicted by the method of [6]. 5th col shows our n-gram based method predictions. 6th col shows our SVM mapping
predictions and finally the 7th column shows the labels predicted by our joint model. Matches are colored in green. Tables 1,2 show the
measured improvements in recall and precision. We provide more examples in supplemental material.



tions. Both sets are completely disjoint from the sets of im-
ages used for learning. For each image, we instruct 3 users
on MTurk to write down any nouns that are relevant to the
image content. Because these annotations are free associa-
tions we observe a large and varied set of associated nouns –
3610 distinct nouns total in our evaluation sets. This makes
noun prediction extremely challenging!

We evaluate prediction of all nouns associated with an
image by Turkers (Table 1) and prediction of nouns as-
signed by at least 2 of 3 Turkers (Table 2). Here N+ refers
to the working vocabulary of the method – the total num-
ber of unique words output by the method for the given test
set. For reference we compute the precision of one human
annotator against the other two and found that on Dataset
A humans were able to predict what the previous annota-
tors labeled with 0.35 precision and with 0.45 precision for
Dataset B.

Results show precision and recall for prediction on each
of our Datasets, comparing: leaf node classification per-
formance (flat classifier), the outputs of hedging [6], and
our proposed entry-level category predictors (ngram-biased
mapping, SVM mapping, and a joint model). Performance
at this task on Set B is in general better than performance on
Dataset A, because Dataset B contains images which have
confident classifier scores. Surprisingly their difference in
performance is not extreme and performance on both sets is
admirable for this challenging task.

On all datasets and tasks we find the joint model to per-
form the best (section 4.3), followed by supervised predic-
tion (section 4.2), and propagated prediction (section 4.1).
In addition, we greatly outperform both leaf node classifica-
tion and the hedging technique [6] (approximately doubling
their performance on this task).

6. Conclusion
Results indicate that our inferred concept translations are

meaningful and that our models are able to predict entry-
level categories – the words people use to describe image
content – for images. These methods could apply to many
different end-user applications that require recognition out-
puts that are useful for human consumption, including tasks
related to description generation and retrieval.
Acknowledgments: This work was supported by NSF Ca-
reer Award #1054133 and NSF Award #1161876.
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