
Large-Scale Object Classification using Label
Relation Graphs: Supplemental Material

Jia Deng†∗, Nan Ding∗, Yangqing Jia∗, Andrea Frome∗, Kevin Murphy∗,
Samy Bengio∗, Yuan Li∗, Hartmut Neven∗, Hartwig Adam∗

University of Michigan†, Google Inc.∗

1 Proofs

We provide all proofs in this section. The numbering of definitions, theorems
and lemmas is the same as in the main paper.

1.1 Hierarchy and Exclusion (HEX) Graphs

Definition 1. A HEX graph G = (V,Eh, Ee) is a graph consisting of a set
of nodes V = {v1, . . . , vn}, directed edges Eh ⊆ V × V , and undirected edges
Ee ⊆ V × V , such that the subgraph Gh = (V,Eh) is a directed acyclic graph
(DAG) and the subgraph Ge = (V,Ee) has no self loop.

Definition 2. An assignment (state) y ∈ {0, 1}n of labels V in a HEX graph
G = (V,Eh, Ee) is legal if for any (yi, yj) = (1, 1), (vi, vj) 6∈ Ee and for any
(yi, yj) = (0, 1), (vi, vj) 6∈ Eh. The state space SG ⊆ {0, 1}n of graph G is the
set of all legal assignments of G.

We now introduce some notations for further development. Let α(vi) the set
of all ancestors of vi ∈ V and ᾱ(vi) = α(vi) ∪ vi (ancestors and the node itself).
Let σ(vi) be the set of all descendants of vi ∈ V and σ̄(vi) = σ(vi)∪vi. Let ε(vi)
be the set of exclusive nodes, those sharing an exclusion edge with vi. Let o(vi)
be the set of overlapping nodes, those sharing no edges with vi. Depending on
the context we will add a subscript such as αG(v) to emphasize that it is w.r.t.
to graph G.

Consistency

Definition 3. A HEX graph G = (V,Eh, Ee) is consistent if for any label vi ∈
V , there exists two legal assignments y, y′ ∈ {0, 1}n such that yi = 1 and y′i = 0.

Proposition 1. Let vi be a node of the HEX graph G = (V,Eh, Ee). If Ee ∩
ᾱ(vi) × ᾱ(vi) = ∅, then there exists y ∈ SG such that yk = 1,∀vk ∈ ᾱ(vi) and
yl = 0,∀vl ∈ V \ ᾱ(vi).

2 Deng et al.

Proof. We need to show that y is legal, i.e. no constraint is violated. For those
labels with value 1, i.e. vi and its ancestors, there is no violation for hierarchy
edges because a violation requires a value 0. Since there is no exclusion edges
between them per our assumption, there is no violation on exclusion edges either.
For those labels with value 0, there is no violation because any violation requires
a value 1. The only possibility of violation is between the labels with value 1
and the labels with value 0, i.e. between vi plus its ancestors and the rest of the
labels. It cannot violate any exclusion edge because violation needs two 1s. So it
can only violate hierarchy edges. A violation of a hierarchy edge can only happen
if a label with value 0 is an ancestor of a label with value 1, i.e. an ancestor of
vi. But all ancestors of vi has value 1 so a violation is not possible. ut

Theorem 1. A HEX graph G = (V,Eh, Ee) is consistent if and only if for any
label vi ∈ V , Ee ∩ ᾱ(vi)× ᾱ(vi) = ∅.

Proof. We first prove one direction by contradiction. Assume to the contrary that
there exists a label vi ∈ V such that there exists (vk, vl) ∈ Ee ∩ ᾱ(vi) × ᾱ(vi).
Because G has no self loop, vk 6= vl. For any legal assignment y ∈ SG, if vi takes
value 1, i.e. yi = 1, all labels in ᾱ(vi) must take value 1 because otherwise it
causes a violation of the hierarchy edges. This means that vk and vl must both
take value 1. Since (vk, vl) ∈ Ee, this makes y illegal, causing a contradiction.

Now we prove the other direction. Suppose for any label vi ∈ V , Ee∩ ᾱ(vi)×
ᾱ(vi) = ∅. We want to show that for any label vi ∈ V , there exists legal assign-
ments y, y′ ∈ {0, 1}n such that yi = 1 and y′i = 0. First it is easy to verify that
the assignment y′ = (0, . . . , 0) does not violate any edges, because any violation
requires a value 1 on at least one label. So we only need to show that there exists
a legal assignment y such that yi = 1. We can construct y by setting ᾱ(vi), i.e. yi
and α(yi), to 1 and setting V \ᾱ(vi), i.e. all other labels to 0. Then Proposition 1
implies that y is legal. ut

1.2 Efficient Inference

Equivalence Two HEX graphs are equivalent if they have the same state space:

Definition 4. HEX graphs G and G′ are equivalent if SG = SG′ .

Definition 5. Given a graph G = (V,Eh, Ee), a directed edge e ∈ V × V (not
necessarily in Eh) is redundant if G′ = (V,Eh \ {e}, Ee) and G′′ = (V,Eh ∪
{e}, Ee) are both equivalent to G. An undirected edge e ∈ V ×V (not necessarily
in Ee) is redundant if G

′ = (V,Eh, Ee \{e}) and G′′ = (V,Eh, Ee∪{e}) are both
equivalent to G.

Lemma 1. Let G = (V,Eh, Ee) be a consistent graph. A directed edge e ∈ V ×V
is redundant if and only if in the subgraph G = (V,Eh) there exists a directed path
from vi to vj and the path doesn’t contain e. An undirected edge e = (vi, vj) ∈
V ×V is redundant if and only if there exists an exclusion edge e′ = (vk, vl) ∈ Ee
such that vk ∈ ᾱ(vi), vl ∈ ᾱ(vj) and e 6= e′.

Large-Scale Object Classification using Label Relation Graphs 3

Proof. We first prove the claim about directed edges. We start with showing
that if there exists an alternative path, then the edge is redundant. Obviously
adding this edge to a graph without this edge does not enlarge the state space
because there are more constraints in the new graph. Also adding the edge does
not shrink the state space because every legal assignment in the original state
space does not violate this new edge—otherwise it would violate the constraints
on the alternative path in the original graph. Now, if a graph has this edge,
removing it cannot change the state space because it would contradict with
what we just proved—adding the edge back does not change the state space.
We now prove the other direction: if the edge (vi, vj) is redundant, then there
must exists an alternative path from vi to vj . Let’s denote G as the graph
that contains the edge and G′ with the edge removed. Assume to the contrary
that there is no such a path. Thus vi is not vj ’s ancestor, i.e. vi 6∈ α(vj). Let
y ∈ {0, 1}n be an assignment where (yi, yj) = (0, 1), yl = 1,∀vl ∈ α(vj), and
yk = 0,∀vk ∈ V \ ({vi, vj} ∪ α(vj)), i.e. we set vj and its ancestors to 1 and all
other nodes to 0. Now assignment y must be a legal assignment of G′ according
to Proposition 1 because G′ is consistent. But y is illegal for G due to the edge
(vi, vj), which contradicts the assumption that the edge is redundant and G and
G′ are equivalent.

Now we prove the claim about undirected edges. We start with showing that
if there exists an alternative exclusion edge among the node and its ancestors,
then the edge is redundant. Obviously adding this edge to a graph without this
edge does not enlarge the state space because there are more constraints in the
new graph. Also adding this edge does not shrink the state space because every
legal assignment in the original state space does not violate this new edge—
otherwise both nodes of this new edge as well as the ancestors of both nodes
must be 1, violating the alternative exclusion edge. Now, if a graph has this edge,
removing it cannot change the state space because it would contradict with what
we just proved—adding the edge back does not change the state space. We now
prove the other direction: if the edge (vi, vj) is redundant, then there exists
an alternative exclusion edge between ᾱ(vi) and ᾱ(vj). Let’s denote G as the
graph that contains the edge and G′ with the edge removed. Assume to the
contrary that there is no such an alternative exclusion edge. We now construct
an assignment y ∈ {0, 1}n as follows: set ᾱ(vi) ∪ ᾱ(vj) to 1 and set the rest of
the nodes to 0. Then y is legal for G′ because (1) there are no exclusion edges
among ᾱ(vi) or among ᾱ(vj) as G′ is consistent, (2) there are no exclusion edges
between ᾱ(vi) and ᾱ(vj) per our assumption, (3) there are no other violations by
the same argument in Proposition 1. But y is illegal for G due to the exclusion
edge (vi, vj). This contradicts the assumption that G and G′ are equivalent. ut

Definition 6. A graph G is minimally sparse if it has no redundant edges. A
graph G is maximally dense if every redundant edge is in G.

Proposition 2. For a consistent graph G = (V,Eh, Ee) and any two nodes
vi, vj, there exists a directed path from vi to vj in the subgraph (V,Eh) if and
only if the assignment y ∈ {0, 1}n, where yk = 1,∀vk ∈ ᾱ(vj) \ {vi} and yl =
0,∀yl 6∈ ᾱ(vj) \ {vi}, is illegal.

4 Deng et al.

Proof. If there exists a path from vi to vj , then it is trivial that the assignment
is illegal. We thus prove the other direction. Suppose that there doesn’t exists
a path from vi to vj . Then ᾱ(vj) \ {vi} = ᾱ(vj) and the assignment must be
legal because there cannot be any violation between the nodes with value 1 as
the graph is consistent. There cannot be any violation between the nodes with
value 1 and those with value 0 because it would imply that one ancestor of vj is
assigned value 0. There cannot be a violation between nodes of value 0 because
any violation requires at least one value 1. ut

Proposition 3. For a consistent graph G = (V,Eh, Ee) and any two nodes
vi, vj, there exists an edge e ∈ Ee ∩ ᾱ(vi) × ᾱ(vj) if and only if the assignment
y ∈ {0, 1}n, where yk = 1,∀vk ∈ ᾱ(vi)∪ ᾱ(vj) and yl = 0,∀yl 6∈ ᾱ(vi)∪ ᾱ(vj), is
illegal.

Proof. If there exists an edge e ∈ Ee ∩ ᾱ(vi) × ᾱ(vj), then it is trivial that the
assignment is illegal because the exclusion edge is violated. We thus prove the
other direction. Suppose that there doesn’t exists an edge e ∈ Ee∩ ᾱ(vi)× ᾱ(vj).
Thus the only possible exclusion edges between labels with value 1 are within
ᾱ(vi) or within ᾱ(vj). But this is impossible because the graph is consistent.
So there is no violation between labels with value 1. Also there cannot be any
violation between the nodes with value 1 and those with value 0 because it
would imply that one ancestor of vj or vi is assigned value 0. There cannot be
a violation between nodes of value 0 because any violation requires at least one
value 1. Thus y is legal. ut

Proposition 4. For two consistent and equivalent graphs G = (V,Eh, Ee) and
G′ = (V,E′h, E

′
e), if there exists a directed path from vi to vj in (V,Eh), then

must also be a path (not necessarily identical) from vi to vj in (V,E′h).

Proof. This is a direct consequence of Proposition 2 because otherwise would be
an assignment that is legal in G′ but illegal in G, contradicting the assumption
that G and G′ are equivalent. ut

Proposition 5. For two consistent and equivalent graphs G = (V,Eh, Ee) and
G′ = (V,E′h, E

′
e), if there exists an edge e ∈ Ee ∩ ᾱG(vi) × ᾱG(vj), then there

also exists an edge e′ ∈ E′e ∩ ᾱG′(vi)× ᾱG′(vj).

Proof. This is a direct consequence of Proposition 3 because otherwise would be
an assignment that is legal in G′ but illegal in G, contradicting the assumption
that G and G′ are equivalent. ut

Theorem 2. For any consistent graphs G and G′ that are both minimally sparse
(or maximally dense), if SG = SG′ , then G = G′.

We first prove uniqueness of minimally sparse graphs. Assume to the contrary
that G 6= G′. Since their state spaces are the same so their nodes must be the
same and they can only differ in the edges. We thus show that any difference
between edges of the two graphs would lead to a contradiction.

Large-Scale Object Classification using Label Relation Graphs 5

We first consider hierarchy edges. Let G = (V,Eh, Ee) and G′ = (V,E′h, E
′
e).

Let eh = (vi, vj) ∈ Eh but eh 6∈ E′h, i.e. a hierarchy edge that appears in G but
not G′. According to Proposition 4, there must be a path from vi to vj in G′.
Since the edge (vi, vj) is not in G′, there must be a path via a third node vk.
Again applying Proposition 4, there thus must be a path from vi to vk and a path
from vk to vj in G as well. The path from vi to vk in G cannot contain (vi, vj)
because otherwise it would mean that there is path from vj to vk, forming a
loop between vj and vk in G. Also, the path from vk to vj cannot contain (vi, vj)
because otherwise it would mean that there is a path from vk to vi, forming a
loop between vi and vk in G. Thus the path from vi to vj in G cannot contain the
edge eh = (vi, vj), making eh redundant in G and contradicting the assumption
that G is minimally sparse.

We next consider exclusion edges. Let G = (V,Eh, Ee) and G′ = (V,E′h, E
′
e).

Let ee = (vi, vj) ∈ Ee but ee 6∈ E′e, i.e. an exclusion edge that appears in
G but not G′. Per Proposition 5, there must be an exclusion edge (vk, vl) ∈
E′e ∩ ᾱG′(vi) × ᾱG′(vj) in G′. Per Proposition 4, vk ∈ ᾱG(vi) and vl ∈ ᾱG(vj).
Since ee 6∈ E′e, thus (vk, vl) 6= (vi, vj), which implies that (vi, vj) is redundant
and present in G, which contradicts that G is minimally sparse.

We now prove uniqueness of maximally dense graphs. Let G and G′ be con-
sistent, equivalent, and maximally dense. We first show that any hierarchy edge
eh = (vi, vj) in G must also be in G′. This is because there must be a directed
path from vi to vj in G′ per Proposition 4. Then eh = (vi, vj) must also be in
G′ because otherwise eh is a redundant but absent edge of G′, which contradicts
the assumption that G′ is maximally dense.

We next show that any exclusion edge ee = (vi, vj) in G must also be in
G′. First there must be an exclusion edge e′e ∈ E′e between ᾱG′(vi) and ᾱG′(vj)
per Proposition 5. If ee is not in G′, then ee 6= e′e and ee is redundant in G′,
contradicting the assumption that G′ is maximally dense. ut

Definition 7. The maximum overlap of a consistent graph G = (V,Eh, Ee) is
ΩG = maxv∈V |oḠ(v)|, where oḠ(v) = {u ∈ V : (u, v) 6∈ Ēh∧(v, u) 6∈ Ēh∧(u, v) 6∈
Ēe} and Ḡ = (V, Ēh, Ēe) is the maximally dense equivalent of G.

Proposition 6. An induced subgraph G′ of a consistent graph G is consistent.

Proof. Assume to the contrary that G′ is not consistent. Per Theorem 1, there
must exist a node vi with an exclusion edge among vi and its ancestors in G′.
The same graph structure must also be present in G because G′ is an induced
subgraph. Thus G is not consistent, which is a contradiction. ut

Proposition 7. An induced subgraph G′ of a consistent and maximally dense
graph G is also consistent and maximally dense.

Proof. Per Proposition 6 G′ must be consistent. Assume to the contrary that
G′ is not maximally dense. Then there must be a redundant edge of G′ that is
absent in G′. This edge must also be redundant and absent in G because the
graph structure (Lemma 1) that makes it redundant in G′ remains in G. But
this is a contradiction. ut

6 Deng et al.

Proposition 8. If G′ is an induced subgraph of a consistent, maximally dense
graph G, then ΩG′ ≤ ΩG.

Proof. Per Proposition 6 and 7, G′ is also consistent and maximally dense, so
we just need to compare maxv∈V ′ |oG′(v)| and maxv∈V |oG(v)|. Because G′ is
an induced subgraph of G, every edge not in G′ is also not in G. Thus ∀v ∈
V ′, |oG′(v)| ≤ |oG(v)|. It follows that maxv∈V ′ |oG′(v)| ≤ maxv∈V |oG(v)| since
V ′ ⊆ V . ut

Proposition 9. Let vi ∈ V be an arbitrary node of a consistent and maximally
dense graph G = (V,Eh, Ee), then V is a disjoint union of {vi}, α(vi), σ(vi),
ε(vi), and o(vi).

Proof. First it is trivial to verify that any node v ∈ V must belong to at least one
of the sets {vi}, α(vi), σ(vi), ε(vi), and o(vi). We only need to show that these sets
do not intersect. Obviously {vi} doesn’t intersect any of the rest by definition.
The ancestors α(vi) and descendants σ(vi) cannot intersect because they would
lead a directed loop. The ancestors cannot intersect with the exclusive nodes ε(vi)
because otherwise it would make G inconsistent per Theorem 1. The ancestors
cannot intersect with the overlapping nodes o(vi) because otherwise there would
be a redundant but absent edge per Lemma 1 and G is not maximally dense.
The descendants σ(vi) cannot intersect with the exclusive nodes ε(vi) because
otherwise it makes G inconsistent. The descendants σ(vi) cannot intersect with
the overlapping nodes o(vi) because otherwise there would be a redundant but
absent edge per Lemma 1 and G is not maximally dense. Finally, the exclusive
nodes ε(vi) cannot intersect with the overlapping nodes o(vi) by definition. ut

Proposition 10. Let vi ∈ V be an arbitrary node of G = (V,Eh, Ee), V
0 =

α(vi) ∪ ε(vi) ∪ o(vi) be the set of ancestors, exclusive nodes and overlapping
nodes, and V 1 = σ(vi) ∪ o(vi) be the set of descendants and overlapping nodes.

Let G0 = G[V 0] be the subgraph of G induced by V 0. Let S0
G = {y ∈ {0, 1}n :

yi = 0
∧
yσ(vi) = 0

∧
yV 0 ∈ SG0}, i.e. assignments with node vi and its descen-

dants set to zero and the rest of values taken from the legal assignments of the
subgraph G0.

Let G1 = G[V 1] be the subgraph of G induced by V 1. Let S1
G = {y ∈ {0, 1}n :

yi = 1
∧
yα(vi) = 1

∧
yε(vi) = 0

∧
yV 1 ∈ SG1}, i.e. assignments with node vi set

to 1, its ancestors set to 1, its exclusive nodes set to 0, and the rest of values
taken from the legal assignments of the subgraph G1.

If G is consistent and maximally dense, then SG = S0
G∪S1

G and S0
G∩S1

G = ∅.

Proof. It is trivial to show that S0
G ∩S1

G = ∅ because the node vi takes different
values. So we only need to show SG = S0

G ∪ S1
G.

We first show SG ⊆ S0
G ∪ S1

G. Let y ∈ SG be a legal assignment. We first
consider the case of yi = 0. In this case, all descendants of vi must take value
0. Per Proposition 9, the rest of the nodes are V 0. Since y is legal for G, thus
yV 0 ∈ SG0 , i.e. yV 0 must be legal for G[V 0] because yV0 cannot violate the
constraints in G[V 0], which are a subset of constraints of G. Thus y ∈ S0

G if

Large-Scale Object Classification using Label Relation Graphs 7

yi = 0. We now consider the case of yi = 1. In this case, all ancestors must take
value 1 and all exclusive nodes must take value 0. Per Proposition 9, the rest of
the nodes are V 1. Since y is legal for G, thus yV 1 ∈ SG1 , i.e. yV 1 must be legal for
G[V 1] because yV1 cannot violate the constraints in G[V 1], which are a subset
of constraints of G. Thus y ∈ S1

G if yi = 1. It then follows that SG ⊆ S0
G ∪ S1

G.
We now show SG ⊇ S0

G ∪ S1
G. To do this, we first show SG ⊇ S0

G and then
show SG ⊇ S1

G.
Let y ∈ S0

G. We just need to verify that y ∈ SG. Since yV 0 is legal for G[V 0],
y cannot violate any constraints among the nodes of V 0 in G as G[V 0] is an
induced subgraph of G. Per Proposition 9, the rest of the nodes V \ V 0 consists
of vi and its descendants σ(vi). There are no violations of constraints between
V \ V 0 because they are all zero. There are no violations of constraints between
V \ V 0 and V 0 because a violation would require a hierarchy edge from a node
in V \ V 0 to a node in V 0, which is impossible because all descendants of vi are
in V \ V 0. Thus y ∈ SG and SG ⊇ S0

G.
We now show SG ⊇ S1

G. Let y ∈ S1
G. We just need to verify that y ∈ SG.

Since yV 1 is legal for G[V 1], y cannot violate any constraints among the nodes
of V 1 in G as G[V 1] is an induced subgraph of G. Per Proposition 9, the rest
of the nodes V \ V 1 consists of vi and its ancestors α(vi) and exclusive nodes
ε(vi). There are no violations of constraints among V \ V 1 because all ancestors
are 1, all exclusive nodes are 0, and the G is consistent. There are no violations
of constraints between V \ V 1 and V 1 because a violation would require either
(1) an exclusion edge (vi, vk) for some vk ∈ V 1, or (2) a hierarchy edge from
ε(vi) to a node vk ∈ V 1, or (3) an exclusion edge between α(vi) and a node vk
in V 1. It is easy to verify that case (1) is impossible by definition and case (2)
and (3) are also impossible because if such a node vk ∈ V 1 exists, then (vi, vk) is
a redundant but absent exclusion edge of G, contradicting that G is maximally
dense. Thus y ∈ SG and SG ⊇ S1

G. ut
Theorem 3. For a consistent graph G = (V,Eh, Ee), |SG| ≤ (|V |−ΩG+1)2ΩG .

Proof. Let Ḡ be the maximally dense equivalent of G. Then by definition ΩG =
ΩḠ and SG = SḠ. We thus only need to prove this theorem for a consistent and
maximally dense G and it then applies for any consistent graph G. So without
any loss of generality, we now assume that G is also maximally dense.

We prove by induction. First the claim trivially holds when G = ∅.
Suppose the claim holds for any G′ = (V ′, E′h, E

′
e) such that |V ′| < |V |. Let

vi ∈ V be the node that achieves the maximum overlap in G, i.e.

ΩG = |oG(vi)|. (1)

Given vi, let V 0, V 1, G0, G1, S0
G, S

1
G be the same as defined in Proposition 10.

Since |V 0| < |V | and |V 1| < |V | as vi is excluded from both, the induction
hypothesis implies that

|SG0 | ≤ (|V 0| −ΩG0 + 1)2ΩG
0

= (|αG(vi)|+ |εG(vi)|+ |oG(vi)| −ΩG0 + 1)2ΩG
0

(Proposition 9)

≤ (|αG(vi)|+ |εG(vi)|+ 1)2ΩG (Proposition 8),

8 Deng et al.

Algorithm 1 Listing state space

1: function ListStateSpace(graph G)
2: if G = ∅ then return ∅
3: end if
4: Let G = (V,Eh, Ee) and n = |V |.
5: Pick an arbitrary vi ∈ V .
6: V 0 ← α(vi) ∪ ε(vi) ∪ o(vi).
7: G0 ← G[V 0]
8: SG0 ← ListStateSpace(G0)
9: S0

G ← {y ∈ {0, 1}n : yi =
0
∧
yσ(vi) = 0

∧
yV 0 ∈ SG0}.

10: V 1 ← σ(vi) ∪ o(vi).
11: G1 ← G[V 1]
12: SG1 ← ListStateSpace(G1)
13: S1

G = {y ∈ {0, 1}n : yi =
1
∧
yα(vi) = 1

∧
ε(vi) = 0

∧
yV 1 ∈

SG1}
14: return S0

G ∪ S1
G.

15: end function

and

|SG1 | ≤ (|V 1| −ΩG1 + 1)2ΩG
1

= (|σG(vi)|+ |oG(vi)| −ΩG1 + 1)2ΩG
1

(Proposition 9)

≤ (|σG(vi)|+ 1)2ΩG (Proposition 8).

Per Proposition 10,

|SG| = |S0
G|+ |S1

G|
= |SG0 |+ |SG1 |
≤ (|αG(vi)|+ |εG(vi)|+ 1)2ΩG + (|σG(vi)|+ 1)2ΩG

= (|αG(vi)|+ |εG(vi)|+ |σG(vi)|+ 2)2ΩG

= (|αG(vi)|+ |εG(vi)|+ |σG(vi)|+ |oG(vi)|+ 1− |oG(vi)|+ 1)2ΩG

= (|V | −ΩG + 1)2ΩG (Proposition 9 and Eqn. 1).

ut

Lemma 2. If graph G = (V,Eh, Ee) is consistent and maximally dense, then
Algorithm 1 runs in O ((|V |+ |Eh|+ |Ee|)|SG|). time and returns the state space
SG.

Proof. We first prove by induction the correctness of Algorithm 1, i.e. it returns
SG. If the graph is empty, then the correctness trivially holds. Suppose the claim
holds for any graph G′ = (V ′, E′h, E

′
e) where |V ′| < |V |. Since |V 0| < |V | and

V 1| < |V | as vi is excluded, SG0 and SG1 in Algorithm 1 are the state spaces for
G0 and G1 per the induction hypothesis. Then Proposition 10 implies that the
algorithm returns SG.

We now prove that the running time T (G) is O(|SG|). First it is easy to verify
that there exists a constant c > 0 such that for any graph G Algorithm 1 can
be implemented such that

T (∅) = c,

Large-Scale Object Classification using Label Relation Graphs 9

and

T (G) ≤ c(|V |+ |Eh|+ |Ee|) (Line 2-7, Line 10,11)

+T (G0) + T (G1) (Line 8,12).

Note that Line 9, 13, 14 can be implemented with a cost O(|V |) (i.e. independent
of |S0

G| and |S1
G|) because we can return the state space as a binary tree instead

of a list. In this case, Line 2 returns one empty node. Line 9 (Line 13) fills its
padding values into the root node of the binary tree returned at Line 8 (Line
12). Line 14 creates a new node and links the binary tree returned at Line 8
(Line 12) as the left (right) child. To generate a list of the state space of G, we
simply traverse the binary tree and the cost is O(|V ||SG|), which is the lower
bound because the lengh of each assignment is |V |.

We prove by induction the following claim: for any graph G 6= ∅,

T (G) ≤ c(|V |+ |Eh|+ |Ee|)(2|SG| − 1). (2)

If |V | = 1, the claim is trivially true as G0 and G1 are empty. Suppose the claim
holds for any graph G′ = (V ′, E′h, E

′
e) where 1 ≤ |V ′| < |V |. Since |V 0| < |V |

and V 1| < |V | as vi is excluded,

T (G) ≤ c(|V |+ |Eh|+ |Ee|) + T (G0) + T (G1)

≤ c(|V |+ |Eh|+ |Ee|)
+c(|V 0|+ |E0

h|+ |E0
e |)(2|SG0 | − 1)

+c(|V 1|+ |E1
h|+ |E1

e |)(2|SG1 | − 1)

≤ c(|V |+ |Eh|+ |Ee|)(2|SG0 |+ 2|SG1 | − 1)

= c(|V |+ |Eh|+ |Ee|)(2|SG| − 1) (Proposition 10).

Thus T (G) = O ((|V |+ |Eh|+ |Ee|)|SG|). ut

Lemma 3. If G′ is an induced subgraph of a consistent, maximally dense graph
G, then |SG| ≥ |SG′ |.

Remark 1. This lemma states that any subgraph induced on a consistent and
maximally dense graph has an equal or smaller state space. This fact may look
trivial but is not true for arbitrary graphs as a subgraph may have fewer con-
straints than a full graph. See Sec. 2.3 in this supplemental material for counter-
examples.

Proof. Let G = (V,Eh, Ee) and G′ = (V ′, E′h, E
′
e). Let y′ be an arbitrary legal

assignment y′ ∈ SG′ . Let V 1 = {vi ∈ V ′ : y′i = 1} and V 0 = {vi ∈ V ′ : y′i = 0}.
Let A = ∪iᾱG(vi). We construct a new assignment y such that yA = 1 and
yV \A = 0, i.e. setting all nodes in A to 1 and the rest to 0.

We first show that yV ′ = y′ because (1) yV 1 = 1 since V 1 ⊆ A by definition
and (2) yV 0 = 0 since otherwise there exists a node vk ∈ V 0 (i.e. y′k = 0) such

10 Deng et al.

Algorithm 2 Exact Inference

Input: Graph G = (V,Eh, Ee).
Input: Scores f ∈ R|V |.
Output: Marginals, e.g. Pr(vi = 1).
1: G∗ ← Sparsify(G)
2: Ḡ← Densify(G)
3: T ←BuildJunctionTree(G∗).

4: For each clique c ∈ T ,
Sc ←ListStateSpace(Ḡ[c]).

5: Perform (two passes) message passing
on T using only states Sc for each
clique c.

that yk = 1, i.e. vk ∈ ᾱG(vl) for some vl ∈ V 1 (i.e. y′l = 1), meaning that (vk, vl)
is redundant in G per Lemma 1 and must be present in G per the fact that G
is maximally dense, further implying that (vk, vl) ∈ E′h with (y′k, y

′
l) = (0, 1),

which contradicts the assumption that y′ ∈ SG′ . Thus a constructed assignment
based on y′ will be different if y′ is different. Thus to prove the claim, we just
need to show that every constructed assignment is legal for G.

Next we show that there cannot be any constraint violations for G between
nodes in A. Assume to the contrary that an exclusion edge (vi, vj) is violated.
Now consider σ̄G(vi)∩ V 1 and σ̄G(vj)∩ V 1, both of which cannot be empty per
the definition of A. If σ̄G(vi) ∩ V 1 = σ̄G(vj) ∩ V 1 it causes a contraction with
the assumption that G is consistent. If σ̄G(vi) ∩ V 1 6= σ̄G(vj) ∩ V 1, then there
exist vk ∈ σG(vi) ∩ V 1 and vl ∈ σG(vj) ∩ V 1 such that vk 6= vl, which means
that the undirected edge (vk, vl) is redundant and must be present in G since G
is maximally dense. Thus the exclusion edge (vk, vl) must also be present in G′.
This contracts with the assumption that y′ ∈ SG′ .

We also show that there cannot be any constraint violations for G between
A and V \A, because otherwise there exists a hierarchy edge (vi, vj) ∈ Eh where
vi ∈ V \A and vj ∈ A, implying that vi ∈ A, which contradicts that vi ∈ V \A.
Finally there cannot be any violation among V \A because all values are 0. ut

Theorem 4. The complexity of the exact inference (Line 5 in Algorithm 2) for
graph G = (V,Eh, Ee) is O

(
min{|V |2w, |V |22ΩG}

)
, where w is the width of the

junction tree T (Line 3).

Proof. The computation at a clique c is O(|V |2ΩG) because |Sc| ≤ |SG| ≤ (|V |+
1)ΩG per Lemma 3 and Theorem 3. It is a standard result that a junction without
redundancy has at most |V | cliques (redundant cliques can simply be removed).
Thus the total computation is O(|V |22ΩG). At the same time, standard results
on junction trees show that the total computation is O(|V |2w). ut

Remark 2. The bound in Theorem 4 is a worst case bound as it does not make
assumptions on how the junction tree is built. If in choosing a junction tree we
always include as a candidate the junction tree with only one clique, then the
bound can be improved to O

(
min{|V |2w, |V |2ΩG}

)
per Theorem 3.

Large-Scale Object Classification using Label Relation Graphs 11

2 Discussions

In this section we discuss certain technical issues in more detail.

2.1 The importance of consistency

Consistency is important because inconsistent graphs will break some key results
that our algorithms rely on.

1 2

3 4

Fig. 1. An inconsistent HEX graph where Lemma 1 does not hold.

For example, consider Fig. 1. Here v3 is a “dead” node, thus making the edge
(v3, v4) redundant because v3 is always zero and cannot conflict with v4. But the
graph structure stated in Lemma 1 cannot detect this redundant edge.

1 2

3

4 5

1 2

3

4 5

Fig. 2. Equivalent, minimally sparse but inconsistent HEX graphs where Theorem 2
does not hold.

Another example is in Fig. 2. Here v3, v4, v5 are always 0 due to the inconsis-
tency. It is easy to verify that the two graphs are equivalent. Also both graphs
are minimally sparse because no edge can be removed without changing the state
space. However, the two graphs are not the same and thus Theorem 2 does not
apply.

2.2 Softmax as a special case

If we use a HEX graph with pairwise exclusion edges and no hierarchy edges,
i.e. all nodes are mutually exclusive, it is easy to verify that our classification

12 Deng et al.

model is equivalent to the popular softmax (or multinomial regression) up to an
additional constant 1 in the denominator.

Pr(yi = 1|x) = efi/(1 +
∑
j

efj)

This additional constant corresponds to the one extra class “none of the above”.
It makes no practical difference because we can simply add a fixed bias to each
score and the constant will effectively go away as the bias approaches infinity.
In addition, in a standard multiclass setting we never observe the class “none
of the above” during training and testing. This additional constant thus has no
effect on the optimal decision boundary because the prediction only depends on
the relative strength of the scores. Empirically we have observed no noticeable
change of results in our experiments.

2.3 Counter-example of Lemma 3 under different conditions

1

2

3 4

1

3 4

Fig. 3. A consistent but not maximally dense graph where Lemma 3 does not hold:
the subgraph induced by v1, v3, v4 have more legal states.

Fig. 3 gives a counter example of Lemma 3 when not all of its conditions are
met. Here the graph is consistent but not maximally dense. It is easy to verify
that the legal states of the full graph are {0000, 1000, 1100, 1101, 1110, 1111}, a
total of 6 legal states. But the subgraph induced by nodes v1, v3, v4 has no edges
and thus has a total of 8 legal states.

