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Abstract. In this paper we introduce a new approach to phrase local-
ization: grounding phrases in sentences to image regions. We propose a
structured matching of phrases and regions that encourages the seman-
tic relations between phrases to agree with the visual relations between
regions. We formulate structured matching as a discrete optimization
problem and relax it to a linear program. We use neural networks to em-
bed regions and phrases into vectors, which then define the similarities
(matching weights) between regions and phrases. We integrate structured
matching with neural networks to enable end-to-end training. Experi-
ments on Flickr30K Entities demonstrate the empirical e↵ectiveness of
our approach.
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1 Introduction

This paper addresses the problem of phrase localization: given an image and a
textual description, locate the image regions that correspond to the noun phrases
in the description. For example, an image may be described as “a man wearing a
tan coat signs papers for another man wearing a blue coat”. We wish to localize,
in terms of bounding boxes, the image regions for the phrases “a man”, “tan
coat”, “papers”, “another man”, and “blue coat”. In other words, we wish to
ground these noun phrases to image regions.

Phrase localization is an important task. Visual grounding of natural lan-
guage is a critical cognitive capability necessary for communication, language
learning, and the understanding of multimodal information. Specifically, under-
standing the correspondence between regions and phrases is important for nat-
ural language based image retrieval and visual question answering. Moreover,
by aligning phrases and regions, phrase localization has the potential to improve
weakly supervised learning of object recognition from massive amounts of paired
images and texts.

Recent research has brought significant progress on the problem of phrase
localization [1–3]. Plummer et al. introduced the Flickr30K Entities dataset,
which includes images, captions, and ground-truth correspondences between re-
gions and phrases [1]. To match regions and phrases, Plummer et al. embedded
regions and phrases into a common vector space through Canonical Correlation
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Fig. 1: Structured matching is needed for phrase localization: it is not enough to
just match phrases and regions individually; the relations between phrases also
need to agree with the relations between regions.

Analysis (CCA) and pick a region for each phrase based on the similarity of the
embeddings. Subsequent works by Wang et al. [2] and Rohrbach et al. [3] have
since achieved significant improvements by embedding regions and phrases using
deep neural networks.

But existing works share a common limitation: they largely localize each
phrase independently, ignoring the semantic relations between phrases. The only
constraint used in previous research was that di↵erent phrases should describe
di↵erent regions, i.e., that each region should be matched to no more than one
phrase [3]. But phrases have more complex semantic relations between each
other, and phrase localization is often impossible without a deep understanding
of those semantic relations. For example, in Fig. 1, an image from Flickr30K
Entities is captioned as “a woman is sitting down and leaning her head on her
hand while another woman is smiling and sitting next to her.” Consider the
localization of “her head” and “her hand” from “leaning her head on her hand”.
There are two women, two heads, and two hands visible in the image, but only
one head and one hand have a “leaning on” relation. So “her head” and “her
hand” cannot be localized independently without verifying whether the head is
actually leaning on the hand.

This brings forward the problem of structured matching of regions and phrases,
that is, finding an optimal matching of regions and phrases such that not only
does the visual content of each individual region agree with the meaning of
its corresponding phrase (e.g. the regions must individually depict “head” and
“hand”), but the visual relation between each pair of regions also agrees with
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the semantic relation between the corresponding pair of phrases (e.g. the pair
of regions together must depict “leaning her head on her hand”). The problem
of structured matching is closely related to the standard (maximum weighted)
bipartite matching, although significantly harder: the nodes on the same side
have relations between them, and thus not only the nodes but also the relations
need to be matched with the other side.

In this paper we introduce a new approach to phrase localization based on
the idea of structured matching. We formulate structured matching as a dis-
crete optimization problem and relax it to a linear program. We use neural
networks to embed regions and phrases into vectors, which then define the simi-
larities (matching weights) between regions and phrases. We integrate structured
matching with neural networks to enable end-to-end training. Experiments on
Flickr30K Entities demonstrate the empirical e↵ectiveness of our approach.

2 Related Work

Grounding image descriptions Many works have studied the alignment of
textual descriptions and visual scenes [4–6, 1–3]. Kong et al. [6] align mentions
in textual descriptions of RGB-D scenes with object cuboids using a Markov
random field. Karpathy et al. [4] generate image fragments from object detection
and sentence fragments from dependency parsing, and match them in a neural
embedding framework. Karphathy & Fei-Fei [5] use a similar framework but
replace dependency parsing with bidirectional recurrent neural networks in order
to generate image descriptions. It is worth noting that Karpathy et al. [4] and
Karpathy & Fei-Fei [5] only evaluate the performance on proxy tasks (image
retrieval and captioning) and do not evaluate the quality of matching.

Plummer et al. [1] introduced the Flickr30K Entities dataset, making it pos-
sible to directly evaluate image-sentence alignments. Using this dataset, Wang
et al. [2] learn neural embeddings of phrases and regions under a large-margin
objective and localize each phrase by retrieving the closest region in the em-
bedding space. Instead of producing explicit embeddings, Rohrbach et al. [3]
train a neural network to directly predict the compatibility of a region and a
phrase; their framework also allows unsupervised training when ground truth
correspondences are unavailable.

All these works di↵er from ours because when they align sentences and im-
ages, they do not explicitly consider how relations between parts of a sentence
match the relations between parts of an image.

Object retrieval using natural language The task of object retrieval using
natural language is to locate visual objects based on natural language queries.
Guadarrama et al. [7] generate textual descriptions for each region proposal
and retrieval objects by matching a query with the descriptions. In contrast,
Arandjelovic and Zisserman [8] convert a query into multiple query images using
Google image search and retrieve objects by matching the query images with
images in a database. Hu et al. [9] use a recurrent neural network to score each
object proposal given an input text query and an input image, and retrieve the
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Fig. 2: We embed regions and phrases into a common vector space and per-
form structured matching that encourages not only the individual agreement
of regions with phrases but also the agreement of phrase-phrase relations with
region-region relations. In particular, we consider “partial match coreference”
(PC) relations—the relation between phrases such as “a man” and “his legs”.

objects with the highest score. The di↵erence between object retrieval using
natural language and phrase localization is that the former aims to match an
image region to a whole sentence whereas the latter aims to match an image
region to only one part of a sentence.

Image captioning and retrieval There has been a large body of prior work
on image captioning or retrieval [4, 5, 2, 10–19]. Typical approaches include re-
current neural networks [17, 16, 14, 4, 5], Canonical Correlation Analysis [10],
encoder-decoder architectures [13], and Discriminative Component Analysis [12].
These works di↵er from ours in that the emphasis of learning and evaluation is
placed on matching images and sentences as a whole rather than matching their
individual components such as regions and phrases.

3 Approach

Figure 2 illustrates our approach. Given an image and a description, our goal
is to localize the image region that corresponds to each phrase in the descrip-
tion. Following prior work [1], we assume that short noun phrases (“a man”,
“tan coat”) have already been extracted from the description. We also assume
that pronouns and non-visual phrases have been removed. Also following prior
work [1], we generate a set of region proposals in the form of bounding boxes.

Given these phrases and regions, the next step is to match them. To this end
we adopt the same approach by Wang et al. [2]: we extract visual and phrasal
features, embed them into a common vector space using neural networks, and
measure region-phrase similarities in this common vector space. Using these
similarities we then solve a structured matching problem: finding the optimal
matching subject to two types of constraints: (1) a region can be matched to no
more than one phrase, and (2) if two phrases have a certain semantic relation,
their corresponding regions should have a visual relation that is consistent with
the semantic relation.
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If we have only the first type of constraints, we arrive at a standard maximum
weighted bipartite matching problem, which can be solved exactly by linear
programming. The second type of constraints, however, pose significant new
di�culties because it appears intractable to obtain exact solutions. As a result,
we propose a relaxation to a linear program that gives approximate solutions.

We learn end to end with a structured prediction loss. That is, the learnable
parameters of our framework are jointly optimized with the objective that for
each image-sentence pair in the training set the ground truth matching should
have a higher score than all other possible matchings. It is worth noting that
although prior work on phrase localization has considered the constraint that
a region should be matched to no more than one phrase [3], they have only
used it as a post-processing heuristic, whereas we integrate this constraint into
end-to-end training.

3.1 Representing regions and phrases

We generate regions proposals using Edgebox [20]. These regions serve as the
candidates to be matched with phrases. To represent each region, we use Fast-
RCNN [21] features, that is, features from a 16-layer VGG convolutional network
that is pre-trained on the ImageNet [22] classification dataset and fine-tuned
on the VOC2007 detection dataset [23]. In particular, we extract the fc7 layer
activations to represent each region with a 4, 096 dimensional feature vector.

To represent phrases, we use Fisher vectors [10]. Following [10], we extract
Fisher Vectors of 18,000 dimensions by first applying ICA on the 300-dimensional
word2vec [24] word vectors and then constructing a codebook with 30 centers
from a Hybrid Gaussian-Laplacian mixture model (HGLMM). Similar to [2], to
save time during training, we apply PCA to reduce the dimensionality of the
Fisher vectors from 18,000 to 6,000.

Next, we apply a linear transformation to the fc7 activations of the regions
and another linear transformation to the Fisher Vectors of the phrases in order
to embed them in the same vector space. That is, given for a phrase p and a
region r and their feature vectors xp and xr, we compute the embedded features
x̃p and x̃r as

x̃p = M1xp + b1,

x̃r = M2xr + b2,
(1)

where M1,M2, b1, b2 are learnable parameters. We define the similarity wij be-
tween a phrase p and a region r as

cos(xp, xr) =
< xp, xr >

kxpkkxrk
, (2)

i.e. the cosine similarity between the embedded vectors.
Given phrases p1, p2 . . . pn and regions r1, r2 . . . rm , we obtain a similarity

matrix W✓ = {wij}, where

wij = cos(xpi , xrj ) (3)

and ✓ represents the learnable parameters M1,M2, b1, b2.
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3.2 Bipartite matching

Given the similarities between regions and phrases, we are ready to solve the
matching problem. We first consider bipartite matching, matching with only the
constraint that each region should be matched to no more than one phrase. We
refer to this constraint as the exclusivity constraint.

It is worth noting that in the most general case, this constraint is not always
valid. Two phrases can refer to the same region: for example, “a man” and
“he”, “a man” and “the man”. In these cases we need to perform coreference
resolution and group the coreferences before phrase localization. Here we assume
that this step has been done. This is a valid assumption for the Flickr30K Entities
dataset we use in our experiments—coreferences such as “he” and “she” have
been removed.

Given phrases p1, p2, . . . , pn, regions r1, r2, . . . , rm, and their similarity matrix
W✓, we have a standard bipartite matching problem if we consider only the
exclusivity constraints. We first formulate this problem as an integer program.

We define a binary variable yij 2 {0, 1} for each potential region-phrase pair
{pi, rj} to indicate whether rj is selected as a match for pi in a matching y. Let
S(W, y) be a score that measures the goodness of a matching y, computed as
the sum of similarities of the matched pairs:

S(w, y) =
nX

i=1

mX

j=1

wijyij . (4)

The best matching maximizes this score and can be found by a linear program
that relaxes yij to continuous variables in [0, 1].

max
y

S(W✓, y)

s.t.
mX

j=1

yij = 1, i = 1, 2, . . . , n

nX

i=1

yij  1, j = 1, 2, . . . ,m

0  yij  1, i = 1, . . . , n, j = 1, . . . ,m.

(5)

Here, the first constraint guarantees that each phrase is matched with exactly
one region, and the second constraint guarantees that each region is matched
with no more than one phrase. This linear program is guaranteed to have an
integer solution because all of its corner points are integers and this integer
solution can be found by the simplex method.

To learn the embedding parameters, we optimize an objective that encourages
the ground truth matching to have the best matching score. Let y

(l) be the
ground truth matching for the l

th image-sentence pair in a training set, and let

W

(l)
✓ be the region-phrase similarities. We define the training loss L as

L(✓) =
X

l

max(0,max
y0

S(W (l)
✓ , y

0)� S(W (l)
✓ , y

(l))), (6)
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where ✓ represents the learnable parameters. Note that although this loss involves
a max operator that ranges over all possible matchings, computing the gradient
of L with respect to ✓ only involves the best matching, which we can find by
solving a linear program. It is also worth noting that this loss function is a
simplified version of the structured SVM loss [25] with a margin of zero: although
the ground truth matching needs to have the highest score among all possible
matchings, the score does not need to be higher by a fixed positive margin
than that of the best non-ground-truth matching. With no margin requirement,
this loss is not as stringent as the original structured SVM formulation but is
significantly easier to implement.

3.3 Partial match coreference

We now address the matching of relations. In this work, we consider “partial
match coreference” (PC) relations, a specific type of sematnic relations between
phrases. Partial match coreference is composed of a noun phrase and another
noun phrase including a possessive pronoun such as “his” or “her”. Such relations
indicate that the second phrase refers to an entity that belongs to the first phrase.
For instance, the following are examples of partial match coreference:

1. A woman is dressed in Asian garb with a basket of goods on her hip.

2. An instructor is teaching his students how to escape a hold in a self-
defense class.

Partial match coreference points to a strong connection between the two
noun phrases, which places constraints on the visual relation between their cor-
responding regions. In particular, partial match coreference relations can give
strong cues about the appearance and spatial arrangement of the corresponding
regions. We thus use PC relations in the task of phrase localization and study if
it can bring any improvements.

We extract partial match coreference relations using the Stanford CoreNLP
library [26]. Since a partial match coreference is indicated by possessive pronouns
such as “his” or “her”, we first extract coreference relations between entity men-
tions in each image caption.

Among the extracted coreferences, some are “full matches”, such as “he” as
a coreference of “a man” where the entire phrase “he” and the entire phrase “a
man” are mutual coreferences. The rest are “partial matches” such as “her hip”
as a coreference of “a woman” where only a part of the phrase “her hip”, i.e. the
possessive pronoun “her”, is a coreference of “a woman”. We discard all “full
match” coreferences and keep only the “partial match” coreferences. Note that
full match coreference is also useful because it indicates that two phrases should
be matched to the same region. We discard them only because in Flickr30K
Entities, the dataset we use for experiments, all pronouns that are full match
coreferences are annotated as non-visual objects and excluded in evaluation.
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3.4 Structured matching with relation constraints

Given a certain type of semantic relations between phrases, we would like to
enforce the constraint that the visual relations between regions should agree with
these semantic relations. In the rest of this paper we use the partial coreference
relation as an example.

Formally, consider two arbitrary phrases pi, ps. Let rj , rt be two arbitrary
regions, which are potential matches for the two phrases. Given a matching y,
let zijst 2 {0, 1} be a binary variable indicating whether phrases pi and ps are
simultaneously matched to regions rj and rt. In other words,

zijst = yij ^ yst. (7)

Let g(rj , rt) be a non-negative function that measures whether two regions rj , rt
have a visual relation that agrees with the partial match coreference (PC) rela-
tion, that is, whether the the two regions have a “visual PC” relation.

We can now modify our matching objective to encourage the agreement be-
tween relations:

max
y

nX

i=1

mX

j=1

wijyij + �

nX

(i,s)2Q

mX

j,t

zijstg(rj , rt), (8)

where Q is the set of all pairs of phrases with PC relations. The term zijstg(rj , rt)
makes a matching y more desirable if whenever a pair of phrases have a PC
relation the corresponding pair of regions have a visual PC relation.

This new objective poses additional challenges for finding the best matching.
It is an integer program that appears di�cult to solve directly, and it is not
obvious how to relax it to a linear program with the Boolean term zijst = yij^yst.

We propose a linear program relaxation by introducing a probabilistic inter-
pretation. We relax the binary variables y and z into real values in [0, 1]. We
imagine that the matching is generated through a probabilistic procedure where
each phrase pi chooses, not necessarily independently, a region from all regions
according to a multinomial distribution parametrized by the relaxed, continuous
variables yij . That is, we interpret yij as Pr(R(pi) = rj), where R(pi) represents
the region chosen by phrase pi. This interpretation naturally requires that

X

j

yij =
X

j

Pr(R(pi) = rj) = 1, (9)

which is the same constraint used earlier in bipartite matching that requires a
phrase to match with exactly one region. We also add the exclusivity constraint
that each region is matched to no more than one phrase:

X

i

yij =
X

i

Pr(R(pi) = rj)  1. (10)

We treat zijst as the joint probability Pr(R(pi) = rj , R(ps) = rt), that is, the
probability that we match pi to rj and ps to rt simultaneously. It follows from
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the rule of marginalization that

mX

t=1

zijst =
X

t

Pr(R(pi) = rj , R(ps) = rt) = Pr(R(pi) = rj) = yij

mX

j=1

zijst =
X

j

Pr(R(pi) = rj , R(ps) = rt) = Pr(R(ps) = rt) = yst.

(11)

Putting all the constraints together we have the following linear program for
structured matching:

max
y2Y

nX

i=1

mX

j=1

wijyij + �
nX

(i,s)2Q

mX

j,t

zijstg(rj , rt)

s.t.
mX

j=1

yij = 1, for i = 1, 2, . . . , n

nX

i=1

yij  1, for j = 1, 2, . . . ,m

mX

t=1

zijst = yij for any i, j, s

mX

j=1

zijst = yst for any i, s, t

0  yij  1, for all i, j

0  zijst  1, for all i, j, s, t.

(12)

In this linear program, each pair of phrases with a partial match coreference
relation pi, ps will lead to n

2 instances of z and g. This means that the linear
program may have too many variables to be solved in a reasonable amount of
time. To remedy this issue we adopt a heuristic that only applies the relation
constraints to a subset of regions that are the most likely to be matched to
phrases. Specifically, for a pair of phrases pi and ps, we only introduce z variables
for the top 10 regions of pi and the top 10 regions of ps as measured by the cosine
similarity. That is, the index j in zijst ranges over only the top 10 most similar
regions of pi and the index t ranges over only the top 10 most similar regions of
ps. This heuristic helps avoid a bloated linear program.

This linear program is easy to solve but is not guaranteed to produce an
integer solution. A fractional solution indicates multiple possible regions for some
phrases. In such cases we run a depth first search to enumerate all feasible
solutions contained in this fractional solution and find the best matching. Since
we limit the number of z variables, the search space is usually small and our
approach remains e�cient.

To learn or fine-tune parameters for structured matching we use the same
loss function as defined in Equation 6, except that the matching score S is given
by the solution value of this new linear program.

We implement the “visual PC” scoring function g(rj , rt) as a logistic regres-
sor. For a pair of regions rj , rt, we concatenate their fc7 feature vectors and
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pass the longer feature into the logistic regressor. The parameters of this logistic
regressor can be learned jointly with all other parameters of our method.

4 Experiments

SetupWe evaluate our approach using the Flickr30k Entities dataset [1]. Flickr30k
Entities is built on Flickr30K, which contains 31,783 images, each annotated with
five sentences. In each sentence, the noun phrases are provided along with their
corresponding bounding boxes in the image. These region-to-phrase correspon-
dences enable the evaluation of phrase localization. There are more than 500k
noun phrases (a total of 70k unique phrases) matched to 275k bounding boxes.
Following [1], we divide these 31,783 image into three subsets, 1,000 images for
validation, 1,000 for testing, and the rest for training. Also following [1], if a
phrase is matched with multiple ground truth bounding boxes, we merge them
into a new enclosing box. After this merging, every phrase has one and only one
ground truth bounding box.

Following prior work [1–3], we generate 100 region proposals for each image
using Edgebox [20] and localize each phrase by selecting from these regions.
We select one region for each phrase and the selection is deemed correct if the
region overlaps with the ground truth bounding box with an IoU (intersection
over union) over 0.5. We evaluate the overall performance in terms accuracy,
the percentage of phrases that are correctly matched to regions. Note that some
prior works [1, 2] have reported performance in terms of recall@K: each phrase
can select K regions; recall@K is 1 if one of them overlaps with the ground truth
and 0 otherwise. Our definition of accuracy is the same as recall@1. We do not
report recall@K with a K larger than 1 because it is unclear what it means to
select more than one region for each phrase when we jointly localize phrases
subject to the exclusivity constraints and relation constraints.

We use the same evaluation code released by [1]. It is also worth noting that
since each phrase can only be localized to one of the region proposals, the quality
of the region proposals establishes an upperbound of performance. Consistent
with prior work, with EdgeBox the upperbound in our implementation is 76.91%.

Implementation We implement the following approaches:

1. CCA+Fast-RCNN : We produce CCA embeddings using the code from Klein
et al. [10] except we replace the VGG features pretrained on ImageNet with
the Fast-RCNN features (VGG features pretrained on ImageNet and fine-
tuned on the VOC2007 detection dataset).

2. Bipartite Matching : using the same features as CCA+Fast-RCNN, we embed
the features into a common vector space through (shallow) neural networks
and perform bipartite matching with exclusivity constraints.

3. Structure Matching : Same as Bipartite Matching except we perform struc-
tured matching with relation constraints.

In training we modify the set of candidate regions: for each image we start
with the 100 region proposals from EdgeBox; then we remove those with an
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Methods Accuracy (Recall@1)

CCA [1] 25.30
NonlinearSP [2] 26.70 (43.89)
SCRC [9] 27.80
GroundR [3] 29.02 (47.70)
MCB [28] (48.69)
CCA [29] (50.89)
Ours: CCA+Fast-RCNN 39.44
Ours: Matching 41.78
Ours: Structured Matching 42.08

Table 1: Accuracy (Recall@1) of our approach compared to other methods. Re-
sults in parentheses were released after the submission of this paper for peer
review and are concurrent with our work.

Methods accuracy (Recall@1) on PC phrases only

Bipartite Matching 47.8
Structured Matching 49.3

Table 2: Performance of bipartite matching and structured matching on only
phrases with partial match corerference (PC) relations.

IoU larger than 0.5 and add ground truth bounding boxes. The reason for this
modification is that the EdgeBox region proposals may not contain the ground
truth matches for all phrases. This modification ensures that all ground truth
matches are included and each phrase has only one ground truth region.

For all training we use Stochastic Gradient Descent (SGD) with a learning
rate of 1e-4. We decrease the learning rate slightly after each epoch. We use
a momentum of 0.9 and a weight decay of 0.0005. The hyperparameter � in
the matching loss (Equation 6) is selected on the validation set. For bipartite
matching, we initialize the embedding matrices M1,M2 with Canonical Corre-
lation Analysis(CCA) [27] and fine-tune all parameters end to end for 3 epochs,
optimizing the matching loss defined in Equation 6. Since CCA provides a good
initialization, the matching loss converges quickly.

For structured matching, we pre-train the “visual PC” logistic regressor using
the 10,325 pairs of regions in the training set that have a ground truth “visual
PC” relation and an equal number of negative pairs of regions. This pre-trained
logistic regressor has an accuracy of 78% on the validation set. Then we ini-
tialize all other parameters using the pre-trained bipartite matching model and
fine-tune all parameters (including those of the logistic regressor) for 2 epochs
optimizing the structured matching loss with relation constraints.
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Methods person cloth body anim vehic instru scene other
ing parts als les ments

CCA[1] 29.58 24.20 10.52 33.40 34.75 35.80 20.20 20.75
GroundR[3] 44.24 9.93 1.91 45.17 46.00 20.99 30.20 16.12

(53.80) (34.04) (7.27) (49.23) (58.75) (22.84) (52.07) (24.13)
CCA[29] (64.73) (46.88) (17.21) (65.83) (68.75) (37.65) (51.39) (31.77)
Ours: CCA+FRCN 55.39 32.78 16.25 53.86 48.50 19.14 28.97 23.56
Ours: Bipartite 57.94 34.43 16.44 56.56 51.50 27.16 33.42 26.23
Ours: Structured 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23
Upperbound 89.36 66.48 39.39 84.56 91.00 69.75 75.05 67.40

Table 3: Performance within categories. “Upperbound” is the maximum accu-
racy (recall@1) possible given the region proposals. Results in parentheses were
released after the submission of this paper for peer review.

Results Table 1 summarizes our results and compares them with related work.
It is worth noting that some of the results from related work are concurrent with
ours as they were released after the submission of this paper for peer review. Ta-
ble 3 provides accuracy of phrase localization for di↵erent categories of phrases.
Fig. 3 and Fig. 4 show qualitative results including success and failure cases.

Our results show that Fast-RCNN features leads to a large boost of per-
formance, as can been seen by comparing the CCA result from [1] with our
CCA+Fast-RCNN result. Similar results have also been reported in [29] and the
latest version of [2].

Also we see that Bipartite Matching further improves CCA+Fast-RCNN,
which demonstrates the e↵ectiveness of end-to-end training with our matching
based loss function. Structured Matching with relation constraints provides a
small additional improvement over Bipartite Matching. It is worth noting that
the improvement from Structured Matching appears small partly because in the
test set only 694 phrases out of a total of 17519 are involved in partial match
coreference relations, limiting the maximum possible improvement when aver-
aged over all phrases. If we consider only these 694 phrases and their accuracy
as shown in table 2, we see that Structured Matching achieves a more significant
improvement over Bipartite Matching.

5 Conclusion

In this paper we have introduced a new approach to phrase localization. The
key idea is a structured matching of phrases and regions that encourages the
relations between phrases to agree with the relations between regions. We for-
mulate structured matching as a discrete optimization problem and relax it to a
linear program. We integrate structured matching with neural networks to en-
able end-to-end training. Experiments on Flickr30K Entities have demonstrated
the empirical e↵ectiveness of our approach.
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(a) A man with a helmet is using an ATM. (b) Two women and a man discuss notes
in a classroom.

(c) A man wearing a black jacket with a
woman wearing a black jacket are stand-
ing close to each other.

(d) A man and a boy holding microphones.

(e) A young boy shows his brown and green
bead necklace.

(f) A man is working on his house by re-
pairing the windows.

(g) This lady is wearing a pink shirt and
tuning her guitar.

(h) A baby with red hat sit in his stroller.

Fig. 3: Qualitative results. The first two rows compare CCA with bipartite
matching. The rest compare bipartite matching with structured matching.
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(a) A black man wearing a
white suit and hat is hold-
ing a paper cup.

(b) A boy wearing an
orange shirt is playing
on a swing.

(c) A blond woman speaks
at a podium labeled Hol-
iday Stars Projectin front
of a blue wall.

(d) A man is walking his
horse on a racetrack.

(e) A dark-haired bearded
man wearing a turquoise shirt
with a yellow peace sign on it.

(f) A womanwearing a
black helmet riding on a
bike.

(g) A clown in red plaid overalls re-
laxes in the back of his tent.

(h) A man at a podium is speaking to a group
of men at a conference.

(i) A man in a green shirt is jumping a ramp
on his skateboard.

(j) Several people are standing on a
street corner watching a cartoonist
with glasses draw on his sketch pad.

Fig. 4: Qualitative results. The first two rows compare CCA with bipartite
matching. The rest compare bipartite matching with structured matching.
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