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Abstract—To accelerate computational science on campus and
beyond we investigate the Ray software framework across a
range of different computing environments including 1) desktop
systems; 2) campus compute clusters; 3) NSF-supported mid-
scale computing and networking research infrastructures; and
4) hybrid campus and commercial compute clouds such as the
Google Cloud Platform (GCP). Ray offers a single, unifying,
open-source, distributed computing framework that promises to
allow users to code once – using the Python language in Jupyter
notebooks familiar to many researchers across disciplines – and
easily deploy applications spanning diverse computing platforms.
In this paper we specifically focus on the benefits of training
researchers and students on using Ray on the FABRIC and
CloudLab mid-scale research infrastructures, highlighting the
ease of use of multiprocessing and hardware accelerators (e.g.,
GPUs) across heterogeneous hardware systems.

1. INTRODUCTION

A principal challenge in advancing scientific computing
on campuses today is the efficient computation of a mix of
conventional High Performance Computing (HPC) workloads
with fast-growing Machine Learning (ML) workloads. Both
benefit from acceleration through hardware technology support
including co-processors such as GPUs and TPUs, as well as
interconnects including NVLink, Infiniband, and Slingshot.

Over the past two decades efficient campus computation has
been realized by deploying collections of big data processing
frameworks (e.g., Apache Spark), data analysis tools (e.g.,
Pandas), GPU programming environments (e.g., CUDA), and
Python compilation (e.g., Numba), often cleverly combined
to address a specific application need. Yet this approach of
integrating disjoint systems can be complicated. It is also
poorly suited for higher education settings, where training
investigators and students on so many tools reduces research
productivity, strains campus research computing expertise, and
taxes already thinly stretched IT finances. In addition, new user
demand is growing rapidly as less sophisticated data science
and ML users from outside STEM disciplines need to learn
and perform computational research in their fields of study.

Ray was created at UC Berkeley as an open-source project
to improve the efficiency of both scientific computing and
machine learning workloads by distributing and parallelizing
them [1]. Ray has been rapidly and broadly adopted by large
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commercial service platform operators. Uber, for example, is
one of several major platform providers that integrate Ray
in its service architecture for matching vehicles and passen-
gers. Ray is currently supported by its original developers at
AnyScale, Inc, providing the commercial support needed to
ensure reliable, high-performance distributed systems for both
experimental and production computational science.

We see a timely opportunity for educators and campus
Research Computing (RC) organizations to rationalize the
software frameworks they offer as core campus computing
services. To realize this opportunity we consider Ray for
scaling Python ML and conventional HPC applications [2]–
[4]. Ray provides a single, common environment that supports
both types of workload. Ray’s ease of use, multi-programming
abstractions, and integrated scheduling and cluster manage-
ment capabilities offload many of the burdens of programming
large-scale systems. Ray represents a more modern alternative
to comparable established frameworks including Spark and
Dask. In this paper we specifically do not seek to compare
these frameworks side-by-side as already done elsewhere [5].
Rather, we consider Ray as an promising choice to satisfy our
predicted future workload mix, our heterogeneous computing
systems, and our growing cohort of campus ML users with
limited distributed computing expertise.

Ray parallelizes suitable Python applications easily. It also
offers integrations with common scientific computing and data
science tools, including RayDP (“Spark on Ray”), Scikit-
learn, and Hugging Face Transformers. A single, spanning
distributed computing environment eliminates the complexity
of using different tools in different settings, reducing the need
to learn a variety of frameworks and integrations, each of
which might introduce a steep learning curve. Ray helps us
take a step towards a longer-term vision of a single computing
framework that integrates computational resources across the
distributed computing continuum.

In this paper we show that Ray can help accelerate research
across a wide variety of campus compute settings – from small
edge computers sensing data in the field to massive shared
compute clusters in campus datacenters. We demonstrate how
Ray can help extend campus resources by facilitating com-
puting on shared computing research infrastructures including
FABRIC [6], and CloudLab [7]). In addition, FABRIC’s Facil-
ity Ports enable attaching higher performing campus clusters



Fig. 1: Illustration of cluster components in head and worker
nodes.

to create hybrid cloud computing systems. Our preliminary
experiments suggest that Ray can transform our view of mid-
scale research infrastructures into integrative hubs for regional,
multi-institution computational research.

2. RAY BACKGROUNDER

The emergence of Big Data applications led to the develop-
ment of early, successful software frameworks for distributed
data analysis (e.g., MapReduce [8], Hadoop Distributed File
System [9]). This was later followed by frameworks for train-
ing Deep Neural Networks (DNNs) (e.g., TensorFlow [10],
PyTorch [11], companion hardware accelerators (e.g., GPUs)
with associated software (e.g., Nvidia CUDA DNN), and
public datasets (e.g., MNIST [12], ImageNet [13]).

In 2018 the UC Berkeley RISELab team introduced Ray,
a distributed computing framework that makes it easy to
horizontally and vertically scale both ML and Python science
workloads. Ray runs on infrastructures ranging from laptops
to large compute clusters. Computational scientists can easily
parallelize and test code on their desktops, and then deploy
at scale on campus clusters – or commercial compute clouds
or hybrid clouds – without the need to specify or construct
complex compute infrastructures or even modify their code.
Ray handles all aspects of distributed execution — from
scheduling tasks to auto-scaling to fault tolerance [14]. Unlike
earlier bulk-synchronous parallel (Spark) and task parallel
(Dask) systems, Ray was designed to support simulation,
training, and model serving for RL applications. Hence, the
deployment of Ray can help move campus computing from
a collection of discrete compute platforms to a single unified
continuum of resources on-premises and beyond.

From a computational scientist’s perspective, Ray handles
the work of managing a cluster, scheduling tasks, transferring
network data, checking system health, overcoming faults, etc,
allowing the investigator to focus on the underlying data sci-
ence problem and not the complexities of distributed systems.

A. Ray Clusters & Jobs

Fig.1 depicts how Ray cluster is a set of logical worker
nodes sharing a head node. Nodes may be heterogeneous, and
may be located anywhere. A single physical machine with
multiple cores (e.g., desktop) can be configured as a cluster.
Ray clusters can be configured with a fixed set of nodes,
or may autoscale up and down on-demand. Ray provides

native support for clusters within commercial cloud systems
including GCP and AWS. Ray also supports Kubernetes-
orchestrated container environments (e.g., Docker), where a
node is organized as a pod. In this setting Ray benefits from
the many advantages of application containerization including
portability, security, reliability and manageability.

A Ray job is a single application; it is the collection of Ray
tasks, objects, and actors that originate from the same (Python)
script. The worker that runs the script is called the driver of
the job.

B. API & Programming Model

Many Ray use cases fortunately require understanding only
a handful of basic Ray API calls (see Table I). Functions are
implemented as follows:

• A task represents the execution of a remote function on
a stateless worker. When a remote function is invoked,
a future representing the result of the task is returned
immediately. Futures can be retrieved using ray.get()
and passed as arguments into other remote functions
without waiting for their result.

• An actor represents a stateful computation. Each actor
(Class) exposes methods that can be invoked remotely
and are executed serially. A method execution also returns
a future.

Ray employs a dynamic task graph computation, where the
execution of both remote functions and actor methods is
automatically triggered when their inputs become available.

Ray’s architecture [14] consists of two parts: an application
layer and a system layer. The application layer implements
the API and the computation model, and the system layer
implements task scheduling and data management to satisfy
the job’s performance and fault-tolerance requirements. Ray’s
system layer consists of three major components: a Global
Control Store (GCS), a distributed scheduler, and a distributed
object store. Each component is horizontally scalable and
fault-tolerant.

C. Machine Learning with Ray

Ray has been extensively extended to support a complete
set of machine learning requirements. Associated Ray libraries
address each RL loop component including distributed model
training (Ray Train), hyperparameter tuning (Ray Tune), model
serving (Ray Serve) and overall application development (Ray
RLlib), making it exceptionally capable of helping to meet the
growing campus demand to handle these applications.

D. Simple Ray Programming Examples

First, let’s see how invoking Ray is comfortably familiar to
Python programmers. We begin with parallelizing a set of 96
empty tasks each consisting of nothing other than a half-second
duration sleep() call. The left side of Fig. 2 shows the code
used to execute the code serially (i.e., on a single core). The
right side shows the minor modifications needed to parallelize
the same code to run on any campus Ray cluster, including a
single node. The use of the decorator @ray.remote to wrap a



Call Description
futures = f.remote() The non-blocking execution of function f remotely.

f.remote() can take objects or futures as inputs and returns futures.
objects = ray.get(futures) Returns the values associated with one or more futures.

This call is blocking.
ready futures = ray.wait(futures, Return the futures whose corresponding tasks have completed

k, timeout) as soon as either k have finished or the timeout expires.
actor = Class.remote() Instantiate Class as a remote actor, and return a handle to it.
futures = actor.method.remote() Non-blocking call on the actor method to return future(s).

TABLE I: Basic Ray Core API calls.

import time

def f(x):
time.sleep(0.50)
return x

futures = [f(i) for
i in range(96)]

print(futures)

import time, ray
ray.init()

@ray.remote
def f(x):

time.sleep(0.50)
return x

futures = [f.remote(i)
for i in range(96)]

print(ray.get(futures))

Fig. 2: The minor changes to serial Python code (left) for
parallelization (right) of 96 empty tasks on a Ray cluster.

function is familiar to, say, those using Numba JIT compilation
to accelerate their code.

Fig. 3 informs a more revealing demonstration of Ray’s
built-in portability and cluster management capabilities. We
modified the RHS of Fig. 2 code to invert 96 4000x4000
matrices with Numpy.

import ray, numpy as np
N = 4000
ray.init()

@ray.remote
def f(x):

arr = np.random.randn(N, N)
inv_arr = np.linalg.inv(arr)
return x

futures = [f.remote(i) for i in range(96)]
print(ray.get(futures))

Fig. 3: The Ray Python code to invert 96 4000x4000 matrices.

We will use the code of Figs. 2 and 3 in the next section,
where we will show how Ray was deployed and performed
efficiently across our various campus systems and shared
community research infrastructure settings.

3. EXPERIMENT METHODOLOGIES AND RESULTS

In this section we report on experiments performed on
several desktop and laboratory systems, CloudLab, and FAB-
RIC. An important learning is that Ray makes moving be-
tween these diverse systems relatively straightforward through

programming abstractions that effectively hide complexities
of exploiting cluster management, multiprocessing and the
underlying diverse hardware (e.g., GPUs).

We deploy a collection of tools to monitor the execution of
Ray-accelerated programs. Even in a simple single node clus-
ter monitoring distributed execution can become complicated,
partly because Ray is offloading cluster management decisions
(e.g., task relocation) from the programmer. The Ray Dash-
board can help monitor and understand execution behavior by
presenting live hardware resource consumption, performance
metrics, job status, and internals such as task and actor
distribution. The dashboard also offers additional visualization
panels via integrations with Grafana and Prometheus. Using
these tools to track performance metrics becomes crucial as
additional physical nodes are added to the cluster, as we will
see later in this section. We also continue to rely on Linux
system tools such nvtop and btop to monitor runtime behavior.
Ray also provides extensive logging mechanisms to analyze
experiment behavior offline.

A. Desktops and local clusters

1) Methodology: Let’s begin with an example of Ray on
a cluster comprising a single physical machine. This example
can represent a common use case on campus – either a modest
compute user or one debugging or validating code before
uploading to a larger cluster for execution.

2) Results: We executed the code on the RHS of Fig. 2
on a bare metal Dell PowerEdge R6515 1U single-socket rack
server with a 2.9 GHz AMD EPYC 7542 32-Core Processor
(64 NUMA nodes) with 64 GB of memory, and Ray v2.40.0 on
Ubuntu 24.04. The speedup obtained by Ray in this example
reduced execution time from 24.02 to 5.7 secs, which would
be unsurprisingly similar to what could be achieved using
multiple other possible approaches including the standard
Python multiprocessing library. But as we will see, using Ray
allows the programmer to enjoy many of Ray’s accompanying
benefits.

Next, we executed the matrix inversion code of Fig. 3 on
a desktop (HP Z6 Workstation, Intel Xeon Silver 4208 32-
core CPU @2.1GHz). A top-based monitor showed that all
cores were compute-bound during the execution interval of
65.7 secs.

Let’s now consider an example of Ray’s use on a single
node with a GPU. For simplicity we selected a small yet



classic learning application, training a basic neural network
image classifier on the MNIST dataset with distributed data
parallelism. The open-source code [15] uses Ray Train to train
a Pytorch Lightning module.

Testing a single, isolated application gives us an initial sense
of whether to deploy a job on either a single core with GPU
or across workers on many CPU cores (with no GPU). The
examples we present used the Nvidia CUDA 12.4 toolkit and
driver version 550.54.15. We first tested on 19 (of 20) available
cores on an otherwise idle bare metal HP Z6 desktop equipped
with a Intel Xeon W-2255 CPU @3.70GHz, and compared
the performance against using only a single core with an
Nvidia Quadro P2200 GPU. In this one example, execution
on the CPU cores averaged 40.2 seconds with little variability,
whereas executing on a single core and GPU took 47.8 seconds
but suffered additional variability per run. This highlights how
Ray performs best with longer-duration jobs, as the overhead
of constructing a cluster is high for shorter jobs.

While only an anecdotal example, the result reinforces
the need for wisely assigning jobs when executing across
heterogeneous hardware systems. We seek to better understand
optimizing this CPU/GPU tradeoff when presented with large
workloads of hundreds of mixed HPC and ML applications
across heterogeneous campus clusters and beyond. To do
so, we next examine Ray application deployment on both
CloudLab and FABRIC. The code we use can be found on
the github site associated with our project web site [16], while
other artifacts including images, profiles and notebooks are
available on the testbeds themselves.

B. Using Ray on CloudLab

1) Methodology: Ray’s native cluster management capabil-
ities, autoscaling, and ease of exploiting hardware accelerators
and multiprocessing make it an ideal candidate for use on
computing clusters and research infrastructures unencumbered
by job schedulers (e.g., slurm). CloudLab is one such widely
used experiment testbed for research and education that sup-
ports research on cloud architectures, distributed systems, and
applications.

2) Results: We studied the performance of Ray on a cluster
of 5 Cisco UCS c240g5 nodes on the CloudLab Wisconsin site.
A public CloudLab profile to deploy the topology is available
as ray5node. Each bare metal server had 2 Intel Xeon Silver
4114 10-core CPUs at 2.20 GHz, and a Tesla P100 GPU.
We created a public disk image ray-cuda-pytorch22.04 with
Ubuntu 22.04, Nvidia Driver v.550.144.03, and the CUDA
Toolkit 12.4.

We first examined Ray performance on a cluster of 1
physical node executing one or more instances of the Pytorch
Lightning Image Classifier training run. Here an examination
with btop indicated that the cores were lightly used. The
job running time was 85 sec. Increasing the workload to 5
simultaneous runs extended running time to only 89 sec.,
however monitoring with nvtop reveals that the added work
consumed up to 50% of the GPU.

We next used Ray to manually construct the 5 node cluster.
Specifying the head and each worker on multi-homed servers
is simply a matter of running these commands:

head: ray start --head --node-ip-address=
’128.105.144.55:6379’

workers: ray start --address=’128.105.144.55:6379’
--node-ip-address= 128.105.144.[44,45,57,59]

We next examined application behavior on the 5 node cluster
using 10 concurrent instances of both the matrix inversion
tasks and the image training task. The training task helped
highlight the value of extensive Ray logging; Fig. 4 shows an
offline TensorBoard plot of the converging training accuracy
over the 10 execution epochs for one of the training runs.

We elected to use the ray job command to submit jobs to
the cluster:

RAY_ADDRESS=’http://127.0.0.1:8265’ ray job submit
--working-dir . -- python ./invertMatrix.py &

This job submission entrypoint serves to supplement the
Ray Dashboard by allowing us to examine the status of job
execution. This permits us, for example, to see a report (not
shown) on the execution of the 10 matrix inversion tasks (960
inversions), clearly showing that all 200 cores were being used
for much of the job duration.
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Fig. 4: Visualizing the performance of a Pytorch Lightning
Image Classifier training run on a CloudLab c240g5 GPU node
using ray[train] with TensorBoard. Convergence of the training
to the target threshold is shown on the right axis (solid, blue),
and training loss on the left axis (dashed, red).

C. FABRIC as a distributed computing substrate

1) Methodology: With its extensive global networking foot-
print, the FABRIC research infrastructure serves as an impor-
tant resource for computer networking research. It is less com-
monly thought of as an integral component of a globally de-
centralized community computing facility. Yet as a ‘testbed of
testbeds,’ FABRIC hosts native computing resources, and also
interconnects external site-based, shared community testbed,
and cloud computing resources. Hence, FABRIC can be tapped
to assemble Ray clusters using computing resources that are



exclusively native, host site-based, testbed-based, or cloud-
based. Even more interestingly, FABRIC permits Ray clusters
using resources that cleverly span these platforms to form
either ’hybrid Ray clouds’ or ’Ray multiclouds.’1

FABRIC offers key capabilities to support this model,
including horizontal scaling, in-network computing, edge com-
puting, and high-performance networking. In addition, Facility
Ports can expose shareable campus-owned compute resources
via a dedicated FABRIC attachment networking link [17], per-
mitting the rapid assembly of virtual community infrastructure
via a ‘Bring Your Own Equipment’ (BYOE) model.

Ray offers the potential to investigate wide-area distributed
computation across FABRIC’s attached heterogeneous com-
puting resources. Ray stripes bulk transfers across multiple
TCP connections, so even lightly network-intensive computing
applications can be studied across high-speed WAN connec-
tions. Of course, FABRIC in-network resources are limited
and don’t represent a significant general-purpose computing
resource. However, their vantage points represent a potentially
valuable means for monitoring, learning, and dynamically
optimizing either 1) self-driving FABRIC operation [18]; or
2) the control of highly geographically distributed computing
execution (e.g., balancing workloads over sites).

To better understand how FABRIC can serve as a platform
for distributed computing and community resource sharing, we
have experimented with Ray clusters on and across multiple
FABRIC sites. Constructing these topologies and methods for
deploying the Ray framework will be immediately familiar
to FABRIC experimenters. We first examined a local Ray
cluster spanning private Princeton University site resources
and local native FABRIC VMs (i.e., PRIN site resources)
connected via a Facility Port. Here we used the notebook
facility port 2local-PRIN.ipynb available at the Ray project
site github. The purpose of this activity was to understand
Ray behavior on FABRIC resources which were essentially
isolated, under our direct control, and easily instrumented with
network protocol analyzers. That is, the topology served to
establish performance baselines.

2) Results: Exploring Ray performance on heterogeneous
GPU nodes at various sites was of particular interest. We began
testing Ray on individual VMs, again turning to the MNIST
Image Classifier example. This included experimenting with
an AMD EPYC 7532 32-core CPU with Nvidia TeslaT4 at the
Utah site, and an EPYC 7542 32-core dual socket CPU with
a more capable Nvidia A40 at the CERN site. Nonetheless,
we frequently observed comparable overall execution times,
though this is unsurprising for short job durations (e.g., 75
secs.) and small-sized VM instances that are CPU-bound.

The CERN site’s A40 GPU node(s) allowed us to more
deeply examine the benefits of a Datacenter GPU. Each VM
was assigned 2 cores, and we ran Ubuntu 24.04 with Nvidia
driver v.565.57 and CUDA toolkit v.12.7. To exercise the GPU

1While a cluster is the Ray framework term of art, in certain cases a
‘federation of loosely-coupled Ray clusters’ might be a more appropriate label.

we computed the Mandelbrot set various ways [19]; Table II
presents those execution times.

TABLE II: Mandelbrot set computation.

Execution environment time (sec.)
CPU-only with numpy 4.11
CPU-only with Numba JIT 0.35
CPU + GPU with cuda.jit
(with CPU array copy overhead) 0.61
(w/o CPU array copy overhead) 0.17

We did find that our understanding of job execution was
improved by using Ray’s native machine microbenchmarking
facilities as shown in Fig. 5. While the performance tests
are highly specific to Ray runtime execution, they were
nonetheless valuable to understand the tradeoffs to make
between selecting nodes with more compute cores, or more
capable GPUs. This provides an experimenter with insights
into preferred task and job placements for their application
workload.
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Fig. 5: Ray microbenchmarks provided a quick indication that
a bare metal 20-core desktop with a modest workstation-class
P2200 GPU would outperform a single FABRIC VM at CERN
with a Data Center-class A40 GPU.

Finally, we examined a 2-node (4 core) cluster at CERN
(using both available A40 GPUs). An illustrative notebook
ray A40 2nodes.ipynb for building the topology is available at
the Ray project github site. For comparison with earlier results
for Ray on a single node and on a 5 bare metal node (200
core) CloudLab cluster, the 2 node CERN cluster completed
the matrix inversion task in a slow 1 min. and 54.0 secs, as the
few cores were CPU bound. The same situation was revealed
for the MNIST image classifier tasks, with a single task taking
1 min. and 29 sec and 10 concurrent tasks consuming a long
running time of 4 min. and 55 secs. Such results could help
argue the case for an assignment of more cores per VM on
FABRIC’s GPU nodes.

4. CONCLUSION

From desktops and local clusters to shared mid-scale infras-
tructures including CloudLab and FABRIC, we have demon-



strated that Ray is a valuable tool to support distributed
systems research across the computing continuum.

Ray offers experimenters simple and powerful programming
abstractions that are less cumbersome than lower-level alter-
natives such as message passing interfaces. Ray conveniently
offloads cluster management from experimenters, handles node
heterogeneity, and eases multiprocessing. Ray takes a step to-
ward achieving a ”code once, run anywhere” model, allowing
students and domain scientists to focus on their science. While
one distributed framework will never adequately satisfy the
needs of campus computational scientists, Ray can help use
campus’ heterogeneous resources efficiently, and ease scaling
of computational models. This is particularly valuable in set-
tings where many domain scientists and students have limited
expertise in distributed systems programming techniques.

Much more research needs to be done to better under-
stand the many tradeoffs in recommending and supporting
a framework. In our future work we will study larger and
more representative mixes of anticipated HPC and ML work-
loads. This testing will be performed at scale on conventional
slurm-managed HPC clusters, and other large GPU clusters
specifically tailored for studying Large Language Models.
Finally, we will also examine Ray’s performability when used
to implement emerging Reinforcement Learning applications
on increasingly capable edge computing networks.
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