Simplifying HPC and ML Application Deployment across the Computing Continuum

Jack Brassil
Dept. of Computer Science
Princeton University

Goal – Support mix of HPC and AI/ML workloads across platforms

- Diverse population of computational scientists needing Python horizontal and vertical scaling
- AI/ML research and training needs growing rapidly in Humanities and Social Sciences
- Some degree of cluster hardware divergence today (e.g., dedicated campus system for LLM research)
- Need to rationalize different software frameworks in use across campus; hard to train, hard to support, expensive
- Investigating RAY to provide a "single" (primary) framework to support on the widest range of target platforms

This material is based upon work partially supported by a National Science Foundation award under Grant No. OAC-2429485 (CC* Integration-Small: Unifying and Accelerating Campus Computational Science with Ray)

Goal – Easily run workloads across the computing continuum

- 1. Public compute clouds
- 2.DoE Leadership Class Systems
- 3.NSF Shared SuperComputing Centers
- 4.NSF Computer & Networking Testbeds (FABRIC, CloudLab)
- 5. Regional AI Hubs
- 6. Conventional campus HPC clusters
- 7. Dedicated AI GPU clusters (Princeton Language & Intelligence)
- 8. Desktops & departmental clusters
- 9.IoT (e.g., Jetson, Raspberry Pi?)

What is RAY?

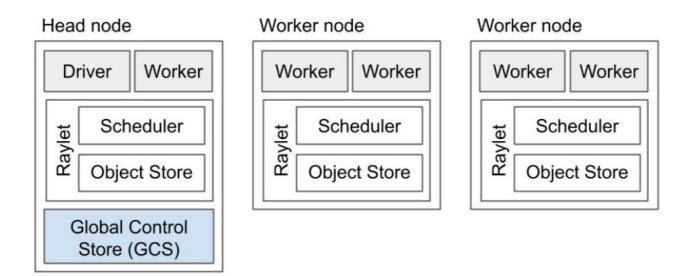
- Python open-source distributed computing framework
- Easy to use, simple multi-programming abstractions, and integrated scheduling and cluster management
- Integrations with common data science and scientific computing tools
- Focus on support for simulation, training, and model serving for RL applications
- Supported by founders from UC Berkeley RISELab at Anyscale, Inc.

What is RAY?

Programming Model highlights:

- A *task* represents the execution of a remote function on a stateless worker. A future representing the result of the task is returned immediately. Futures can be retrieved using ray.get()
- An actor represents a stateful computation. Each actor (Class) exposes methods that can be invoked remotely and returns a future.
- *Dynamic task graph* computation the execution of both remote functions and actor methods is automatically triggered when their inputs become available.

What is RAY?



The major components in a cluster: a Global Control Store (GCS), a distributed scheduler, and a distributed object store. Each component is horizontally scalable and fault-tolerant.

Simple Ray programming example

```
import numpy as np
N = 4000

def f(x):
    arr = np.random.randn(N, N)
    inv_arr = np.linalg.inv(arr)
    return x

futures = [f(i) for i in range(96)]
    print(ray.get(futures))
```

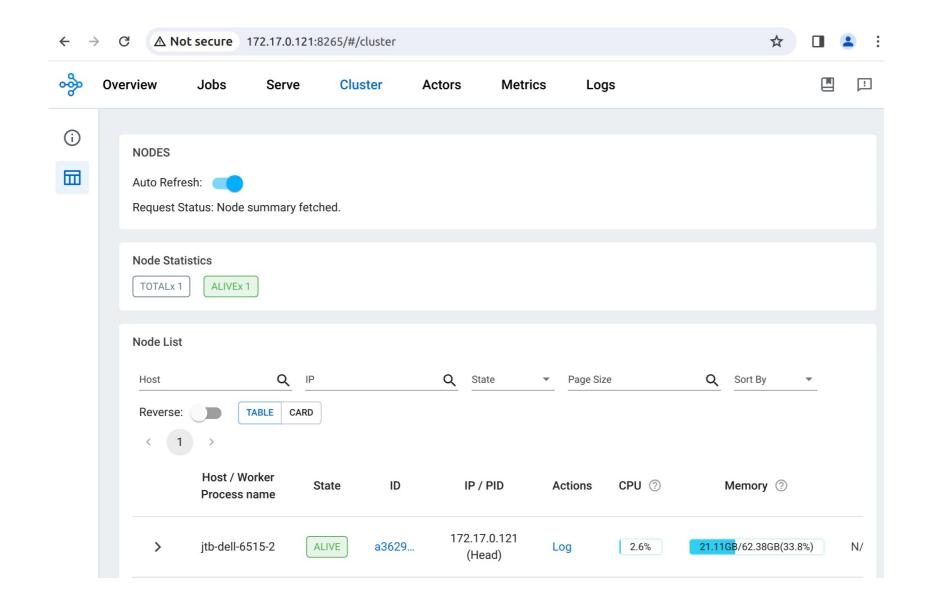
```
import numpy as np, ray
N = 4000
ray.init()

@ray.remote
def f(x):
    arr = np.random.randn(N, N)
    inv_arr = np.linalg.inv(arr)
    return x

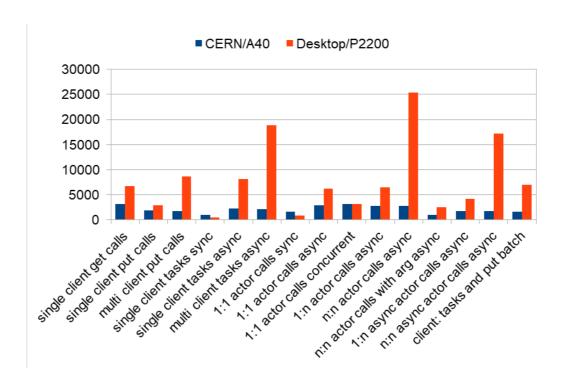
futures = [f.remote(i) for i in range(96)]
    print(ray.get(futures))
```

Parallelizing 96 4000x4000 matrix inversions

Ray dashboard

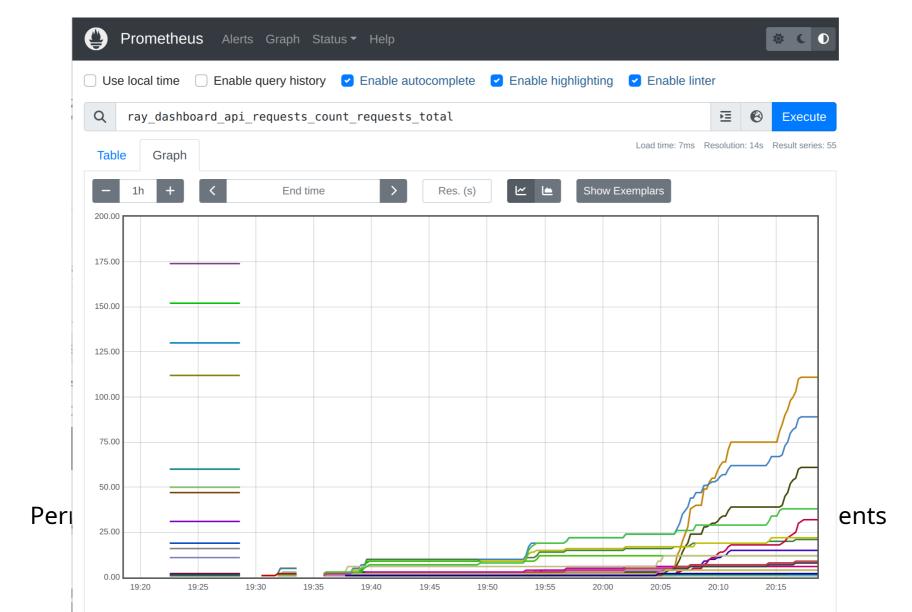


Ray microbenchmarks

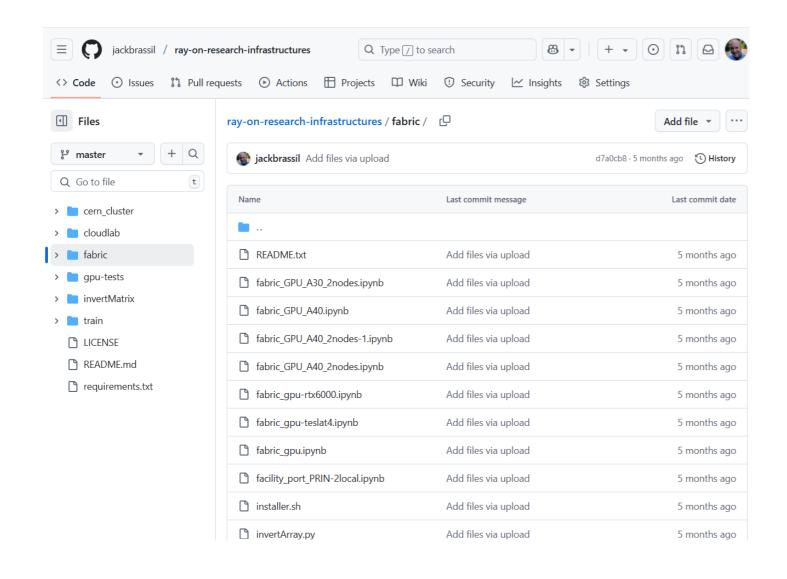


Permits quick performance comparison of different execution environments

Ray Integrations (Visualization)



RAY on NSF Research Infrastructures



- CloudLab and FABRIC testbeds as illustrative cluster settings
- Advantages include access to small clusters, diverse GPUs, ease of experimentation, experiment in wild, testing and deployment of RL apps, federated learning apps
- All necessary artifacts on Project github

Case 1: NSF CloudLab

- Experiments with 5 bare metal GPU nodes at CloudLab Wisconsin
- Easy to instrument cluster for monitoring RAY, cluster management, task placement, Ray jobs API
- Methodology run single, multiple, and mixed easy to understand jobs (e.g., large matrix inversions, training a Pytorch Lightning Image Classifier on MNIST data) various platforms)

head: ray start --head --node-ip-address= '128.105.144.55:6379'

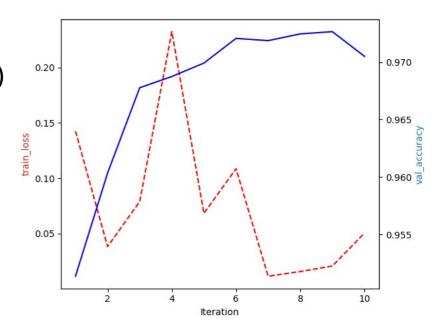
workers: ray start --address='128.105.144.55:6379' --node-ip-address= 128.105.144.[44,45,57,59]

RAY_ADDRESS='http://127.0.0.1:8265' ray job submit

--working-dir . -- python ./invertMatrix.py &

CloudLab – Example

- Simple Pytorch image classifier training
- GPU fully busy at < 10 simultaneous jobs
- Online and offline monitoring (nvtop, btop, TensorBoard)



Case 2: NSF FABRIC Research Infrastructure

- Testbed connecting major instruments, compute clouds, and universities
- Permits
 collaborative
 sharing of on- and
 off-campus
 computing
 systems
- whatisfabric.net

Step 1 - FABRIC
 Preliminaries. Build a global network topology

```
# Preliminaries (e.g., import FABlib libraries)
from ipaddress import ip_address,
IPv4Address, IPv6Address, IPv4Network, IPv6Network
from fabrictestbed_extensions.fablib.fablib
import FablibManager as fablib_manager
fablib = fablib_manager()

#Create FABRIC slice
slice_name = '4node-2site'
node1_name = 'prin1'; node2_name = 'prin2';
node3_name = 'ucsd3'; node4_name = 'ucsd4';
net_name='net1'
slice = fablib.new_slice(name=slice_name)

# Add network
net1 = slice.add_l2network(name=net_name,
subnet=IPv4Network("192.168.100.0/24")
```


 Step 2 – Deploy VMs across FABRIC sites.
 Deploy contributed bare metal nodes across sites.

```
# Node1
node1 = slice.add node(name=node1 name,
  site='PRIN', cores=4, ram=16, disk=32,
 image='default ubuntu 22')
iface1 = node1.add_component(model='NIC_Basic',
 name='nic1').get interfaces()[0]
iface1.set mode('auto')
net1.add interface(iface1)
# Node4
node4 = slice.add node(name=node4 name,
site='UCSD', cores=4, ram=16, disk=32,
image='default ubuntu 22')
iface4 = node4.add component(model='NIC Basic',
name='nic1').get interfaces()[0]
iface4.set mode('auto')
net1.add_interface(iface4)
# Create topology
slice.submit()
```


Step 3 – Deploy executables & tools

```
# Upload configuration files
result1 = node1.upload file
('config script.sh', 'config script.sh')
result4 = node4.upload file
('config script.sh', 'config script.sh')
# Additional script arguments
script args="net-tools wireshark"
# Run configurations
stdout, stderr = node1.execute(f'chmod +x
config script.sh && ./config script.sh
{script args} >> config1.log')
stdout, stderr = node4.execute(f'chmod +x
config script.sh && ./config script.sh
{script args} >> config4.log')
```


 Step 4 – Run Ray benchmarks

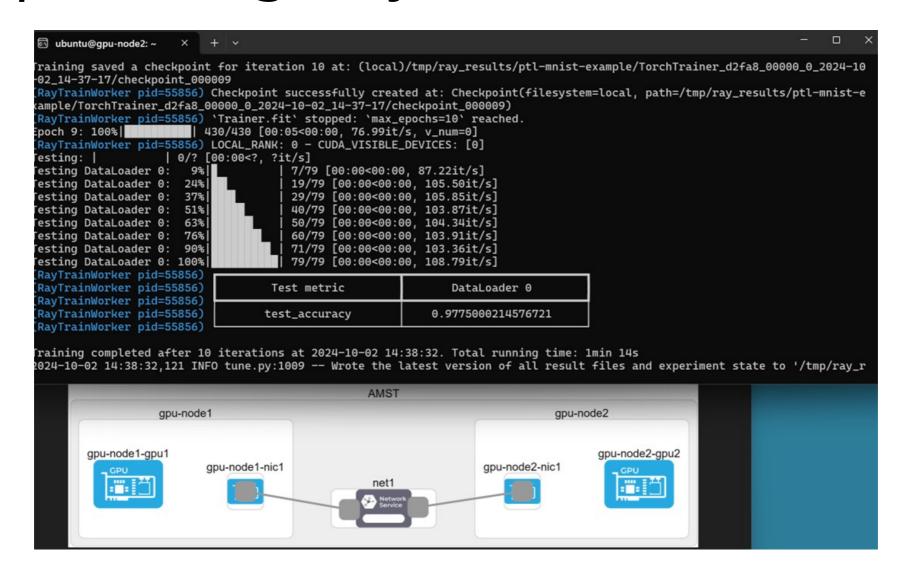
```
#!/bin/bash
args=$@
sudo apt install -y $args

pip install -U "ray[default]"

if (worker_node):
   ray start
   --address='192.168.100.3:6379'
   --node-ip-address=192.168.100.3

ray microbenchmark
else:
   ray start --head
   --node-ip-address=192.168.100.3
   --metrics-export-port=8080
   --dashboard-host=192.168.100.3
```


Example: Using Ray on FABRIC testbed



Open Challenges

- Characterizing RAY performance across multiple, diverse academic platforms.
- Understanding how RAY can streamline teaching distributed systems to a growing cohort of students spanning multiple disciplines.
- Create best practices for multiple job entry points for conventional SLURM clusters
- Optimize RAY performance on hybrid clouds, multiclouds, lower performance interconnects, edge systems

Thanks!

Conclusion

- Characterizing RAY performance across multiple, diverse academic platforms.
- Understanding how RAY can streamline teaching distributed systems to a growing cohort of students spanning multiple disciplines.
- Seeking to build and strengthen a RAY community across university Research Computing organizations!

Thanks!

