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Goal – Support mix of HPC and AI/ML workloads across 
platforms

• Diverse population of computational scientists needing Python 
horizontal and vertical scaling
• AI/ML research and training needs growing rapidly in Humanities and 

Social Sciences
• Some degree of cluster hardware divergence today (e.g., dedicated 

campus system for LLM research)
• Need to rationalize different software frameworks in use across 

campus; hard to train, hard to support, expensive
• Investigating RAY to provide a “single” (primary) framework to support 

on the widest range of target platforms
This material is based upon work partially supported by a
National Science Foundation award under Grant No. OAC-2429485
(CC* Integration-Small: Unifying and Accelerating Campus Computational Science 
with Ray)

                                                                 



Goal – Easily run workloads across the computing 
continuum

1.Public compute clouds
2.DoE Leadership Class Systems
3.NSF Shared SuperComputing Centers
4.NSF Computer & Networking Testbeds (FABRIC, CloudLab)
5.Regional AI Hubs
6.Conventional campus HPC clusters
7.Dedicated AI GPU clusters (Princeton Language & Intelligence)
8.Desktops & departmental clusters
9.IoT (e.g., Jetson, Raspberry Pi ?)



What is RAY?

• Python open-source distributed computing framework
• Easy to use, simple multi-programming abstractions, and 

integrated scheduling and cluster management
• Integrations with common data science and scientific 

computing tools
• Focus on support for simulation, training, and model 

serving for RL applications
• Supported by founders from UC Berkeley RISELab at 

Anyscale, Inc.



What is RAY?

Programming Model highlights:
• A task represents the execution of a remote function on a 

stateless worker. A future representing the result of the task 
is returned immediately. Futures can be retrieved using 
ray.get()
• An actor represents a stateful computation. Each actor 

(Class) exposes methods that can be invoked remotely and 
returns a future.
• Dynamic task graph computation – the execution of both 

remote functions and actor methods is automatically 
triggered when their inputs become available.



What is RAY?

The major components in a cluster: a Global Control Store (GCS), a 
distributed scheduler, and a distributed object store. Each 
component is horizontally scalable and fault-tolerant.



Simple Ray programming example

import numpy as np
N = 4000

def f(x):
    arr = np.random.randn(N, N)
    inv_arr = np.linalg.inv(arr)
    return x

futures = [f(i) for i in range(96)]
print(ray.get(futures))

Parallelizing 96 4000x4000 matrix inversions



Ray dashboard



Ray microbenchmarks

Permits quick performance comparison of different execution environments



Ray Integrations (Visualization)

Permits quick performance comparison of different execution environments



RAY on NSF Research Infrastructures

• CloudLab and FABRIC 
testbeds as illustrative 
cluster settings

• Advantages include access 
to small clusters, diverse 
GPUs, ease of 
experimentation, 
experiment in wild, testing 
and deployment of RL apps, 
federated learning apps

• All necessary artifacts on 
Project github 



Case 1: NSF CloudLab

• Experiments with 5 bare metal 
GPU nodes at CloudLab 
Wisconsin

• Easy to instrument cluster for 
monitoring RAY, cluster 
management, task placement, 
Ray jobs API

• Methodology – run single, 
multiple, and mixed easy to 
understand jobs (e.g., large 
matrix inversions, training a 
Pytorch Lightning Image 
Classifier on MNIST data) 
various platforms)

head: ray start --head --node-ip-address=
’128.105.144.55:6379’

workers: ray start --address=’128.105.144.55:6379’
--node-ip-address= 128.105.144.[44,45,57,59]

RAY_ADDRESS=’http://127.0.0.1:8265’ ray job 
submit
--working-dir . -- python ./invertMatrix.py &



CloudLab – Example

• Simple Pytorch image classifier training
• GPU fully busy at < 10 simultaneous jobs
• Online and offline monitoring (nvtop, btop, TensorBoard)



Case 2: NSF FABRIC Research Infrastructure



Ray over FABRIC

• Step 1 - FABRIC 
Preliminaries. Build a 
global network 
topology



Ray over FABRIC

• Step 2 – Deploy VMs 
across FABRIC sites. 
Deploy contributed bare 
metal nodes across 
sites.



Ray over FABRIC

• Step 3 – Deploy 
executables & tools



Ray over FABRIC

• Step 4 – Run Ray 
benchmarks



Example: Using  Ray on FABRIC testbed



Open Challenges
• Characterizing RAY performance across multiple, diverse academic 

platforms.
• Understanding how RAY can streamline teaching distributed 

systems to a growing cohort of students spanning multiple 
disciplines.
• Create best practices for multiple job entry points for conventional 

SLURM clusters
• Optimize RAY performance on hybrid clouds, multiclouds, lower 

performance interconnects, edge systems

Thanks!



Conclusion
• Characterizing RAY performance across multiple, diverse 

academic platforms.
• Understanding how RAY can streamline teaching distributed 

systems to a growing cohort of students spanning multiple 
disciplines.
• Seeking to build and strengthen a RAY community across 

university Research Computing organizations!

Thanks!

This material is based upon work partially supported by an National Science Foundation 
under Grant No. OAC-2429485.
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