
Simplifying HPC and ML Application
Deployment

across the Computing Continuum
Jack Brassil

Dept. of Computer Science
Princeton University

Goal – Support mix of HPC and AI/ML workloads across
platforms

• Diverse population of computational scientists needing Python
horizontal and vertical scaling
• AI/ML research and training needs growing rapidly in Humanities and

Social Sciences
• Some degree of cluster hardware divergence today (e.g., dedicated

campus system for LLM research)
• Need to rationalize different software frameworks in use across

campus; hard to train, hard to support, expensive
• Investigating RAY to provide a “single” (primary) framework to support

on the widest range of target platforms
This material is based upon work partially supported by a
National Science Foundation award under Grant No. OAC-2429485
(CC* Integration-Small: Unifying and Accelerating Campus Computational Science
with Ray)

Goal – Easily run workloads across the computing
continuum

1.Public compute clouds
2.DoE Leadership Class Systems
3.NSF Shared SuperComputing Centers
4.NSF Computer & Networking Testbeds (FABRIC, CloudLab)
5.Regional AI Hubs
6.Conventional campus HPC clusters
7.Dedicated AI GPU clusters (Princeton Language & Intelligence)
8.Desktops & departmental clusters
9.IoT (e.g., Jetson, Raspberry Pi ?)

What is RAY?

• Python open-source distributed computing framework
• Easy to use, simple multi-programming abstractions, and

integrated scheduling and cluster management
• Integrations with common data science and scientific

computing tools
• Focus on support for simulation, training, and model

serving for RL applications
• Supported by founders from UC Berkeley RISELab at

Anyscale, Inc.

What is RAY?

Programming Model highlights:
• A task represents the execution of a remote function on a

stateless worker. A future representing the result of the task
is returned immediately. Futures can be retrieved using
ray.get()
• An actor represents a stateful computation. Each actor

(Class) exposes methods that can be invoked remotely and
returns a future.
• Dynamic task graph computation – the execution of both

remote functions and actor methods is automatically
triggered when their inputs become available.

What is RAY?

The major components in a cluster: a Global Control Store (GCS), a
distributed scheduler, and a distributed object store. Each
component is horizontally scalable and fault-tolerant.

Simple Ray programming example

import numpy as np
N = 4000

def f(x):
 arr = np.random.randn(N, N)
 inv_arr = np.linalg.inv(arr)
 return x

futures = [f(i) for i in range(96)]
print(ray.get(futures))

Parallelizing 96 4000x4000 matrix inversions

Ray dashboard

Ray microbenchmarks

Permits quick performance comparison of different execution environments

Ray Integrations (Visualization)

Permits quick performance comparison of different execution environments

RAY on NSF Research Infrastructures

• CloudLab and FABRIC
testbeds as illustrative
cluster settings

• Advantages include access
to small clusters, diverse
GPUs, ease of
experimentation,
experiment in wild, testing
and deployment of RL apps,
federated learning apps

• All necessary artifacts on
Project github

Case 1: NSF CloudLab

• Experiments with 5 bare metal
GPU nodes at CloudLab
Wisconsin

• Easy to instrument cluster for
monitoring RAY, cluster
management, task placement,
Ray jobs API

• Methodology – run single,
multiple, and mixed easy to
understand jobs (e.g., large
matrix inversions, training a
Pytorch Lightning Image
Classifier on MNIST data)
various platforms)

head: ray start --head --node-ip-address=
’128.105.144.55:6379’

workers: ray start --address=’128.105.144.55:6379’
--node-ip-address= 128.105.144.[44,45,57,59]

RAY_ADDRESS=’http://127.0.0.1:8265’ ray job
submit
--working-dir . -- python ./invertMatrix.py &

CloudLab – Example

• Simple Pytorch image classifier training
• GPU fully busy at < 10 simultaneous jobs
• Online and offline monitoring (nvtop, btop, TensorBoard)

Case 2: NSF FABRIC Research Infrastructure

Ray over FABRIC

• Step 1 - FABRIC
Preliminaries. Build a
global network
topology

Ray over FABRIC

• Step 2 – Deploy VMs
across FABRIC sites.
Deploy contributed bare
metal nodes across
sites.

Ray over FABRIC

• Step 3 – Deploy
executables & tools

Ray over FABRIC

• Step 4 – Run Ray
benchmarks

Example: Using Ray on FABRIC testbed

Open Challenges
• Characterizing RAY performance across multiple, diverse academic

platforms.
• Understanding how RAY can streamline teaching distributed

systems to a growing cohort of students spanning multiple
disciplines.
• Create best practices for multiple job entry points for conventional

SLURM clusters
• Optimize RAY performance on hybrid clouds, multiclouds, lower

performance interconnects, edge systems

Thanks!

Conclusion
• Characterizing RAY performance across multiple, diverse

academic platforms.
• Understanding how RAY can streamline teaching distributed

systems to a growing cohort of students spanning multiple
disciplines.
• Seeking to build and strengthen a RAY community across

university Research Computing organizations!

Thanks!

This material is based upon work partially supported by an National Science Foundation
under Grant No. OAC-2429485.

	Slide 1
	Goal – Support mix of HPC and AI/ML workloads across platforms
	Goal – Easily run workloads across the computing continuum
	What is RAY?
	What is RAY? (2)
	What is RAY? (3)
	Simple Ray programming example
	Ray dashboard
	Ray microbenchmarks
	Ray Integrations (Visualization)
	RAY on NSF Research Infrastructures
	Case 1: NSF CloudLab
	CloudLab – Example
	Case 2: NSF FABRIC Research Infrastructure
	Ray over FABRIC
	Ray over FABRIC (2)
	Ray over FABRIC (3)
	Ray over FABRIC (4)
	Example: Using Ray on FABRIC testbed
	Open Challenges
	Conclusion

