Simplifying HPC and ML Application
Deployment
across the Computing Continuum

Jack Brassil
Dept. of Computer Science
Princeton University

LB PRINCETON
UNIVERSITY

Goal - Support mix of HPC and AI/ML workloads across
platforms

 Diverse population of computational scientists needing Python
horizontal and vertical scaling

* AI/ML research and training needs growing rapidly in Humanities and
Social Sciences

 Some degree of cluster hardware divergence today (e.g., dedicated
campus system for LLM research)

* Need to rationalize different software frameworks in use across
campus; hard to train, hard to support, expensive

 Investigating RAY to provide a “single” (primary) framework to support
on the widest range of target platforms

This material is based upon work partially supported by a
National Science Foundation award under Grant No. OAC-2429485
(CC* Integration-Small: Unifying and Accelerating Campus Computational Science PRINCETON

with Ray) # UNIVERSITY

Goal - Easily run workloads across the computing
continuum

1.Public compute clouds

2.DoE Leadership Class Systems

3.NSF Shared SuperComputing Centers

4.NSF Computer & Networking Testbeds (FABRIC, CloudLab)
5.Regional Al Hubs

6.Conventional campus HPC clusters

7.Dedicated Al GPU clusters (Princeton Language & Intelligence)
8.Desktops & departmental clusters

9.10T (e.q., Jetson, Raspberry Pi ?)

PRINCETON
UNIVERSITY

What is RAY?

* Python open-source distributed computing framework

* Easy to use, simple multi-programming abstractions, and
integrated scheduling and cluster management

 Integrations with common data science and scientific
computing tools

* Focus on support for simulation, training, and model
serving for RL applications

» Supported by founders from UC Berkeley RISELab at
Anyscale, Inc.

°‘§ RAY PRINCETON

UNIVERSITY

What is RAY?

Programming Model highlights:

* A task represents the execution of a remote function on a
stateless worker. A future representing the result of the task
is returned immediately. Futures can be retrieved using

ray.get()
* An actor represents a stateful computation. Each actor

(Class) exposes methods that can be invoked remotely and
returns a future.

* Dynamic task graph computation - the execution of both
remote functions and actor methods is automatically
triggered when their inputs become available.

°‘§ RAY PRINCETON

UNIVERSITY

What is RAY?

Head node Worker node Worker node
Driver Worker Worker || Worker Worker || Worker
o Scheduler yo Scheduler B Scheduler
)))
@ | Object Store @ | Object Store @ | Object Store
Global Control
Store (GCS)

The major components in a cluster: a Global Control Store (GCS), a
distributed scheduler, and a distributed object store. Each
component is horizontally scalable and fault-tolerant.

¥ PRINCETON
9 UNIVERSITY

Simple Ray programming example

import numpy as np
N = 4000

def f(x):
arr = np.random.randn(N, N)
inv_arr = np.linalg.inv(arr)

return x

futures = [f(i) for i in range(96)]
print(ray.get(futures))

import numpy as np, ray
N = 4000
ray.init()

@ray.remote

def f(x):
arr = np.random.randn(N, N)
inv_arr = np.linalg.inv(arr)

return x

futures = [f.remote(i) for i in range(96)]

print(ray.get(futures))

Parallelizing 96 4000x4000 matrix inversions

PRINCETON
UNIVERSITY

Ray dashboard

< C A Notsecure 172.17.0.121:8265/#/cluster
0§ Overview Jobs Serve Cluster Actors Metrics Logs
NODES
imi| Auto Refresh: il
Request Status: Node summary fetched.
Node Statistics
[TOTAwa] [ALIVEx‘I]
Node List
Host Q P Q state ~ Page Size Q, SortBy -
Reverse: 1D TABLE | CARD
1
Host / Worker
‘ State ID IP/PID Actions CPU @ Memory (@)
Process name
172.17.0.121 ’ o .
jtb-dell-6515-2 m a3629... Lo 2.6% 21.11GB/62.38GB(33.8%
> [Auve | tFoad) g | WEHGE 62.336R(33.8%)

N/

¥ PRINCETON
- UNIVERSITY

Ray microbenchmarks

u CERN/A40 m Desktop/P2200

Permits quick performance comparison of different execution environments

PRINCETON
UNIVERSITY

Ray Integrations (Visualization

Q Prometheus ©

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter

{ Q ray_dashboard api_requests count requests_total b= @

Load time: 7ms Resolution: 14s Result series: 55

Table Graph

- 1h End time Res. (s) Iz = Show Exemplars

200.00

175.00
150.00

‘ 125.00
100.00

‘ 75.00
50.00

25.00

= ents

PRINCETON
UNIVERSITY

0.00 — =

19:20 19:25 19:30 19:35 19:40 19:45 19:50 19:55 20:00 20:05 20:10 20:15

RAY on NSF Research Infrastructures

<> Code () Issues

[Files
¥ master -
Q Gotofile
» cern_cluster
> cloudlab
I > fabric
> gpu-tests
» invertMatrix
> train
[LICENSE
[README.md

[requirements.txt

o jackbrassil / ray-on-research-infrastructures

Q

11 Pullrequests () Actions [Projects [0 Wiki

e jackbrassil Add files via upload

Name

(9 README.txt

(Y fabric_GPU_A30_2nodes.ipynb
(Y fabric GPU_A40.ipynb

[fabric_.GPU_A40_2nodes-1.ipynb
(Y fabric GPU_A40_2nodes.ipynb
(Y fabric_gpu-rtx6000.ipynb

[fabric_gpu-teslatd.ipynb

(Y fabric_gpu.ipynb

(Y facility port PRIN-2local.ipynb
[installer.sh

3 invertArray.py

Q. Type(7] to search

© Security | Insights

ray-on-research-infrastructures / fabric/

Last commit message

Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload

Add files via upload

+v®I‘19&

€ Settings

Add file ~

d7a0cbh8 - 5 months ago @ History

Last commit date

5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago

5 months ago

* CloudLab and FABRIC
testbeds as illustrative
cluster settings

* Advantages include access
to small clusters, diverse
GPUs, ease of
experimentation,
experiment in wild, testing
and deployment of RL apps,
federated learning apps

* All necessary artifacts on
Project github

PRINCETON
UNIVERSITY

Case 1: NSF CloudLab

* Experiments with 5 bare metal
GPU nodes at CloudLab ‘ léu d I—a b
Wisconsin

* Easy to instrument cluster for

head: ray start --head --node-ip-address=

monitoring RAY, cluster '128.105.144.55:6379
management, task placement,
Ray jobs API workers: ray start --address="128.105.144.55:63/79’

--node-ip-address= 128.105.144.[44,45,57,59]

* Methodology - run single,
mu|tip|e, and mixed easy to RAY_ADDRESS='htth//1 27.0.0.1:8265’ rayjob

understand jobs (e.g., large submit , ,
matrix inversions, training a --working-dir . -- python ./invertMatrix.py &
Pytorch Lightning Image

Classifier on MNIST data) PRINCETON
various platforms) # UNIVERSITY

CloudLab - Example

* Simple Pytorch image classifier training
* GPU fully busy at < 10 simultaneous jobs
* Online and offline monitoring (nvtop, btop, TensorBoard)

127.3 MiB/s 18.60 MiB/s

37 / 250 W

[Tesla P100-PCIE-12GB] 3@16x
1328MHz 715MHz °C N/ A%
[39%] [

3.2166i/12.000Gi]

1298MiB ray::_RayTrainWorker__execute.get_next
1297MiB ray::_RayTrainwWorker__execute.get_next
1298MiB ray::_RayTrainWorker__execute.get_next
1297MiB ray::_RayTrainWorker__execute.get_next

91864 jbrassl % 638MiB
92270 jbrassl 638MiB
92791 jbrassi % 638MiB
93325 jbrassi %% 638MiB

train_loss

0.20 4

0.15 1

0.10 A

0.05 4

F 0.970

- 0.965

¥

|_accuracy

r 0.960

'd

F 0.955

teration

PRINCETON
UNIVERSITY

Case 2: NSF FABRIC Research Infrastructure

Testbed
connecting major
instruments,
compute clouds,
and universities

Permits
collaborative
sharing of on- and
off-campus
computing
systems

whatisfabric.net

Seattle

Salt Lake City
I_'-_.,_-,‘\.

SRl

Los Angeles
L

UcsD

StarLight et
l.'.;;;h Rutgers /U .0\-.5?
GPN e
) EDE @ pSC
C 8
NCSA @ EDUKY New York
Kansas City © .9._.. Washington
-?«*‘
(_1\5_7\'"- = e
& @ cClemson
Atlanta
@
FIU

TACC (TACC) @D

Resource

Cores

Disk (GB)
RAM (GB)
GPU
NVME
SmartNIC
SharedNIC

FPGA

available /
total

388/640
103703/107463
1598/2390
4/10
16/16
5/6
616/635

171

PRINCETON
UNIVERSITY

Ray over FABRIC

e Ste
Pre

glo

0 1 - FABRIC
iminaries. Build a
nal network

topology

Preliminaries (e.g., import FABlib libraries)

from ipaddress import ip_address,

IPv4Address, IPvbAddress, IPv4Network, IPveNetwork
from fabrictestbed extensions.fablib.fablib

import FablibManager as fablib_manager

fablib = fablib_manager()

#Create FABRIC slice

slice name = ’4node-2site’

nodel name = *prinl’; node2? name = ’prin2’;
node3 name = ’ucsd3’; noded name = ’ucsd4’;
net _name=’net1’

slice = fablib.new slice(name=slice name)

Add network
netl = slice.add 12network(name=net name,
subnet=IPv4Network ("192.168.100.0/24")

PRINCETON
UNIVERSITY

Ray over FABRIC

Nodel

nodel = slice.add node(name=nodel name,
® Step 2 — Deploy VMS site=*PRIN’, cores=4, ram=16, disk=32,
image="'default ubuntu 22?%)

across FAB RIC Sites. ifacel = nodel.add component(model="NIC Basic’,

it o R
Deploy contributed bare nets i nter face(ifate
metal nodes across ;
S|tes. # Noded

node4 = slice.add node(name=node4 name,
site=’UCSD’, cores=4, ram=16, disk=32,
image="default ubuntu 22*)

ifaced4 = node4.add component(model="NIC Basic’,
name='nicl?).get interfaces()[Q]
ifaced.set_mode(’auto’)

netl.add interface(iface4)

Create topology

slice.submit ()

PRINCETON
UNIVERSITY

Ray over FABRIC

Upload configuration files

= nodel.upload file

* Step 3 - Deploy r?'sgc}r;c;ig_script.sh', "config script.sh')
executables & tools

result4 = noded.upload file
('config script.sh’, ’'config script.sh’)

Additional script arguments

script args="net-tools wireshark™

Run configurations

stdout, stderr = nodel.execute(f’chmod +x

config script.sh && ./config script.sh
{script args} »>> configl.log’)

stdout, stderr = noded.execute(f’'chmod +x
config script.sh && ./config script.sh
{script args} >> configd.log’)

PRINCETON
UNIVERSITY

Ray over FABRIC

° Step 4 - Run Ray #—I—;l;T—f—rl;——I;—config_script.sh ————————————

benchmarks Bt

sudo apt install -y Sargs
pip install -U "ray[default]™®

1f (worker node):
ray start
-—address="192.168.100.3:6379"
—-—node-ip-address=192.168.100.3

ray microbenchmark

else:
ray start --head
——node-ip-address=192.168.100.3
——metrics-export-port=8080
—-—dashboard-host=192.168.100.3

PRINCETON
UNIVERSITY

Example: Using Ray on FABRIC testbed

& ubuntu@gpu-node2: ~ X CEEE o
raining saved a checkpoint for iteration 1@ at: (local)/tmp/ray_results/ptl-mnist-example/TorchTrainer_d2fa8_00080_0_2824-10
82_14- 37 lT’cheLkp01nt 0eee89
hnckpnlnt successfully created at: Checkpoint(filesystem=local, path=/tmp/ray_results/ptl-mnist-e

'amplEITorchTralner_dkFaS (¢] p_0_202U-10-02_14-37-17/checkpoint_8006009)
F 1 "Kel 1 58 ‘Tralner fit* stopped: ‘max_epochs=18‘ reached.
poch 9: 100% || u30/u30 [00:05<00:00, 76.99it/s, v_num=0]
F 1 kel i LOCAL_RANK: ® - CUDA_VISIBLE_DEVICES: [@]
esting: | | o/7 [00:00<?, 7it/s]
esting DatalLoader ©: 9%| | 7/79 [00:00<00:00, 87.22it/s]
esting DatalLoader @: 2u%| 19/79 [00:00<00:00, 105.50it/s]

i DataLoader 6: 37%| 29/79 [00:00<00:00, 105.85it/s]

DataLoader 8: 51%]| 4o/79 [00:00<00:00, 103.87it/s]

60/79 [00:€ 9:00, 103.91it/s]
71/79 [00: :00, 103.36it/s]
79/79 [00:0 :00, 108.79it/s]

_stlng DatalLoader ©: 76%]|
esting DatalLoader ©: 90%]|
esting Dataloader 0: 100%|

|
|
|
ssting Dataloader ©: 63%] | 50/79 [00:00<00:00, 1l64.3dit/s]
|
|
|

st_accuracy 0.9775000214576721

raining completed after 10 iterations at 2024-10-02 14:38:32. Total running time: 1min 1is
PO24-10-02 14:38:32,121 INFO tune.py:1009 —- Wrote the latest version of all result files and experiment state to '/tmp/ray_r

gpu-node1 gpu-node?2

gpu-node1-gput gpu-nodeE-gpu2
& gpu-node1-nic1 gpu-node2-nic1 B

PRINCETON
UNIVERSITY

Open Challenges

e Characterizing RAY performance across multiple, diverse academic
platforms.

* Understanding how RAY can streamline teaching distributed
systems to a growing cohort of students spanning multiple
disciplines.

 Create best practices for multiple job entry points for conventional
SLURM clusters

e Optimize RAY performance on hybrid clouds, multiclouds, lower
performance interconnects, edge systems

Thanks!

PRINCETON
UNIVERSITY

Conclusion

* Characterizing RAY performance across multiple, diverse
academic platforms.

* Understanding how RAY can streamline teaching distributed
systems to a growing cohort of students spanning multiple
disciplines.

* Seeking to build and strengthen a RAY community across
university Research Computing organizations!

Thanks!

This material is based upon work partially supported by an National Science Foundation

under Grant No. OAC-2429485. PRINCETON
UNIVERSITY

	Slide 1
	Goal – Support mix of HPC and AI/ML workloads across platforms
	Goal – Easily run workloads across the computing continuum
	What is RAY?
	What is RAY? (2)
	What is RAY? (3)
	Simple Ray programming example
	Ray dashboard
	Ray microbenchmarks
	Ray Integrations (Visualization)
	RAY on NSF Research Infrastructures
	Case 1: NSF CloudLab
	CloudLab – Example
	Case 2: NSF FABRIC Research Infrastructure
	Ray over FABRIC
	Ray over FABRIC (2)
	Ray over FABRIC (3)
	Ray over FABRIC (4)
	Example: Using Ray on FABRIC testbed
	Open Challenges
	Conclusion

